转炉炉型控制与应用

转炉炉型控制与应用
转炉炉型控制与应用

转炉氧枪装置设计

转炉氧枪装置设计 摘要:通过对转炉氧枪装置设计过程介绍,分析了氧枪横移车、升降小车以及氧枪刮渣器设计中的要点,提出了针对氧枪装置在保证转炉炼钢生产过程的连续性、可靠性以及安全性和维护便利性等方面的一套全新的设计方案,使氧枪装置使用维护性能得到较大提高,所提到的新型结构氧枪已在多个转炉炼钢生产现场得到验证。 关键词:事故提升系统;防坠枪装置;快速换枪;可控力矩刮渣器 氧枪装置用于向转炉内吹氧,使钢水脱碳;并加大冶炼强度,实现快速炼钢。 氧枪装置是转炉炼钢系统连续生产的重要在线设备,设置于转炉上方。氧枪工作时需插入转炉内吹氧,处于高温、液态渣包裹之中,因此,其对设备的运行安全性、可靠性、连续性设计提出了很高要求,因而设计中需要对这些需求提出切实可行的解决办法,以满足其复杂控制需求和适应其所处的恶劣工况。 氧枪装置设计依据来自于工艺专业的任务书,设备设计首先需要明确的是运行负荷,接下来进行方案设计、结构设计、施工图设计。 运行负荷:卷扬升降负荷应考虑升降小车、氧枪、金属软管、管内积水、枪体挂渣、刮渣器的刮渣力以及氮封塞、钢绳重量;横移车运行阻力按横移运行设备重量的0.025%计算[1];横移锁紧装置的锁紧能力按运行阻力的4倍考虑;刮渣力按2~3t考虑。 横移车为一钢结构小车,分为上下两层,上层设置有升降卷扬装置及钢绳平衡器,下层设置横移传动装置,上下层之间由活动导轨和钢结构相连。升降卷扬机设有主传动和事故传动两套传动系统,通过离合器实现转换;卷扬控制设有两台绝对型编码器(一用一备、互相比照)控制升降行程、主传动电动机尾部装有增量型编码器控制升降速度;另装有钢绳张力传感器、位置行程开关等电控元件。钢绳平衡器吊挂在上层平台下部,既可调钢绳安装误差,又可在小车升降过程中平衡两根钢绳变形差,使两根钢绳受力始终一样。 事故传动是独立于主传动之外的事故提升系统,当出现车间停电、主电机故障、制动器电液推杆失效等事故时,可利用事故提升系统安全地将氧枪提出炉外,避免更大的事故发生。我们设计的事故提升系统形式为:在卷扬减速机的高速轴上设置气动离合器,增加一级减速,事故电机传动,EPS电源供电,制动器设置开闸气缸,采用气、电结合方式控制。事故提升时,控制室操作人员按下事故提升按钮,离合器电磁阀由UPS电源给电,离合器合上,舌簧开关给出信号后,事故电机给电启动,电机力矩建立起来后,制动器气缸用电磁阀由UPS电源给电,气缸将制动器打开,开始提枪。将氧枪提出炉口一定高度(由2台事故提枪位接近开关判断)后,制动器电磁阀断电(制动器抱闸),然后事故电机停电。最后离合器电磁阀断电复位。整个过程一键自动完成。

转炉炼钢设计-开题报告(终极版)

湖南工业大学 本科毕业设计(论文)开题报告 (2012届) 2011年12月19日

顶底复吹技术,工艺成熟,脱磷效果好,在后续的生产中采用多种精炼方法,其中LF、RH 、CAS—OB、VOD、VAD的应用可以很好的控制钢水的成分和温度,生产纯净钢,不锈钢等,连铸工艺能够实现连续浇铸,提高产量,降低成本,同时随着连铸技术的发展,近终型连铸,高效连铸等多种连铸技术得到应用,大大的提高了铸钢的质量,一定范围内降低了企业的成本。经现代技术和工艺生产出来的如板材,管线钢,不锈钢等的质量得到了很大的保障,市场的信誉度高,市场需求量大。 故设计建造年产310万t合格铸坯炼钢厂是可行的,也是必要的。 2.2 主要研究内容 研究内容包括设计说明书和图纸两个部分。 2.2.1 设计说明书 (1)中英文摘要、关键词 (2)绪论 (3)厂址的选择 (4)产品方案设计 (5)工艺流程设计 (6)转炉容量和座数的确定 (7)氧气转炉物料平衡和热平衡计算 (8)转炉炼钢厂主体设备设计计算(包括转炉炉型、供气及氧枪设计、精炼方法及设备、连铸设备) (9)转炉炼钢厂辅助设备设计计算(包括铁水供应系统、废钢供应系统、出钢出渣设备、烟气净化回收系统) (10)生产规模的确定及转炉车间主厂房的工艺布置和尺寸选择(包括车间主厂房的加料跨、炉子跨、精炼跨、浇注跨的布置形式及主要尺寸的设计确定)(11)劳动定员和成本核算 (12)应用专题研究 (13)结论、参考文献 2.2.2 设计图纸 (1)转炉炉型图 (2)转炉炼钢厂平面布置图 (3)转炉车间主厂房纵向剖面图 2.3 研究思路及方案 (1)根据设计内容,书写中英文摘要、关键词。 (2)查阅专业文献,结合毕业实习,收集当前转炉炼钢工艺技术、车间设

