高考物理双基突破二专题电磁感应中的单杆模型精讲.doc

高考物理双基突破二专题电磁感应中的单杆模型精讲.doc
高考物理双基突破二专题电磁感应中的单杆模型精讲.doc

专题32 电磁感应中的“单杆”模型

单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。

1.此类题目的分析要抓住三点:

(1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。

(3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。

2.单杆模型中常见的情况及处理方法: (1)单杆水平式

开始时a =F

m ,杆

ab 速度v ?感

应电动势E =

开始时a =F

m ,杆ab 速度v ?

感应电动势E =BLv ,经过Δt 速度为v +Δv ,此时感应

=Blv R

,安培力F =BIL

=B2L2v R ,做减速运

动:v ?F ?a

当v =0时,F =0,a =0,杆保持静止

此时

a =BLE

mr

,杆

ab 速度v ?感

应电动势

BLv ?I ?安

培力F =BIL ?加速度a ,当E

=E 时,v 最大,且v m =E BL

BLv ?I ?安

培力F 安=

BIL ,由F -F 安

=ma 知a ,当a =0时,v 最大,

v m =

FR

B2L2

【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是

A .金属棒在导轨上做匀减速运动

B .整个过程中电阻R 上产生的焦耳热为mv20

2

C .整个过程中金属棒在导轨上发生的位移为qR

BL

D .整个过程中金属棒克服安培力做功为mv20

2

【答案】D

【题2】如图所示,足够长的平行金属导轨内有垂直纸面向里的匀强磁场,金属杆ab 与导轨垂直且接触良好,导轨右端与电路连接.已知导轨相距为L ,磁场的磁感应强度为B ,R 1、R 2和ab 杆的电阻值均为r ,其余电阻不计,板间距为d 、板长为4d ,重力加速度为g ,不计空气阻力.如果ab 杆以某一速度向左匀速运动时,沿两板中心线水平射入质量为m 、带电荷量为+q 的微粒恰能沿两板中心线射出,如果ab 杆以同样大小的速度向右匀速运动时,该微粒将射到B 板距其左端为d 的C 处。

(1)求ab 杆匀速运动的速度大小v ; (2)求微粒水平射入两板时的速度大小v 0;

(3)如果以v 0沿中心线射入的上述微粒能够从两板间射出,试讨论ab 杆向左匀速运动的速度范围。 【答案】(1)3mgd qBL (2)2gd (3)21mgd 8qBL

8qBL

【解析】(1)设ab 杆匀速运动的速度为v ,则ab 杆产生的电动势为E =BLv ① 两板间的电压为U 0=13E =BLv

3

ab 杆向左匀速运动时:

qU0

d

=mg ③ 由①②③式得:v =3mgd

qBL

(2)ab 杆向右匀速运动时,设带电微粒射入两极板时的速度为v 0,向下运动的加速度为a ,经

(3)要使带电微粒能从两板间射出,设它在竖直方向运动的加速度为a1、时间为t1,应有d 2

>1

2

a1t21⑨

t1=

4d

v0

由⑧⑨⑩得:a1<

g

8

?

若a1的方向向上,设ab杆运动的速度为v1,两板电压为:U1=

1

3

BLv1?

又有:

qU1

d

-mg=ma1?

联立???式得:v1<

27mgd

8qBL

?

若a1的方向向下,设ab杆的运动速度为v2,两板电压为:U2=

1

3

BLv2?

又有:mg-

qU2

d

=ma1?

由???式得:v2>

21mgd

8qBL

?,

所以ab杆向左匀速运动时速度的大小范围为

21mgd

8qBL

27mgd

8qBL

?

