一类半正定矩阵的迹不等式

一类半正定矩阵的迹不等式
一类半正定矩阵的迹不等式

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

正定矩阵的判定方法及正定矩阵在三个不等式证明中的应用汇编

正定矩阵的判定方法及正定矩阵 在三个不等式证明中的应用 作者:袁亮(西安财经大学) 摘要: 本文从正定矩阵的的定义出发,给出了正定矩阵的若干判定定理及推论,并给出了正定矩阵在柯西、Holder、Minkowski三个不等式证明中的应用. 关键词: 正定矩阵,判定,不等式,应用 Abstract: In this paper, we mainly introduce some decision theorem and inference based on the definition of positive definite matrices and give the application of positive definite matrices in the proving on Cauchy、Holder、and Minkowski inequality. Keywords: positive definite matrix,determine,inequality,application

目录 1 引言 (4) 2 正定矩阵的判定方法 (4) 2.1 定义判定 (5) 2.2 定理判定 (6) 2.3 正定矩阵的一些重要推论 (11) 3 正定矩阵在三个不等式证明中的应用 (15) 3.1 证明柯西不等式 (15) 3.2 证明Holder不等式 (16) 3.3 证明Minkowski不等式 (18) 结束语 (21) 参考文献 (22)

1 引言 代数学是数学中的一个重要的分支,而正定矩阵又是高等代数中的重要部分.特别是正定矩阵部分的应用很广泛, n阶实对称正定矩阵在矩阵理论中,占有十分重要的地位.它在物理学、概率论以及优化控制理论[]2中都得到了重要的应用,而本文只提供解决正定矩阵判定问题的方法,并阐明它在数学分析中三个重要不等式证明中的应用. 正定矩阵的一般形式是,设A是n阶实对称矩阵,若对任意n x∈,且0 R x, ≠ 都有0 Mx x T成立[]2.本文从正定矩阵的定义,给出正定矩阵的判定定理,并给> 出正定矩阵的重要推论,这些重要推论对计算数学中的优化问题有着重要的作用,并在矩阵对策,经济均衡,障碍问题[]3的研究中具有很实用的价值.同时还介绍正定矩阵在三个不等式证明中的应用,其一是用正定矩阵证明著名的柯西不等式,其二是用正定矩阵的性质给出Holder不等式的一个新的证明,其三是运用正定矩阵的两个引理证明Minkowski不等式,这三个应用说明正定矩阵运用的广泛性和有效性.以上这些正定矩阵的研究只局限在正定矩阵的理论分析方面,它的一些实际方面的应用还有待笔者和一些学者去探索挖掘. 2 正定矩阵的判定方法 2.1 定义判定 设A=()ij a,(其中ij a∈C,i,j=1,2,…,n),A的共轭转置记为*A=()ji a 定义1[]1对于实对称矩阵A=()ij a,(其中ij a∈R,i,j=1,2,…,n)若对于任意非零列向量X,都有T X A X>0,则称A是正定矩阵. 定义2[]1对于复对称矩阵A=()ij a,(其中ij a∈C,i,j=1,2,…,n)若对于任意非零列向量X,都有* X A X>0,则称A是正定矩阵. 例1设A为m阶实对称矩阵且正定,B为m×n实矩阵,T B为B的转置矩阵,试证AB B T为正定矩阵的充要条件是B的秩r(B)=n. 证 [必要性] 设AB B T为正定矩阵,则对任意的实n维列向量0 x, ≠

正定矩阵和半正定矩阵的性质及应用

摘要 本文主要针对正定矩阵和半正定矩阵进行讨论,归纳和总结了正定矩阵和半正定矩阵的性质,通过实例介绍了正定矩阵(半正定矩阵)的判别方法诸如:定义法、主子式法、特征值法等,并且给出了它们在不等式的证明问题中以及多元函数极值问题中的一些应用. 关键词:正定矩阵;半正定矩阵;二次型;主子式;特征值

ABSTRACT This paper mainly discusses positive definite matrices and positive semi-definite matrix,the properties of positive definite matrix and semi-positive definite matrix are summarized.Through examples, the judgment methods of positive definite matrix and semi-positive definite matrix are introduced, such minor method, master type method, eigenvalue method, etc. Some applications of positive definite matrices and semi-positive definite matrix in the proof of inequality extreme value problems of multivariate functions are given. Keywords:positive definite matrix; positive semi-definite matrix; quadratic form; principal minor determinant;characteristic value

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1 i 1 tr(A)a ====λ∑∑,etrA=exp(trA)