氧气顶吹转炉炼钢终点碳控制的方法

氧气顶吹转炉炼钢终点碳控制的方法 终点碳控制的方法有三种,即一次拉碳法、增碳法和高拉补吹法。 一次拉碳法 按出钢要求的终点碳和终点温度进行吹炼,当达到要求时提枪。 这种方法要求终点碳和温度同时到达目标,否则需补吹或增碳。一次拉碳法要求操作技术水平高,其优点颇多,归纳如下: (1) 终点渣TFe含量低,钢水收得率高,对炉衬侵蚀量小。 (2) 钢水中有害气体少,不加增碳剂,钢水洁净。 (3) 余锰高,合金消耗少。 (4) 氧耗量小,节约增碳剂。 增碳法 是指吹炼平均含碳量≥0.08%的钢种,均吹炼到ω[C]=0.05%~0.06%提枪,按钢种规范要求加入增碳剂。增碳法所用碳粉要求纯度高,硫和灰分要很低,否则会玷污钢水。 采用这种方法的优点如下: (1)终点容易命中,比“拉碳法”省去中途倒渣、取样、校正成分及温度的补吹时间,因而生产率较高; (2)吹炼结束时炉渣Σ(FeO)含量高,化渣好,去磷率高,吹炼过程的造渣操作可以简化,有利于减少喷溅、提高供氧强度和稳定吹炼工艺; (3)热量收入较多,可以增加废钢用量。 采用“增碳法”时应严格保证增碳剂质量,推荐采用C>95%、粒度≤10毫米的沥青焦。增碳量超过0.05%时,应经过吹Ar等处理。 高拉补吹法 当冶炼中、高碳钢钢种时,终点按钢种规格稍高一些进行拉碳,待测温、取样后按分析结果与规格的差值决定补吹时间。 由于在中、高碳(ω[c]>0.40%)钢种的碳含量范围内,脱碳速度较快,火焰没有明显变化,从火花上也不易判断,终点人工一次拉碳很难准确判断,所以采用高拉补吹的办法。用高拉补吹法冶炼中、高碳钢时,根据火焰和火花的特征,参考供氧时间及氧耗量,按所炼钢种碳规格要求稍高一些来拉碳,使用结晶定碳和钢样化学分析,再按这一碳含量范围内的脱碳速度补吹一段时间,以达到要求。高拉补吹方法只适用于中、高碳钢的吹炼。根据某厂30 t 转炉吹炼的经验数据,补吹时的脱碳速度一般为0.005%/s。当生产条件变化时,其数据也有变化。

转炉氧枪设计方案

广青金属有限公司 65T转炉φ180氧枪及氧枪喷头设计方案 山东崇盛冶金氧枪有限公司 2012年2月 65T转炉φ180氧枪及氧枪喷头设计方案

简介 山东崇盛冶金氧枪有限公司,系冶金氧枪及喷头的专业研究生产单位。位于中国潍坊高新技术产业开发区。技术力量雄厚,技术装备先进,检测手段齐全。我公司在转炉用氧枪设计方面有丰富的设计和制造经验,例如:宝钢300吨转炉炼钢φ406氧枪喷头,武钢三炼钢250吨转炉用φ355锥度氧枪及喷头,马钢300吨转炉用φ355锥度氧枪及喷头,济钢210吨转炉用φ355氧枪及喷头,新余三期210T 转炉炼钢φ325氧枪及喷头,上海罗泾150吨转炉炼钢φ299氧枪及喷头,河北承德钢铁、普阳钢铁、宁波钢铁、天铁、安阳钢铁、通化钢铁等150吨转炉炼钢φ299氧枪及喷头,目前均正常使用,效果良好。现国内120吨以上转炉用氧枪80%由我公司设计制造。 公司秉承“以人为本,科技领先”的发展战略,技术力量雄厚,拥有世界先进水平的科研机构、精良的机械加工设备及国内一流的检测设施,最大程度上保证产品最佳的使用性能。 65T转炉φ180×1孔喷头设计方案

一、设计工况参数: 1、出钢量:~65吨/炉 2、现场操作氧流量:~4200Nm3/hr 3、现场操作供氧压力:0.85~1.0Mpa (阀后压力) 4、纯吹氧吹炼时间:13~15min 5、冷却水压力:≥1.2MPa 6、进出水温差≤27℃(水温差根据现场实际情况要有所差异) 7、氧枪喷头形式:1孔拉瓦尔孔喷头 二、喷头参数设计 2.1马赫数的选择 流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为,定义为流场中某点的速度v同该点的当地声速c之比,即=v/c, 在可压缩流中,气体流速相对变化dv/v同密度相对变化之间的关系是dρ/ρ=-2dv/v,即在流动过程中,马赫数愈大,气体表现出的可压缩性就愈大。另外,马赫数大于或小于1时,扰动在气流中的传播情况也大不相同。因此,从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。 马赫数就是气流速度与当地温度条件下的音速之比: M=U/a 式中:U为气流速度m/s a为在当地温度下的音速,单位m/s 氧枪的供氧压力的大小是由喷头的出口马赫数确定的,氧气的压力能转化成

设计180吨转炉计算

180t转炉炼钢车间i 学号: 课程设计说明书设计题目:设计180t的转炉炼钢车间 学生姓名: 专业班级: 学院: 指导教师: 2012年12月25日

目录 1 设备计算 1.1转炉设计 .1.1.1炉型设计------------------------------------------------------------1 2.1 氧枪设计 2.1.1氧枪喷头设计------------------------------------------------6 2.1.2氧枪枪身设计------------------------------------------------8 3.1 烟气净化系统设备设计与计算 --------------------------------------------------------------12 注:装配图 1.图1. 180t转炉炉型图--------------------------------------------------6 2.图2. 枪管横截面--------------------------------------------------------8 3. 图3.180t氧枪喷头与枪身装配图12---------------------------------12