方法技巧:巧用功能关系以及能量守恒思想1、在电磁感应现象中,当安培力是变力时,无法

直接求安培力做的功,这时要用功能关系和能量守恒的观点来分析问题。2、一个注意点:在应用能量守恒观点解决电磁感应问题时,一定要分析清楚能量的转化情况,尤其要注意电能往往只是各种形式能转化的中介。

3.单棒导体切割磁感线一般运动过程

4.收尾状态

5.两种状态及处理方法

【题7】相距L=1.5 m的足够长金属导轨竖直放置,质量为m1=1 kg的金属棒ab和质量为m2=0.27 kg 的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同。ab棒光滑,cd棒与导轨间的动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计。ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放。(g取10 m/s2)

(1)求出磁感应强度B 的大小和ab 棒加速度的大小;

(2)已知在2s 内外力F 做功40J ,求这一过程中两金属棒产生的总焦耳热;

(3)判断cd 棒将做怎样的运动,求出cd 棒达到最大速度所需的时间t 0,并在图(c )中定性画出cd 棒所受摩擦力f cd 随时间变化的图象。

【答案】(1)1.2 T 1 m/s 2

(2)18 J (3)2 s 图见解析

(2)在2 s 末金属棒ab 的速率v t =at =2 m/s 所发生的位移s =12at 2

=2 m

由动能定理得W F -m 1gs -W 安=1

2m 1v 2t ,

又Q =W 安

联立以上方程,解得Q =W F -m 1gs -12m 1v 2t =40 J -1×10×2 J-12

×1×22

J =18 J 。

(3)cd 棒先做加速度逐渐减小的加速运动,当cd 棒所受重力与滑动摩擦力相等时,速度达到最大; 然后做加速度逐渐增大的减速运动,最后停止运动。 当cd 棒速度达到最大时,有m 2g =μF N , 又F N =F 安,F 安=BIL ,I =E R =BLvm

R

,v m =at 0,

整理解得t 0=m2gR μB2L2a =0.27×10×1.8

0.75×1.22×1.52×1 s =2 s

f cd 随时间变化的图象如图所示。

【题8】(多选)如图所示,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,左侧为半径为R 的1

4光

滑圆弧轨道,其最低位置与右侧水平粗糙平直导轨相切,右端接一个阻值为r 的定值电阻。平直导轨部分的左边区域有宽度为d 、磁感应强度大小为B 、方向竖直的匀强磁场质量为m 、电阻也为r 的金属棒从圆弧

轨道最高处由静止释放,到达磁场右边界处恰好停止。已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好。则在此过程中,以下说法正确的是

A .金属棒在磁场中做匀减速运动

B .通过金属棒横截面的电荷量为BdL

r

C .定值电阻r 产生的焦耳热为1

2

mg (R -μd )

D .金属棒运动到圆弧轨道最低位置时对轨道的压力为3mg 【答案】CD

错误;通过金属棒横截面的电荷量为q =I Δt ,又I =

E

2r ,E =ΔΦΔt ,则得q =ΔΦ2r =BdL

2r

,故B 错误;根据能量守恒定律得:定值电阻r 产生的焦耳热为Q =12(mgR -μmgd )=1

2mg (R -μd ),故C 正确;设金属

棒运动到圆弧轨道最低位置时速度为v ,金属棒在圆弧轨道运动过程中,根据机械能守恒定律得:mgR =1

2mv 2,

在轨道最低位置时,由牛顿第二定律得:N -mg =m v2

R ,联立解得:轨道对金属棒的支持力为:N =3mg ,根

据牛顿第三定律得金属棒对轨道的压力为:N ′=N =3mg ,故D 正确。

【题9】如图甲所示,匀强磁场的磁感应强度B 为0.5 T ,其方向垂直于倾角θ为30°的斜面向上。绝缘斜面上固定有“∧”形状的光滑金属导轨MPN (电阻忽略不计),MP 和NP 长度均为2.5 m ,MN 连线水平,长为3 m 。以MN 中点O 为原点,OP 为x 轴建立一维坐标系Ox 。

一根粗细均匀的金属杆CD ,长度d 为3 m 、质量m 为1 kg 、电阻R 为0.3 Ω,在拉力F 的作用下,从

MN 处以恒定速度v =1 m/s 在导轨上沿x 轴正向运动(金属杆与导轨接触良好)。g 取10 m/s 2

(1)求金属杆CD 运动过程中产生的感应电动势E 及运动到x =0.8 m 处电势差U CD ;

(2)推导金属杆CD 从MN 处运动到P 点过程中拉力F 与位置坐标x 的关系式,并在图乙中画出F -x 关系图象;