性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y]

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

正定矩阵的性质和判定方法及应用

内蒙古财经大学本科毕业论文正定矩阵的性质及应用 作者郝芸芸 系别统计与数学学院 专业信息与计算科学 年级10级 学号102093113 指导教师高菲菲 导师职称讲师 答辩日期 成绩

内容提要 矩阵是数学中的一个重要基本概念,也是一个主要研究对象,同时矩阵论又是研究线性代数的一个有力工具.而矩阵的正定性是矩阵论中的一个重要概念.正定矩阵是一种特殊的矩阵,其等价定理在解题过程中可以灵活使用.且正定矩阵具有一般矩阵不具有的特殊性质,尤其是这些性质广泛地应用于各个领域.本文在第一部分介绍了实矩阵的正定性的相关定义以及其等价条件.在第二部分列举了正定矩阵的一系列性质,主要介绍了正定矩阵的关联矩阵的正定性.本文在第三部分介绍了正定矩阵的相关定理.本文在第四部分介绍了矩阵正定性的判定方法:定义法、主子式法、特征值法、与单位矩阵合同法.且简单地举了一些实例来阐述实矩阵正定性的判定.最后本文分别从不等式的证明和多元函数的极值两个方面介绍了正定矩阵的实际应用. 关键词:二次型正定矩阵判定方法应用 Abstract Matrix is an important basic concepts in mathematics, but also a main research object, at the same time matrix theory is a powerful tool for the study of linear algebra. At the same time, the positive definiteness of matrix is an important concept in the matrix theory. The positive definite matrix is a special matrix, the equivalence theorem in the problem solving process can be used flexibly. And the positive definite matrix with special properties of general matrix does not have these properties, especially widely used in various fields. In the first part of this thesis introduces the related definition of positive definite real matrix and its equivalent conditions. In the second part are held a series of properties of positive definite matrix, mainly introduced the positive definiteness correlation matrix is positive definite matrix. This paper introduces the related theorem of positive definite matrix in the third part. This paper introduces the method to judge the positive definiteness matrix in fourth parts: the definition, the master method, the eigenvalue method. Determination and simply cited a number of examples of real positive definite matrices. Two aspects of extreme finally this paper from the proof of inequality and multiple function describes the practical application of positive definite matrices. Key words:Quadratic form Positive definite matrix Determination method Application

矩阵秩的基本不等式

1 矩阵秩的基本不等式 定理1:设,m n A R ∈,,n s B R ∈,则{}()()()min (),()r A r B n r AB r A r B +-≤≤。 证明:由于0Bx =的解一定是0ABx =的解,因此0Bx =的基础解系为0ABx =的基础解系的一部分。于是,()()s r B s r AB -≤-,即()()r AB r B ≤。 ()()()()()()T T T T r AB r AB r B A r A r A ==≤=。 这样,我们就证明了()()r AB r A ≤,()()r AB r B ≤,故{}()min (),()r AB r A r B ≤。 我们假设1x ,2x ,……,()s r B x -,()1s r B x -+,……,()s r AB x -为0ABx =的基础解系。其中,0i Bx =,1()i s r B ≤≤-;0j Bx ≠,()1()s r B j s r AB -+≤≤-。 下面,我们来证明向量组{} ()()1 s r AB j j s r B Bx -=-+是线性无关的。事实上,假设数j k , ()1()s r B j s r AB -+≤≤-,使得 ()()1 ()s r AB j j j s r B k Bx -=-+∑ ,于是() ()1 0s r AB j j s r B B x -=-+=∑ 。 这样, () ()1 0s r AB j j s r B x -=-+=∑ 为0Bx =的解。于是,存在数j k ,1()j s r B ≤≤-,使得 ()() ()1 1 ()s r AB s r B j j j j s r B j x k x --=-+== -∑ ∑,即()1 0s r AB j j j k x -==∑ 。由于向量组{} ()1 s r AB j j x -=线性无关,因 此,0j k =,()1()s r B j s r AB -+≤≤-。于是,向量组{}() ()1 s r AB j j s r B Bx -=-+线性无关。 又由于()0j j A Bx ABx ==,()1()s r B j s r AB -+≤≤-,因此{}() ()1 s r AB j j s r B Bx -=-+为 0Ax =的基础解系的一部分。于是, []()()11()()()s r AB s r B r B r AB n r A ---++=-≤- 即()()()r AB r A r B n ≥+-。 推论1:若,m n A R ∈,,n s B R ∈满足0AB =,则()()r A r B n +≤。 证明:0()()()r AB r A r B n =≥+-,于是()()r A r B n +≤。