1 设备计算 1.1转炉设计 1.1.1炉型设计 1、原始条件 炉子平均出钢量为180吨钢水,钢水收得率取90%,最大废钢比取10%,采用废钢矿石法冷却。 铁水采用P08低磷生铁 (ω(Si)≤0.85%,ω(P)≤0.2%,ω(S)≤0.05%)。 氧枪采用3孔拉瓦尔型喷头,设计氧压为1.0MPa 2、炉型选择:根据原始条件采用筒球形炉型作为本设计炉型。 3、炉容比 取V/T=0.95 4、熔池尺寸的计算 A.熔池直径的计算 t K D G = 确定初期金属装入量G :取B=18%则 ()t 18290.01 18218021B 2T 2G =?+?=?+= %金η () 3m 4.268 .6182 G V == = 金 金ρ 确定吹氧时间:根据生产实践,吨钢耗氧量,一般低磷铁水约为50~57m 3/t (钢),高磷铁水约为62~69m 3/t (钢),本设计采用低磷铁水,故取吨钢耗氧量为57m 3/t (钢),并取吹氧时间为18min 。则 ()[] min t /m 1.318 56 3?=== 吹氧时间吨钢耗氧量供氧强度 取K=1.70则 ()m 46.518 182 70 .1D == B.熔池深度的计算 筒球型熔池深度的计算公式为: ()m 458.1406 .579.0406.5046.04.26D 70.0D 0363.0V h 2 3 2 3 =??+=+= 金

转炉炉衬设计

炉炉型和炉衬设计 转炉炉型和炉衬设计(design of conveter furnace outline and lining) 确定适合于转炉炉容量和操作条件的转炉炉型和各部位炉衬材质的设计。是转炉炼钢车间设计的主要组成部分。 转炉炉型设计转炉炉型是指新砌成的转炉炉衬的内腔形状和尺寸。氧气转炉的炉型通常是先用统计公式计算出转炉各部位的主要尺寸,然后再与炉容量相近、条件相似的实际生产转炉进行比较和调整后确定的。氧气转炉炉型绝大多数是轴对称回转体结构,由截锥型炉帽(仅有少数转炉呈偏口形)、圆柱形炉身和不同形状的炉底三部分组成。按转炉熔池形状不同,常见的炉型有筒球型、锥球型和截锥型三种(见图)。筒球型炉型形状简单,砌筑方便,炉壳制造容易,大容量转炉采用较多。锥球型炉型与相同容量的筒球型炉相比,在熔池深度相同的情况下,更有利于冶金反应;截锥型炉型的优点是炉底砌筑方便,这两种炉型在中小容量转炉炉型设计中采用较多。

对氧气转炉炉型的主要技术参数要求为:(1)炉容比(工作容积与公称容量之比)与铁水条件、冶炼操作转zhuan方法和转炉炉容量有关,通常每公称吨炉容比为0.80~1.00m3/t;(2)高宽比(炉子全高与炉壳直径之比)对转炉操作和建设费用有直接影响,一般取为1.25~1.65;(3)炉帽的倾角为60o±3。;(4)炉口直径一般为熔池直径的0.43~0.53倍;(5)熔池直径系指转炉熔池在平静状态时金属液面的直径,它与转炉装入量和供氧强度有关,可按D=K(G/T)1/2进行计算,式中D为熔池直径,m;K为比例常数,一般为1.85~2.3;G为转炉装入量,t;T为转炉供氧时间,min。 炉衬耐火材料选择转炉炉衬分为工作层、填充层和永久层。工作层衬砖与熔池钢水和熔渣接触工作条件十分恶劣,要求有良好的物理性能和化学稳定性,同时也要有较低的价格。转炉工作层衬砖常采用焦油白云石砖、焦油镁砂砖、镁碳砖和二步煅烧砖,镁碳砖应用较广泛。为了提高炉衬使用寿命,降低生产成本,设计和生产中广泛采用不同部位使用不同材质炉衬的“综合砌炉法”。工作层砖型的设计既要考虑砌筑方便,又要不致于因砖型过于复杂而增加成本。转炉炉衬各部位的厚度参考值见表。

冶炼Q235B钢种氧枪枪位操作探索研究

冶炼Q235B钢种氧枪枪位操作探索研究 摘要:为了保证产品的质量,要在氧枪进炉的时候计算好炉内铁水的液面。在不吹氧时,要将氧枪提出炉外,并切断氧气供给。在吹炼结束后,要迅速提枪,将转炉炼钢氧枪提高到原点,等待下一炉次的开始。 关键词:炼钢;喷嘴;枪位 0. 前言 转炉炼钢(converter steelmaking)是以铁水、废钢、铁合金为主要原料,不借助外加能源,靠铁液本身的物理热和铁液组分间化学反应产生热量而在转炉中完成炼钢过程,而氧枪枪位更是整个转炉炼钢过程中的重要程序之一,良好的氧枪操作能够提高转炉炼钢生产效率的目的。 1 .氧枪介绍 氧枪是将高压高纯度氧气以超音速速度吹入转炉内金属熔池上方,并带有高压水冷却保护系统的管状设备。又叫喷枪。它是氧气顶吹炼钢的重要设备。它由枪头(喷头)、枪体(枪身)和枪尾组成。喷头必须要使高压高纯度氧气对熔池产生一定的冲击力和冲击面积,从而快速而顺利的进行熔池中的各种反应。 1.1.喷头的类型及特点 1.1.1.单孔拉瓦尔喷嘴 单孔拉瓦尔喷嘴结构如图1a所示。拉瓦尔管喷嘴内型分为两段,即收缩段和扩张段。两段相交处为最小断面,其直径为临界直径又叫喉口,如图1b所示。