(3)求金属杆CD 从MN 处运动到P 点的全过程产生的焦耳热。

【答案】(1)1.5 V -0.6 V (2)F =12.5-3.75x (m ) 图象见解析(3)7.5 J

(2)金属杆做匀速直线运动,故始终受力平衡,即F =mg sin θ+BIl

I =

Blv

Rx

所其中l =OP -x OP d =3 m -3

2x ,R x =l ×0.1 Ω/m

代入可得F =12.5-3.75x (m )(0≤x ≤2) 关系图象如下图所示

所以F =mg sin θ+B2l2v

Rx

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

电磁感应现象中的单杆切割磁感线问题

电磁感应现象中的单杆切割磁感线问题 一、教学内容:电磁感应知识与应用复习之单杆切割磁感线问题 二、教学课时:二课时 三、教学课型:高三第一轮复习课 四、教学设计适合对象:高三理科学生 五、教学理念: 电磁感应现象知识的应用历来是高考的重点、热点,问题可将力学、电磁学等知识溶于一体,能很好地考查学生的理 解、推理、分析综合及应用数学处理物理问题的能力。通过近年高考题的研究,电磁感应问题每年都有“单杆切割磁感线 问题”模型的高考题出现。 而解决电磁感应单杆切割磁感线问题的关键就是借鉴或利用相似原型来启发、理解和变换物理模型,即把最基础的物 理模型进行细致的分析和深入的理解后,有目的的针对某些关键位置进行变式,从而把陌生的物理模型与熟悉的物理模型 相联系,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法?巧妙地 运用“类同”变换,“类似”变换, “类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化,从而提高了课堂教学的有效 性。 六、电磁感应教学内容与学情分析研究: 6. 1 ?教学内容分析: 电磁感应中的单杆模型包括:导轨、金属棒和磁场,所以对问题的变化点主要有: 1.针对金属棒 1)金属棒的受力情况:平行轨道方向上,除受安培力以外是否存在拉力、阻力; 2)金属棒的初始状态:静止或有一个初速度V。; 3)金属棒的运动状态:与导轨是否垂直,与磁场是否垂直,是不是绕中心点转动; 4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线。 2?针对导轨 1)导轨的形状:常见导轨的形状为U形,还可以为圆形、三角形、三角函数图形等; 2)导轨的闭合性:导轨本身可以开口,也可闭合; 3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; 4)导轨的放置:水平、竖直、倾斜放置。 3.针对磁场 1 )磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化; 2)磁场的分布:有界或无界。 6 . 2 .学生学情分析:

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

高考物理双基突破二专题电磁感应中的单杆模型精讲.doc

专题32 电磁感应中的“单杆”模型 单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 应电动势E = 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt 速度为v +Δv ,此时感应

=Blv R ,安培力F =BIL =B2L2v R ,做减速运 动:v ?F ?a , 当v =0时,F =0,a =0,杆保持静止 此时 a =BLE mr ,杆 ab 速度v ?感 应电动势 BLv ?I ?安 培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL BLv ?I ?安 培力F 安= BIL ,由F -F 安 =ma 知a ,当a =0时,v 最大, v m = FR B2L2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv20 2 C .整个过程中金属棒在导轨上发生的位移为qR BL

高中物理十大难点之法拉第电磁感应定律

难点之七 法拉第电磁感应定律 一、难点形成原因 1、关于表达式t n E ??=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ?是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ?、t ??φ的关系容易混淆不清。 2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E = 、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。 3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。 二、难点突破 1、φ、φ?、t ??φ同v 、△v 、t v ??一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。 磁通量φ 磁通量变化量φ? 磁通量变化率t ??φ 物理 意 义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多 某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小 计 算 ⊥=BS φ,⊥S 为与B 垂直的面积 12φφφ-=?,S B ?=?φ或B S ?=?φ t S B t ??=??φ 或t B S t ??=??φ 注 意 若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方 向的磁通量相互抵消以 后所剩余的磁通量 开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一 正一负,△φ=2 BS , 而不是零 既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示 2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题 ⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。此公式也可