实对称半正定矩阵的一个充分条件的新证明

实对称半正定矩阵的一个充分条件的新证明 07级数学教育一班 周端华 摘要:线性代数里有这样一个重要定理:“实n 阶对称矩阵A 是半正定矩阵的充要条件是:A 的一切主子式≥0。”该定理的条件的必要性容易证明,但对条件的充分性,很多有关的教科书或参考资料都作了几乎雷同的证明,本文提供一种新的证明方法,比已有的证明方法,思路自然,易于接受,便于理解。这对代数教学,无疑是有参考价值的,对拓广读者的思路会有帮助的 关键词:实n 阶对称矩阵,正定矩阵,半正定矩阵,主子式,数学归纳法。 引言:大多数课本的证明中都要用到这样一个命题:“若K 阶实对称矩阵 A kk 的一切主子式 ≥0,则对任何正数λ,k 阶矩阵A I kk k +λ是正定矩阵。 ”(I k 是k 阶单位矩阵。)要用到较多的预备知识.技巧性虽强,但思路欠自然 。尤其对初学线性代数的读者来说,很难捉摸其证法是如何想出来的。下面就让我们走进新的证明方法。 证明:对该定理的条件充分性用数学归纳法证明。当实对称矩阵A 是l 阶时,显然命题成立。假定实对称矩阵A 是n 阶时,命题成立,视A 为n+1阶的情形: 设)1)(1()(++=A n m ij a 10 如果011=a ,则必有011i ==i a a ,i=2,3…,n+1,因为若有某个01≠u a ,(2≤u ≤n+1), 则A 的一个2阶主子式 00211 11 111<-== u uu u u uu u u a a a a a a a a , 与条件矛盾。所以011==i i a a ,1,,3,2+=n i 。即 ??? ? ? ?A =A 10 00 其中1A 是n 阶实对称矩阵,它的一切主子式都是A 的主子式,因此A 的一切主子式≥0。据归纳假设,知1A 是半正定矩阵。这时,显然A 是半正定矩阵。 2 如果011≠a ,即011≠a ,即011>a ,(由条件知) ??? ? ??=A B a a a t 11 其中)()1(,11312+=n a ααα,,, ,B 是实n 阶对称矩阵,于是

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1tr(P AP)tr(A)-=;

5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B) 这里等号成立的充要条件是A=cB,c 为一常数。特别当A 和B 为实对称阵或Hermit 矩阵时 0≤|t r(AB)|≤ 定理:设A 和B 为两个n 阶Hermite 阵,且A≥0,

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归 纳小结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

矩阵的秩的相关不等式的归纳小结 林松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一基本的定理 1 设A是数域P上n m ?矩阵,于是 ?矩阵,B是数域上m s 秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩 2设A与B是m n ?矩阵,秩(A±B)≤秩(A)+秩(B) 二常见的秩的不等式 1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。 当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。 当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,

从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-?????? 而 0S E B E ?? ?-?? 可逆,故 r(A)+r(B) ≥ 秩 0A E B ?? ? ?? =秩 0A AB E ?? ???=秩 0 0AB E ?? ??? =r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n 3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E ) 证:因为0A E B E B E --?? ? -??00B E ?? ???00AB E B E -?? = ?-?? 故秩(AB-E )≤秩00AB E B E -?? ?-??≤秩0A E B E B E --?? ?-?? =秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E ) 4 设A ,B ,C 依次为,,m n n s s t ???的矩阵,证明 r(ABC) ≥ r(AB) + r(BC) - r(B)

实正定矩阵的判定及其重要结论

摘要:本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论. 关键词:实对称正定矩阵;等价定理;充分条件 Decision of Real Positive Definite Matrix and Its Important Conclusion Abstract:This paper provide a series of matrix theory knowledge of higher algebra ,give some of the equivalence theorem of real symmetric matrix and its proof and obtain some of the important conclusions of real symmetry positive definite matrix . Keywords:real symmetry positive definite matrix, equivalence theorem , sufficient condition