图1 单孔拉瓦尔喷嘴结构 1.1.2多孔拉瓦尔喷嘴 使用单孔拉瓦尔喷嘴时,氧射流对熔池的冲击能力强,冲击面积小,所以化渣速度较慢,喷溅较大。为了进一步提高供氧强度,提高转炉的生产能力,满足大吨位转炉生产的需要,出现了多孔喷嘴。 多孔喷嘴的优点是:提高了供氧强度和冶炼强度;增大了冲击面积,利于成渣,操作平稳不易喷溅。但是,多孔喷嘴端面的中心区域(俗称“鼻子尖”部位)冷却效果较差,吹炼过程中该区域气压较低,钢液和熔渣易被吸入并黏附到喷嘴上而被烧坏。为了加强这个区域的冷却,采用中心水冷喷嘴,可延长其使用寿命。 目前多使用四孔、五孔喷嘴。四孔、 五孔喷嘴的结构有两种形式,种是中心一孔,其余孔平均分布周围,中心孔与周围孔的孔径尺寸可以相同,也可以不同。另一种结构是各个孔平均分布在周围,中心无孔。五孔喷嘴的使用效果是令人满意的。五孔以上的喷嘴由于加工不便,应用较少。 为了便于加工,可将喷嘴分为几部分锻压加工后,焊接组合而成,能有效地改善喷孔之间的冷却效果,提高喷嘴寿命,见图2。

100t顶底复吹转炉炉型设计说明书

目录 前言 (1) 一、转炉炉型及其选择 (1) 二、炉容比的确定 (3) 三、熔池尺寸的确定 (3) 四、炉帽尺寸的确定 (5) 五、炉身尺寸的确定 (6) 六、出钢口尺寸的确定 (6) 七、炉底喷嘴数量及布置 (7) 八、高径比 (9) 九、炉衬材质选择 (9) 十、炉衬组成及厚度确定 (9) 十一、砖型选择 (12) 十二、炉壳钢板材质与厚度的确定 (14) 十三、校核 (15) 参考文献 (16)

专业班级学号姓名成绩 前言: 转炉是转炉炼钢车间的核心设备。转炉炉型及其主要参数对转炉炼钢的生产率、金属收的率、炉龄等经济指标都有直接的影响,其设计是否合理也关系到冶炼工艺能否顺利进行,车间主厂房高度和与转炉配套的其他相关设备的选型。所以,设计一座炉型结构合理,满足工艺要求的转炉是保证车间正常生产的前提,而炉型设计又是整个转炉车间设计的关键。 设计内容:100吨顶底复吹转炉炉型的选择与计算;耐火材料的选择;相关参数的选择与计算。 一、转炉炉型及其选择 转炉有炉帽、炉身、炉底三部分组成。转炉炉型是指由上述三部分组成的炉衬内部空间的几何形状。由于炉帽和炉身的形状没有变化,所以通常按熔池形状将转炉炉型分为筒球形、锥球型和截锥形等三种。炉型的选择往往与转炉的容量有关。

(1)筒球形。熔池由球缺体和圆柱体两部分组成。炉型形状简单,砌砖方便,炉壳容易制造,被国内外大、中型转炉普遍采用。 (2)锥球型。熔池由球缺体和倒截锥体两部分组成。与相同容量的筒球型比较,锥球型熔池较深,有利于保护炉底。在同样熔池深度的情况下,熔池直径可以比筒球型大,增加了熔池反应面积,有利于去磷、硫。我国中小型转炉普遍采用这种炉型,也用于大型炉。 (3)截锥形。熔池为一个倒截锥体。炉型构造较为简单,平的熔池底较球型底容易砌筑。在装入量和熔池直径相同的情况下,其熔池最深,因此一般不适用于大容量炉,我国30t以下的转炉采用较多。不过由于炉底是平的,便于安装底吹系统,往往被顶底复吹转炉所采用。 顶底复吹转炉炉型图 顶底复吹转炉炉型的基本特征如下: (1)吹炼的平稳和喷溅程度优于顶吹转炉,而不及底吹转炉,故炉子的高宽比略小于顶吹转炉,却大于底吹转炉,即略呈矮胖型。 (2)炉底一般为平底,以便设置喷口,所以熔池常为截锥型。 (3)熔池深度主要取决于底部喷口直径和供气压力,同时兼顾顶吹氧流的穿透

