解说立体几何中的“坐标法”

解说立体几何中的“坐标法”
解说立体几何中的“坐标法”

解说立体几何中的“坐标法”

江苏省姜堰中学张圣官(225500)

空间直角坐标系是现行高中数学新增加的内容,在使用上就是把空间的点、向量先用坐标表示,然后利用坐标来计算有关角的大小与线段的长度,或者判断与证明线线、线面以及面面的位置关系。利用“坐标法”解(证)立体几何题,所作的辅助线明显比纯几何推理需要作的要少,且思路简单明了,更易于程序化来解题。用“坐标法”解题是数与形结合的典范,它特别适用于易于建立空间直角坐标系的图形(如正方体等)。下面分别介绍在空间直角坐标系中如何确定点的坐标、常见特殊点的坐标特点及利用“坐标法”解(证)立体几何题的步骤。

一、如何确定空间点的坐标

空间点的坐标是有序实数对(x,y,z),其中的三数x,y,z包含坐标的符号与坐标的绝对值。要确定一个点的坐标,应先判断三个坐标的符号,然后再确定三个坐标的绝对值。

1.点的坐标的符号判断

点在坐标平面上的射影位于坐标轴的正方向,则这点对应的坐标的符号为正,否则符号为负。如点位于x轴正方向,则横坐标为正;点位于z轴负方向,则竖坐标为负。

2.点的坐标的绝对值确定

过这个点向三个坐标平面作垂线,看垂线段平行于哪个轴,则这条线段的长度就是该点的绝对值。如这条垂线段平行于y轴且长度为a,则点的纵坐标的绝对值是a;如这条垂线段平行于z轴且长度为a,则点的竖坐标的绝对值是a 。

二、常见特殊点的坐标特点

1.坐标轴上点的坐标的特点

①x轴上的点的纵坐标和竖坐标均为0,形如(a,0,0);②y轴上的点的横坐标和竖坐标均为0,形如(0,a,0);③z轴上的点的横坐标和纵坐标均为0,形如(0,0,a)。

2.坐标平面上点的坐标的特点

①XOY平面上所有点的竖坐标是0,形如(a,b,0);②YOZ平面上所有点的横坐标是0,形如(0,a,b);③ZOX平面上所有点的纵坐标是0,形如(a,0,b)。

三、利用“坐标法”解(证)立体几何题的步骤

第一步,建立坐标系通常取垂直且相交于同一点的三条直线作为三条坐标轴,它们的交点作为原点,并选取适当的单位长度;

第二步,表示点的坐标将题中相关点(即在问题中出现的且要求的点)用坐标表示,这一步是解(证)题的关键;

第三步,表示向量的坐标根据点的坐标可以求出所需要的向量的坐标,即用向量终点的坐标减去起点的坐标;

第四步,求出问题的解将点或向量的坐标代入公式(如两向量的夹角公式等);

第五步,作出结论根据上一步所求得的结果,作出问题的正确结论。

[例题]如图,已知正方体ABCD—A1B1C1D1的棱长为1,M是棱AA1的中点,点O 是对角线BD1的中点。

(1)求证:BD1⊥AC;

(2)求异面直线CM与BD1所成的角;

(3)求证:OM是异面直线AA1与BD1的公垂线;

(4)求异面直线AA1与BD1的距离。

解:以D 为原点,DC 、DA 、DD 1所在的直线分别为x 、y 、z 轴,建立如图所示空间直角坐标系,则D (0,0,0),A (0,1,0),C (1,0,0),B (1,1,0),D 1(0,0,1),M (0,1,21),O (21,21,2

1)。 (1))1,1,1(1--=BD ,)0,1,1(-=AC , ∵001)1()1(1)1(1=?+-?-+?-=?BD ∴BD ⊥1,即BD 1⊥AC 。

(2)设异面直线CM 与BD 1所成的角为θ, ∵)1,1,1(),,1,1(121--=-=BD

CM ,所以 93111111)1(1)1()1(||||22241222111cos ===++?++?+-?+-?-??BD CM BD θ 故异面直线CM 与BD 1所成的角为93arccos 。