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

最新高考物理双基突破:专题32-电磁感应中的“单杆”模型(精讲)

单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt

势E =BLv ,电流I = E R =Blv R ,安培力F =BIL = B 2L 2 v R ,做减速运动: v ?F ?a ,当v =0时,F =0,a =0, 杆保持静止 此时a =BLE mr ,杆 ab 速度v ?感应电动势BLv ?I ?安培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL 应电动势E =BLv ?I ?安培力F 安=BIL ,由F -F 安 =ma 知a ,当 a =0时,v 最大, v m = FR B 2L 2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值 为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv 202

高中物理专题练习电磁感应中的能量问题

电磁感应中的能量问题(2) 例1.如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B.竖直放置的正方形金属线框边长为l,电阻为R,质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平.开始时,线框与物块静止在图中虚线位置且细线水平伸直.将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角θ=30°,线框刚好有一半处于右侧磁场中.(已知重力加速度g,不计一切摩擦)求: (1)此过程中通过线框截面的电荷量q (2)此时安培力的功率 (3)此过程在线框中产生的焦耳热Q. 例2.(多选)如图甲所示,在竖直平面内有一单匝正方形线圈和一垂直于竖直平面向里的有界匀强磁场,磁场的磁感应强度为B,磁场上、下边界AB和CD均水平,线圈的ab边水平且与AB间有一定的距离.现在让线圈无初速自由释放,图乙为线圈从自由释放到cd边恰好离开CD边界过程中的速度一 时间关系图象.已知线圈的电阻为r, 且线圈平面在线圈运动过程中始终处在 竖直平面内,不计空气阻力,重力加速 度为g,则根据图中的数据和题中所给 物理量可得() A.在0~t3时间内,线圈中产生的热量为 B.在t2~t3时间内,线圈中cd两点之间的电势差为零 C.在t3~t4时间内,线圈中ab边电流的方向为从b流向a D.在0~t3时间内,通过线圈回路的电荷量为 例3.利用超导体可以实现磁悬浮,如图是超导磁悬浮的示意图。在水平桌面 上有一个周长为L的超导圆环,将一块质量为m的永磁铁从圆环的正上方缓 慢下移,由于超导圆环跟磁铁之间有排斥力,结果永磁铁悬浮在超导圆环的 正上方h1高处平衡。 (1)若测得圆环a点磁场如图所示,磁感应强度为B1,方向与水平方向成 θ1角,问此时超导圆环中电流的大小和方向? (2)在接下的几周时间内,人们发现永磁铁在缓慢下移。经过较长时间T 后,永磁铁的平衡位置在离桌面h2高处。有一种观点认为超导体也有很微小 的电阻,只是现在一般仪器无法直接测得,超导圆环内电流的变化造成了永 磁铁下移,并设想超导电流随时间缓慢变化的I2-t图,你认为哪张图相对合 理,为什么? (3)若测得此时a点的磁感应强度变为B2,夹角变为θ2,利用上面你认为 相对正确的电流变化图,求出该超导圆环的电阻? 同步练习: 1.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨 等宽的粗糙金属细杆ab,cd和导轨垂直且接触良好.已知ab,cd杆的质 量,电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场 中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下 运动,以下说法正确的是() A.cd杆一定向下做匀速直线运动 B.cd杆一定向下做匀加速直线运动 C.F做的功等于回路中产生的焦耳热与ab杆克服 摩擦做功之和 D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和 2.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部 进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于 线圈宽度,那么()

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

河北省保定安国中学电磁感应中单杆模型的动态分析(10页)

河北省保定安国中学电磁感应中单杆模型的动态分析 速度V 0≠0 V =0 示意图 单杆以一定初 速度v0在光滑 水平轨道上滑 动,质量为m, 电阻不计,杆长为L 轨道光滑水 平,杆质量 为m,电阻不 计,杆长为L,拉力F恒定 力学和运动学分析导体杆以速度v切割磁感线产生感 应电动势BLv E=,电流 R BLv R E I= =,安培力 R v L B BIL F 2 2 = =,做减速运动: ↓ ↓?a v,当0 = v时,0 = F, = a,杆保持静止 开始时 m F a=,杆ab速度↑? v感应 电动势↑? ↑? =I BLv E安培力 ↑ =BIL F 安 由a F F m = - 安 知↓ a,当 = a时,v最大, 2 2L B FR v m = 图像观点 F B R v0 B R