交流变频器在120吨转炉炼钢氧枪控制中的应用

交流变频器在120吨转炉炼钢氧枪控制中的应用 摘要:近年来,随着变频技术和控制技术的不断发展,变频技术以精度高、通用性强、工艺先进、操作方便以及公认的显著节能效果,被认为是企业技术改造和产品更新换代的理想调速装置。随着电力电子和微型计算机价格的下降,变频控制应用更加普及,因此发展十分迅速,在工业领域尤其在冶金行业的应用日益广泛。氧枪升降的变频调速控制系统,是转炉炼钢控制系统中变频技术应用的技术含量最高的控制系统。氧枪升降是典型的位能负载,靠钢丝绳牵引,按照炼钢工艺专业的要求,氧枪在升降过程中要实现慢速到快速以及快速到慢速的转换,且其停经的工艺检测点较多,在各工艺点要求准确停车。尤其是在吹炼点,氧枪的枪位直接影响到炼钢的质量。因此,应用变频器控制氧枪升降是氧枪调速控制系统的理想之选。下面以本溪北营钢铁(集团)股份有限公司(下称北营公司)120吨转炉为例,设计以西门子6SE70系列变频器在氧枪升降设计中的应用以及在实际应用中出现的一些问题并提出改进措施。 关键词:交流变频器、控制、应用、改进 1.1工作原理 北营公司120吨转炉设备氧枪控制设计2套变频控制氧枪,在固定导轨升降,每台变频器都可以通过切换驱动两根氧枪,实现两套氧枪的灵活备用。每套氧枪升降系统由一台110kW交流电动机传动,在生产过程中当工作氧枪发生故障时,可快速通过横移换枪等操作,使用备用氧枪继续生产。氧枪系统有一套事故提升装置,不接入电网,由事故电池作为电源驱动事故电机升降,当氧枪系统停电时,可切换到事故电机将氧枪提起,氧枪停车时有抱闸系统实现。由于1台变频器通过切换可以分别驱动1#、2#氧枪,变频器需定义2套电机参数组MDS,通过P578、P579来选择。当变频器和氧枪对应时,B16(DigIn 4)=0选择第一套MDS,采用速度闭环控制;当变频器和氧枪交叉对应时,B16=1选择第二套MDS。通过P590来选择2套BICO参数组。[1] [1] 1.2通信及连锁 氧枪控制驱动系统选用2台6SE70矢量型变频器来分别驱动每套氧枪升降装置电动机。采用2种方法联系控制。一种是硬线控制,就是变频器本身的端子

转炉炼钢试题(含答案)

11月份钢铁总厂转炉试题 认知部分每题0.5分,共计55分。 一、填空题 1.吹炼前期调节和控制枪位的原则是:早化渣、化好渣,以利最大限度的去( 磷)。2.转炉吹炼过程化渣三个必要因素是温度、氧化亚铁和(搅拌); 3.炉渣返干的根本原因是碳氧反应激烈,渣中( FeO )大量减少。 4.氧枪由三层同心钢管组成,内管道是( 氧气)通道,内层管与中层管之间是冷却水的( 进)水通道,中层管与外层管之间是冷却水的( 出)水通道。 5.炉衬的破损原因主要有高温热流的作用、(急冷急热)的作用、(机械冲击)的作用、化学侵蚀等几方面作用。 6.转炉冶炼终点降枪的主要目的是均匀钢水温度和( 成份)。 7.影响转炉终渣耐火度的主要因素是( MgO )、TFe和碱度(CaO/SiO2). 8.钢水温度过高,气体在钢中的( 溶解度)就过大,对钢质危害的影响也越大。 9.以( CaO )、( MgO )为主要成分的耐火材料是碱性耐火材料。 10.在溅渣护炉工艺中,为使溅渣层有足够的耐火度,主要措施是调整渣中的( MgO )含量。11.转炉设计的科学依据是(物质不灭,能量守恒)定律 12.单位时间内每吨金属的供氧量称为(供氧强度),其常用单位为(标米3/吨.分)。 13.一般情况下,脱磷主要在冶炼(前期)进行 14.磷的氧化是放热反应,因而( 低温)有利于脱磷。 15.向钢中加入一种或几种合金元素,使其达到成品钢成份要求的操作称为( 合金化) 16.对优质碳素钢,要求磷的含量控制在( 0.035% )%以下 17.喷溅产生原因是产生爆发性的(碳氧)反应和一氧化碳气体排出受阻。 18.脱磷的热力学条件是高碱度、(高氧化铁)及适当低温。 19.为了向连铸提供合格钢水,炼钢要严格控制钢水成份,特别是钢中( 硫)、(磷)和(气体及非金属夹杂物)一定要尽可能控制到最底水平,以提高钢水的清洁度。 20.溢流文氏管属于(粗除尘);可调喉口文氏管属于(精除尘)。 21.含碳量小于( 2%)的铁碳合金称为钢,大于该含量的铁碳合金称为铁。 22.转炉炉体倾动角度要求能正反两个方向做( 360 )度的转动。 23.转炉炼钢中产生的喷溅可分为(爆发性喷溅)、(泡沫渣喷溅)、(返干性金属喷溅)。24.钢水中的磷是一种有害元素,它可使钢产生(冷脆)。 25.影响钢水流动性的主要因素是(温度)、(成分)和(钢中夹杂物)。 26.在一定条件下,钢水温度越高,则钢中余锰越(高) 27.根据Fe-C相图划分,碳含量在(0.0218%~2.11%)之间的铁碳合金为钢。 28.转炉氧枪的喷头多为(拉瓦尔) 型多孔喷头。 29.影响合金收得率的因素有:出钢温度、(钢水中含氧量)、出钢口情况、炉渣进入钢包的量、合金粒度、合金投入顺序。 30.转炉熔池的搅拌有利于提高冶炼的动力学条件,就其来源主要有(C-O反应)产生大量的CO气泡在上浮过程中对熔池的搅拌,另外是(外部吹入的气体搅拌)。 31.夹杂是指在冶炼和浇注凝固过程中产生或混入钢液的(非金属)相。 32.随着温度升高,溅渣层中的低熔点相先行熔化,并缓慢从溅渣层中分离流出,该现象称为(分熔现象)。 33、氩气是一种惰性气体,通常是将氩气通过钢包底部的多孔透气塞不断地吹入钢液中,形成大量的小氩气泡,对于钢液中的有害气体[H]、[N]和脱氧产物CO来说,相当于无数个小