禄 鹏 (天水师范学院数学与统计学院,甘肃天水,741000) 摘 要: 本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论. 关键词: 实对称正定矩阵; 等价定理; 充分条件 1 引言 矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具有使用价值、应用广泛的数学理论[]2,1,现已成为处理有限维空间形式和数量关系的强有力的工具. 正定矩阵作为一类常用矩阵,其在数学学科和其他学科技术领域的应用也非常广泛[]4,3,因此它的判断问题一直倍受关注.虽然个别判定条件已被人们所熟知,但缺少系统的总结,本文将尽可能给出多个实对称正定矩阵的判定定理和重要结论,从而使人们能够更好地使用正定矩阵这个工具. 2 实正定矩阵的等价定理 定义1[]5 实二次型()n x x x f ,,,21 称为正定的,如果对于任意一组不全为零的实数 n c c c ,,,21 都有()n c c c f ,,,21 0>. 定义2[]5 实对称矩阵A 称为正定的,如果二次型AX X T 正定. 引理1[]5 n 元实二次型()n x x x f ,,,21 是正定的充分必要条件是它的正惯性指数等于 n . 引理2[]5 任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的. 引理3[]6 设A 是n 阶实对称矩阵,则存在正交矩阵T 使得 ()n T diag AT T AT T λλλ,,,211 ==-, ()1 其中n λλλ,,,21 为A 的特征值. 引理4 [] 7 任何可逆实方阵都可以分解为正交矩阵Q 和上三角矩阵R 的乘积,其中R 的 主对角元均为正. 定理1 实对称矩阵n n R A ?∈为正定矩阵的充要条件是对于任意的n 维非零列向量X ,即10?∈≠n R X ,使0>AX X T .

矩阵的判定条件汇总

关于矩阵正定的若干判别方法 数学学院数学与应用数学(师范)专业2010级赵明尖 指导教师吴春 摘要:矩阵的正定性是矩阵论中的一个重要概念,研究矩阵的正定性一直都是矩阵分析领域中非常热门的课题。本文主要讨论了矩阵的定义、性质以及正定性。全文一共分为两章,第一章,主要阐述矩阵的正定性的定义以及性质;第二章,主要讨论了正定性矩阵的定义判别法和定理判别法。 关键词:正定矩阵;定义;性质;判定 Abstract: The positive definiteness of matrix is an important concept in theory of the matrix, Studying positive definiteness of the matrix is always a very popular topic in the area of analysis of the matrix. We mainly discuss the definition, property and positive definiteness of matrix in this paper .The text is divided into two chapters, and the first chapter, we mainly expound the definition and property of the positive definiteness of the matrix; the second chapter, we mainly discuss discriminating method of the definition and the theorem of the positive definiteness of matrix. Key words: positive definiteness of the matrix;definition;property;discrimination 1 引言 代数学是数学中的一个重要分支,矩阵是高等代数中的重要组成部分,而正定矩阵在矩阵论中占有十分重要的地位。而且正定矩阵部分的应用非常广泛,n阶实正定矩阵在正定理论中占有非常重要的地位。正定矩阵在物理学,概率论以及优化控制论中都得到了重要的应用,另外在数值计算科学中也经常用到正定矩阵的知识。比如线性方程组的高斯-塞德尔迭代法就是在方程组的系数是正定矩阵的情况下对任意初始向量是收敛的。但是随着数学本身及应用矩阵的其他学科或领域(数学规划,现代控制等)的发展,普通矩阵越来越不能满足其应用需要,于是正定矩阵引起了国内外学者的广泛关注并做出了许多重要的研究工作,本文在

矩阵相关运算

1.2.10矩阵的迹 函数trace 格式b=trace (A) %返回矩阵A的迹,即A的对角线元素之和。 1.2.11矩阵和向量的范数 命令向量的范数 函数norm 格式n = norm(X) %X为向量,求欧几里德范数,即。 n = norm(X,inf) %求-范数,即。 n = norm(X,1) %求1-范数,即。 n = norm(X,-inf) %求向量X的元素的绝对值的最小值,即。 n = norm(X, p) %求p-范数,即,所以norm(X,2) = norm(X)。 命令矩阵的范数 函数norm 格式n = norm(A) %A为矩阵,求欧几里德范数,等于A的最大奇异值。 n = norm(A,1) %求A的列范数,等于A的列向量的1-范数的最大值。 n = norm(A,2) %求A的欧几里德范数,和norm(A)相同。 n = norm(A,inf) %求行范数,等于A的行向量的1-范数的最大值 即:max(sum(abs(A')))。 n = norm(A, 'fro' ) %求矩阵A的Frobenius范数, 即sqrt(sum(diag(A'*A))),不能用矩阵p-范数的定义来求。 命令范数的估计值 函数normest 格式nrm = normest(A) %矩阵A的2-范数(欧几里德范数)的估计值,相对误差小于 106。 nrm = normest(A,tol) %tol为指定相对误差 [nrm,count] = normest(…) %count给出计算估计值的迭代次数 1.2.12条件数 命令矩阵的条件数 函数cond 格式c = cond(X) %求X的2-范数的条件数,即X的最大奇异值和最小奇异值的商。 c = cond(X,p) %求p-范数的条件数,p的值可以是1、2、inf或者’fro’。 说明线性方程组AX=b的条件数是一个大于或者等于1的实数,用来衡量关于数据中的扰动,也就是A/或b对解X的灵敏度。一个差条件的方程组的条件数很大。条件数的定义为: 命令1-范数的条件数估计 函数condest 格式c = condest (A) %方阵A的1-范数的条件数的下界估值。 [c,v] = condest (A) %v为向量,满足,即norm(A*v,1) =norm(A,1)*norm(v,1)/c。 [c,v] = condest (A,t) %求上面的c和v,同时显示出关于计算的步骤信息。如果t=1,则计算的 每步都显示出来;如果t=-1,则给出商c/rcond(A)。 命令矩阵可逆的条件数估值 函数rcond 格式c = rcond(A) %对于差条件矩阵A来说,给出一个接近于0的数;对于好条件矩阵A, 则给出一个接近于1的数。 命令特征值的条件数 函数condeig