1、(多选)如图所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN 成水平沿导轨滑下,在与导轨和电阻R 组成的闭合电路中,其他电阻不计。当金属杆MN 进入磁场区后,其运动的速度图像可能是下图中的( ACD ) 在电磁感应现象问题中求解距离问题的方法:①运动学公式。②动量定理。 v m t R v L B ?=?总 22(t v ?是V-t 图像的面积)③利用电量总R nBxL q ==总R n φ? 2、质量为m 的导体棒可沿光滑水平的平行轨道滑行,两轨道间距离为L ,导轨左端与电阻R 连接,放在竖直向上的匀强磁场中,磁感应强度为B ,杆的速度为v 0,电阻不计,如图,试求棒所滑行的距离。 能 量 观 点 动能全部转化为内能: 202 1mv Q = F 做的功中的一部分转化为杆的动能,一部分产热:22 1m F mv Q W + = v 0 B R

电磁感应中的双棒运动问题高中物理专题

第9课时 电磁感应中的双棒运动问题 一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R v L B BIL F 22,F 与速度有关; 2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点) ; 3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。 二、例题分析: 1、两棒一静一动: 【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计, 两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为 B=0.2T ,棒ab 在平行于导轨向上的力 F 作用下,沿导轨向上匀速运动,而棒cd 恰 好能保持静止。取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大? (3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少? 2、两棒不受力都运动:满足动量守恒,分析最终状态: 【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为 L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43 v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值? 3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 【例3】如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀 强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离 L=0.20m 。两根质量均为m=0.10kg 的金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的为电阻R=0.50Ω,在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为 0.20N 的力F 作用于金属杆甲上,使金属杆在导轨上滑动。(1)分析说明金属杆最终的运动 状态?(2)已知当经过 t=5.0s 时,金属杆甲的加速度a=1.37m/s ,求此时两金属杆的速度各为多少?

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

2020高考物理专题十 电磁感应

专题十电磁感应 挖命题 【考情探究】 分析解读导体棒切割磁感线的计算限于导线方向与磁场方向、运动方向垂直的情况。本专题主要研究电磁感应现象的描述、感应电流的方向的判断(楞次定律、右手定则)、感应电动势的大小的计算、自感现象和涡流现象等。这部分是高考考查的重点内容,近几年多放在第一道计算题考查。在高考中电磁感应现象多

与磁场、电路、力学、能量等知识结合,综合性较高,因此在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路,要研究与实际生活、生产科技相结合的实际应用问题。命题趋势:(1)楞次定律、右手定则、左手定则的应用。(2)与图像结合考查电磁感应现象。(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用。 【真题典例】 破考点 【考点集训】 考点一电磁感应现象、楞次定律 1.(2018江苏海安高级中学阶段检测,8)(多选)如图所示,A为一固定的圆环,条形磁铁B从左侧无穷远处以初速度v0沿圆环轴线移向圆环,穿过后移到右侧无穷远处。下列说法中正确的是( )

A.若圆环A是电阻为R的线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 B.若圆环A是一超导线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 C.若圆环A是电阻为R的线圈,磁铁的中点通过环面时,圆环中电流为零 D.若圆环A是一超导线圈,磁铁的中点通过环面时,圆环中电流为零 答案AC 2.(2018江苏泰州、宜兴能力测试,3)如图所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管。下列说法正确的是( ) A.电流计中的电流先由a到b,后由b到a B.a点的电势始终低于b点的电势 C.磁铁减少的重力势能等于回路中产生的热量 D.磁铁刚离开螺线管时的加速度小于重力加速度 答案D 3.(2017江苏扬州中学月考,7)(多选)一个水平固定的金属大圆环A,通有恒定的电流,方向如图所示,现有一小金属环B自A环上方落下并穿过A环,B环在下落过程中保持水平,并与A环共轴,那么在B环下落过程中( )

相关文档
最新文档