转炉与氧枪

四.炉型与氧枪的设计计算 4.1炉型的设计计算 4.1.1原始数据 ⑴ 炉子平均出钢量220 t 钢水的收得率91.05% 新炉的金属装入量G =220 t/0.9105=242 T ⑵ 吨钢耗氧量=7.18/91.05×1000×22.4/32=55.20 Nm 3/T 供氧强度3.68m 3/(T·min) 供养时间t =15min ,4.1.2熔池尺寸计算 ⑴熔池的直径 D =K t G / K (1.5~1.75) 取K =1.53 所以D =1.5315/242=6141 mm ⑵熔池深度计算 选用筒球型 熔池深度为 h =V 金属+0.046D 3/0.079D 2=(35.5+0.046×6.1413)/(0.79×6.1412) =1550mm ⑶熔池其他尺寸的确定 炉底球冠的曲率半径R =0.91D =5588 mm 球冠的弓形高度h 1=0.15D =921 mm ⑷ 炉帽尺寸的确定 ① 取炉口直径与炉膛直径之比d/D =0.51 d =0.51×6141=3132 mm ② 取炉帽的倾角为64° ③ 炉帽高度的计算 H 帽=1/2(D-d)tanθ+400=3485 mm H 锥=H 帽-400=3085 mm ④ 炉帽容积计算 V 帽=0.257×3.14×(6.1412+3.1322+6.141×3.132)+0.785×3.1322×0.4 =56.954m 3 ⑸ 出钢口尺寸计算 d 出钢=T 75.163+=22075.163?+=210 mm

取水平倾角为18° 出钢口衬砖外径dST =6×210=1270mm 出钢口长度=7×210=1480mm ⑹炉子内型高度的计算 取炉容比V/T =1.0 新炉炉膛有效容积: V =G ×V/T =1.0×220=220 m 3 V 身=V -(V 金+V 帽)=220-(35.5+56.954)=127.513 m 3 炉身高度: H =141 .66.141×4/513.127?π=4.308 m=4038 mm 炉型内高: H =h +H 身+H 帽=1550+4308+3485=9343 mm ⑺炉衬的选择 工作层选用镁碳砖 炉身永久层选115 mm ,工作层选700 mm ,填充层100mm 炉帽永久层选150 mm ,工作层选600 mm 炉底永久层选425 mm ,工作层选600 mm D 壳内=6.141+0.915×2=7.971m H 壳内=9.343+1.025=10.368m ⑻炉壳钢板 炉身选75mm ,炉底炉帽选用65 mm H 总=10.368+0.065=10.433m D 壳=7.971+0.075×2=8.121m ⑼炉子高宽比 壳总D H =121 .8433.10=1.28 因为顶底复吹转炉的高宽比一般为1.25~1.45,所以炉子尺寸基本是合理地,能保证炉子的操作正常进行。 4.2低吹喷嘴设计 本次设计采用管式喷嘴结构 一般说来,喷嘴多而直径小些好。生产中喷嘴数量常为2~4个,具体视炉子容量和布置形式而定。本炉喷嘴取4个。 合理的布置应使底吹和顶吹产生的熔

转炉炉型计算

7转炉炉型设计 7.1 转炉的座数、公称容量及生产能力的确定 为了有效地提高转炉利用率及提高平均日作业率,借鉴同类型厂家经验,本设计采用“三吹二”制度。 7.1.1根据生产规模和产品方案计算出年需钢水量 据国内同类转炉经验所得η坯=95%~99%。取η坯=99% 年浇铸钢液量=η坯年合格坯产量= 万吨)(04.404% 99400= 7.1.2选取转炉作业率和冶炼一炉钢平均时间 对“三吹二”制度而言,转炉有效时间为310天/年 则转炉作业率=%93.84%100365 310%100=?=?年日历时间转炉有效时间 根据同类型厂家,取冶炼时间为41 min 。 7.1.3计算出年出钢炉数(N ) (炉)冶炼平均时间转炉冶炼作业率年日历时间1088341 93.8460243652=???=?=N (炉)21766108832=?=N 7.1.4平均炉产钢水量 平均炉产钢水量=年浇铸钢液量年出钢炉数=(吨)6.18521766 1004.4044 =? 本设计中取转炉公称容量为185吨,参考《钢铁厂设计原理》下册,140页,表7-4可知185吨的转炉公称容量,平均冶炼时间与所取冶炼时间基本符合。 7.1.5车间生产能力的确定 车间年生产钢水量=转炉公称容量?年出钢炉数 =185?21766 =402.671(万吨)

检验是否满足要求: %1%339.0%1004040400 40404004026710<-=?-=计算误差合乎要求。 7.2转炉炉型的主要参数 7.2.1原始条件 炉子平均出钢量为185t ,收得率取99%,最大废钢比取12.49%。采用矿石法冷却;铁水采用P12低P 生铁[ω(Si)≤0.85% ω(P)≤0.2% ω(S)≤0.06%];氧枪采用四孔拉瓦尔喷头,设计氧压1.0MPa 。 7.2.2炉型选择 根据原始条件及采用顶底复吹工艺的要求,本设计将采用截锥型炉型作为设计炉型。 7.2.3炉容比 取V/T=0.92 7.2.4熔池尺寸的计算 熔池直径的计算公式 t G k D = a.确定初期金属装入量G .取B=20% 则 )(18392 .012.021852122t B T G =?+?=?+=金η )(91.268.61833m G V ===金 金ρ b.确定吹氧时间.根据生产实践,吨钢耗氧量,一般低磷铁水约为50~70m 3/t(钢),高磷铁水约为62~69m 3/t (钢),本设计采用低磷铁水,取取吨钢耗氧量为63m 3/t ,并取吹氧时间为t =18min.则 ()[] min /5.318633?===t m 吹氧时间吨钢耗氧量供养强度 取K=1.72 则)(484.518 18372.1m t G K D =?=?=