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤? ? ??? ??----=1 10145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 000 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

正定矩阵的判定

正定矩阵的判定 摘 要:鉴于正定矩阵的重要性及其应用的广泛性,本文给出了正定矩阵判定的若干等价条件并逐条予以证明,并辅助典型例题。 关键词:正定矩阵;正交矩阵;判定;特征值;正定二次型 一、利用定义 (一)n 阶实对称矩阵A 称为正定矩阵,如果对于任意的n 维实非零列向量X ,都有 T X AX 0>。正定的实对称矩阵A 简称为正定矩阵,记作0A >。 例1 设A 是正定矩阵,P 是非奇异实方阵,则T P AP 也是正定矩阵。 证明:因为A 是实对称阵,故T P AP 显然也是实对称阵,又对任何实的非零列向量X , 由于PX ≠0(P 是非奇阵),故() T T X P AP X 0>,即T P AP 是正定阵。 1.实对称矩阵A 是正定矩阵的充分而且必要条件是对于任意的n 维实非零列向量 X =12x x ?? ? ? ??? ≠0, 二次型'X AX 是正定二次型。 2.实对角矩阵1n d d ?? ? ? ??? 是正定矩阵的充分而且必要条件是i d >0(i =1,2, n )。 3.实对称矩阵A 是正定矩阵的必要而且充分条件是二次型'X AX 的秩与符号差都等 于n 。 二、利用主子式 (一)n 阶实对称矩阵A 的一切顺序主子式都大于0,则A 为正定矩阵。 证明:对n 作数学归纳法。当1n =时,()2 1111f x a x =,由条件11a >0,显然有 ()1f x 是正定的。假设该论断论断对1n -元二次型已经成立,现在来证n 元的情形。 令 111,111,11,1n n n n a a A a a ----?? ?= ? ??? ,11,n n n a a α-?? ?= ? ???

矩阵的秩及其多样性的解法

矩阵的秩及其多样性的解法 数学学院 数学与应用数学(师范)专业 摘 要:矩阵论是代数学中一个重要组成部分和主要研究对象,而矩阵的秩又是矩阵的一个重要指标,本文研究了与矩阵的秩的相关性质及其多样性的解法, 用定理和实例说明了行列式、线性空间、线性方程组、分块矩阵和矩阵秩的关系及其在求矩阵的秩中的应用。 关键词: 矩阵的秩; 行列式; 线性方程组; Abstract :Matrix theory is an important part of the main object of study in algebra and rank of the matrix is an important indicator of the matrix, we study the rank of the matrix solution of the nature and diversity of theorems and examples illustratedeterminant, linear space, linear equations, the block matrix and the matrix rank and matrix rank. Keywords: Rank of matrix; V ector; Linear equations; 引言、引理 矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩相关性质及等价条件,并从行列式、线性方程组、线性空间以及分块矩阵的角度来阐述矩阵秩的不同解法。 矩阵的秩的等价刻划 设A F m n ?∈ ,则rank(A)=r ?A 中不为零的子式的最大阶数是r ; ?A 中有一个r 阶子式D 不等于零,所有包含D 作为子式的 r+1阶子式全为零; ? 存在可逆矩阵m n P F ?∈,m n Q F ?∈,使得000r E P A Q ?? = ??? ; ? A 的行(列)向量的极大无关组所含向量的个数为r;

相关文档
最新文档