转炉工作原理及结构设计要点

攀枝花学院本科课程设计 转炉工作原理及结构设计 学生姓名: 学生学号: 院(系): 年级专业: 指导教师: 二〇一三年十二月

转炉工作原理及结构设计 1.1 前言 1964年,我国第一座30t氧气顶吹转炉炼钢车间在首钢建成投产。其后,上钢一厂三转炉车间、上钢三厂二转炉车间等相继将原侧吹转炉改为氧气顶吹转炉。20世纪60年代中后期,我国又自行设计、建设了攀枝花120t大型氧气顶吹转炉炼钢厂,并于1971年建成投产。进入20世纪80年代后,在改革开放方针策的指引下,我国氧气转炉炼钢进入大发展时期,由于氧气转炉炼钢和连铸的迅速发展,至1996年我国钢产量首次突破1亿t,成为世界第一产钢大国。 1.2 转炉概述 转炉(converter)炉体可转动,用于吹炼钢或吹炼锍的冶金炉。转炉炉体用钢板制成,呈圆筒形,内衬耐火材料,吹炼时靠化学反应热加热,不需外加热源,是最重要的炼钢设备,也可用于铜、镍冶炼。转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬)转炉;按气体吹入炉内的部位分为底吹、顶吹和侧吹转炉;按吹炼采用的气体,分为空气转炉和氧气转炉。转炉炼钢主要是以液态生铁为原料的炼钢方法。其主要特点是:靠转炉内液态生铁的物理热和生铁内各组分(如碳、锰、硅、磷等)与送入炉内的氧进行化学反应所产生的热量,使金属达到出钢要求的成分和温度。炉料主要为铁水和造渣料(如石灰、石英、萤石等),为调整温度,可加入废钢及少量的冷生铁块和矿石等。 1.2.1 转炉分类 1.2.1.1 炼钢转炉 早期的贝塞麦转炉炼钢法和托马斯转炉炼钢法都用空气通过底部风嘴鼓入钢水进行吹炼。侧吹转炉容量一般较小,从炉墙侧面吹入空气。炼钢转炉按不同需要用酸性或碱性耐火材料作炉衬。直立式圆筒形的炉体,通过托圈、耳轴架置于支座轴承上,操作时用机械倾动装置使炉体围绕横轴转动。 50年代发展起来的氧气转炉仍保持直立式圆筒形,随着技术改进,发展成顶吹喷氧枪供氧,因而得名氧气顶吹转炉,即L-D转炉(见氧气顶吹转炉炼钢);用带吹冷却剂的炉底喷嘴的,称为氧气底吹转炉(见氧气底吹转炉炼钢)。

转炉氧枪设计方案

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 1 广青金属有限公司 65T转炉φ180氧枪及氧枪喷头设计方案 山东崇盛冶金氧枪有限公司 2012年2月

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 2 65T转炉φ180氧枪及氧枪喷头设计方案 简介 山东崇盛冶金氧枪有限公司,系冶金氧枪及喷头的专业研究生产单位。位于中国潍坊高新技术产业开发区。技术力量雄厚,技术装备先进,检测手段齐全。我公司在转炉用氧枪设计方面有丰富的设计和制造经验,例如:宝钢300吨转炉炼钢φ406氧枪喷头,武钢三炼钢250吨转炉用φ355锥度氧枪及喷头,马钢300吨转炉用φ355锥度氧枪及喷头,济钢210吨转炉用φ355氧枪及喷头,新余三期210T 转炉炼钢φ325氧枪及喷头,上海罗泾150吨转炉炼钢φ299氧枪及喷头,河北承德钢铁、普阳钢铁、宁波钢铁、天铁、安阳钢铁、通化钢铁等150吨转炉炼钢φ299氧枪及喷头,目前均正常使用,效果良好。现国内120吨以上转炉用氧枪80%由我公司设计制造。 公司秉承“以人为本,科技领先”的发展战略,技术力量雄厚,拥有世界先进水平的科研机构、精良的机械加工设备及国内一流的检测设施,最大程度上保证产品最佳的使用性能。

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 3 65T转炉φ180×1孔喷头设计方案 一、设计工况参数: 1、出钢量:~65吨/炉 2、现场操作氧流量:~4200Nm3/hr 3、现场操作供氧压力:0.85~1.0Mpa (阀后压力) 4、纯吹氧吹炼时间:13~15min 5、冷却水压力:≥1.2MPa 6、进出水温差≤27℃(水温差根据现场实际情况要有所差异) 7、氧枪喷头形式:1孔拉瓦尔孔喷头 二、喷头参数设计 2.1马赫数的选择 流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为,定义为流场中某点的速度v同该点的当地声速c之比,即=v/c, 在可压缩流中,气体流速相对变化dv/v同密度相对变化之间的关系是dρ/ρ=-2dv/v,即在流动过程中,马赫数愈大,气体表现出的可压缩性就愈大。另外,马赫数大于或小于1时,扰动在气流中的传播情况也大不相同。因此,从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。 马赫数就是气流速度与当地温度条件下的音速之比:

转炉设计

氧气顶吹转炉设计 姓名XXX 学号XXX 冶金工程XXXX 材料科学与工程学院

目录 1.原始条件 2.炉型选择 3.炉容比的确定 4.熔池直径的计算 5.炉帽尺寸的确定 6.炉身尺寸的确定 7.出钢口尺寸的确定 8.炉衬厚度确定 9.炉壳厚度的确定 10.验算高宽比

序言 现在钢铁联合企业包括炼铁,炼钢,轧钢三大主要生产厂。炼钢厂则起着承上启下的作用,它既是高炉所生产铁水的用户,又是供给轧钢厂坯料的基地,炼钢车间的成产正常与否,对整个钢铁联合企业有着重大影响。 目前,氧气转炉炼钢设备的大型化,生产的连续化和高速化,达到了很高的生产率,这就需要足够的设备来共同完成,而这些设备的布置和车间内各种物料的运输流程必须合理,才能够使生产顺利进行。 转炉是炼钢车间的核心设备,设计一座炉型合理满足工艺需求的转炉是保证车间正常生产的前提,而炉型设计又是整个转炉设计的关键。 炉衬简介 1 炉衬组成 转炉炉衬由永久层,填充层和工作层组成。永久层紧贴着炉壳钢板,通常是用一层镁砖或铝砖侧砌而成,其作用是保护炉壳。修炉时一般不拆除炉壳永久层填充层介于永久层和工作层之间,一般用焦油镁砂或焦油白云石料捣打而成。工作层直接与钢水,炉渣和炉气接触,不断受到物理的,机械的和化学的冲刷,撞击和侵蚀作用,另外还要受到工艺操作因素的影响,所以其质量直接诶关系到炉龄的高低。 国内外中小型转炉普遍采用焦油白云石或焦油镁砂质大砖砌筑 炉衬。为提高炉衬寿命,目前已广泛使用镁质白云石为原料的烧成油浸砖。我国大中型转炉多采用镁碳砖。

2 炉衬砌筑 (1) 砌筑顺序: 转炉炉衬砌筑顺序是先测定炉底中心线,然后进行炉底砌筑,在进行炉身,炉帽和炉口的砌筑,最后进行出钢口炉内和炉外部分的砌筑。 (2) 砌筑要求 ①背紧,靠实,填满找平,尽量减少砖缝; ②工作层实行干砌,砖缝之间用不定型耐火材料填充,捣打结实; ③要注意留有一定的膨胀缝. 3 提高炉衬寿命的措施 (1) 提高耐火材料的质量; (2) 采用均衡炉衬提高砌炉质量; (3) 改进操作工艺; (4) 转炉热态喷补; (5) 激光监测; (6) 采用溅渣护炉技术;

氧气顶吹转炉炉体设计

氧气顶吹转炉炉体设计

目录 一转炉系统设备.............................................................................................................- 1 - 1.1 炉型.....................................................................................................................- 1 - 1.1.1 转炉炉型概念.............................................................................................- 1 - 1.1.2 合理的炉型要求.........................................................................................- 1 - 1.1.3 转炉的基本炉型.........................................................................................- 2 - 1.1.3.1 筒球型.................................................................................................- 2 - 1.1.3.2 锥球型.................................................................................................- 2 - 1.1.3.3 截锥型.................................................................................................- 2 - 1.2 转炉炉型主要参数确定.....................................................................................- 3 - 1.2.1 转炉的公称容量.........................................................................................- 3 - 1.2.2 炉容比.........................................................................................................- 3 - 1.2.2.1 铁水比、铁水成分.............................................................................- 3 - 1.2.2.2 供氧强度.............................................................................................- 3 - 1.2.2.3 冷却剂的种类.....................................................................................- 4 - 1.2.3 高径比.........................................................................................................- 4 - 1.3 炉型主要尺寸的确定.........................................................................................- 4 - 1.3.1 筒球型氧气顶吹转炉的主要尺寸.............................................................- 4 - 1.3.1.1 熔池直径D..........................................................................................- 5 - 1.4 炉壳.....................................................................................................................- 6 - 1.4.1 炉壳的作用.................................................................................................- 6 - 1.4.2 炉壳的组成.................................................................................................- 6 - 1.4. 2.1 炉帽.....................................................................................................- 6 - 1.4. 2.2 炉身.....................................................................................................- 8 - 1.4. 2.3 炉底.....................................................................................................- 8 - 1.4. 2.4 制作及要求.........................................................................................- 8 - 1.5 炉体支撑系统.....................................................................................................- 9 - 1.5.1 托圈与耳轴.................................................................................................- 9 - 1.5.1.1 托圈与耳轴的作用、结构.................................................................- 9 - 1.5.1.2 托圈与耳轴的连接...........................................................................- 10 - 1.5.2 炉体与托圈...............................................................................................- 10 - 1.5.3 耳轴轴承座...............................................................................................- 13 - 1.6 转炉倾动机构...................................................................................................- 14 - 1.6.1 工作特点...................................................................................................- 14 - 1.6.1.1 减速比大...........................................................................................- 14 - 1.6.1.2 倾动力矩大.......................................................................................- 14 - 1.6.1.3 启动制动频繁,承受的动载荷大...................................................- 14 - 1.6.1.4 工作条件恶劣...................................................................................- 15 - 1.6.2 结构要求...................................................................................................- 15 - 1.6. 2.1 满足工艺需要...................................................................................- 15 - 1.6. 2.2 具有两种以上倾动速度...................................................................- 15 - 1.6. 2.3 安全可靠运转...................................................................................- 15 - 1.6. 2.4 良好的适应性...................................................................................- 15 - 1.6. 2.5 结构紧凑效率高...............................................................................- 15 -

相关文档
最新文档