(3))1,1,1(),1,0,0(),0,,(112121--==-=BD AA

, 因为01=?AA OM ,01=?BD OM ,

所以OM ⊥AA 1,OM ⊥BD 1,

即OM 是异面直线AA 1与BD 1的公垂线。

(4)22222

12210)()(||=++-=OM 因此,异面直线AA 1与BD 1的距离为

22

立体几何中的角度问题

立体几何题中的角度问题 一.异面直线所成的角 例1.(2011年宁波)正方体1111D C B A ABCD -中, (1).求D A AC 1与所成角的大小. (2).若E 、F 分别为AB 、AD 的中点,求11C A 与EF 所成角大小. 练习:1.A 是ΔBCD 平面外的一点,E 、F 分别是BC 、AD 的中点,AC ⊥BD.AC=BD.求EF 与BD 所成的角. 2.如图,在三棱锥S�ABC 中,,SA=AC=BC.求异 面直线SC 与AB 所成角的大小。 3.长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角的余弦值。

二.直线与平面所成角 例 2.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD 中,PA⊥面 ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点. (Ⅰ)证明:BD⊥面PAC ; (Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC⊥面BGD,求 PG GC 的值. 练习:1(2013年高考天津卷(文))如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱 长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点. (Ⅰ) 证明EF //平面A 1CD ; (Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1; (Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值. 错误!未指定书签。 2(2013年高考大纲卷(文))已知正四棱柱 1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( ) A . 23 B . 33 C . 23 D . 13

立体几何中用传统法求空间角

-立体几何中的传统法求空间角 知识点: 一.异面直线所成角:平移法 二.线面角 1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有 面面垂直的结构,找到交线,作交线的垂线即可。 2.用等体积法求出点到面的距离sinA=d/PA 三.求二面角的方法 1、直接用定义找,暂不做任何辅助线; 2、三垂线法找二面角的平面角. 例一:如图,在正方体错误!未找到引用源。中,错误!未找到 引用源。、错误!未找到引用源。分别是错误!未找到引用 源。、错误!未找到引用源。的中点,则异面直线错误!未 找到引用源。与错误!未找到引用源。所成的角的大小是 ______90______. 考向二线面角 例二、如图,在四棱锥P-ABCD中,底面ABCD是矩 形,AD⊥PD,BC=1, ,PD=CD=2. (I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD; (III)求直线PB与平面ABCD所成角的正弦值。 N A 1

练 习 : 如图 , 在 三棱锥 P ABC -中, PA ⊥底面 ,, 60,A B C P A A B A B C B C A ?? =∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC (Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ? ∠=,∴AC ⊥BC . ∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1 2 DE BC = , 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=A B , ∴△ABP 为等腰直角三角形,∴ AD AB = , ∴在Rt △ABC 中,60ABC ? ∠=,∴1 2 BC AB = . ∴在Rt △ADE 中,sin 24 DE BC DAE AD AD ∠= ==, 考向三: 二面角问题 在图中做出下面例题中二面角 例三:.定义法(2011广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。 因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面 PBG ,.AD PB AD GB ?⊥⊥ 又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥ 平面DEF 。

立体几何三视图教师版

考点24 三视图 考点一:棱长类 1.★(2014西城二模4)某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ,且4A (B A ,且4 A (C ) 2A ,且A (D A A 【答案】D 2.★(2015年北京丰台区高三一模理科)上图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是 (A) 4 (B) 5 (C) (D) 正(主)视图 侧(左)视图 俯视图

【答案】D 考点二:面积类 3.★(2013海淀二模4) 某空间几何体的三视图如右图所示,则该几何体的表面积为( ) A.180 B.240 C.276 D.300 【答案】B 4.★(2012西城一模4) 已知正六棱柱的底面边长和侧棱长相等,体积为33.其三视图中的俯视图如图所示,则其左视图的面积是( ) (A )23(B )2 23(C )28cm (D )2 4cm 【答案】A 6 6 6 5 俯视图

正视图 俯视图 5.★★★(2012朝阳二模8) 有一个棱长为1的正方体,按任意方向正投影, 其投影面积的最大值是( ) A. 1 B. 2 C. D. 【答案】D 6.★★(2010海淀期末理)11.一个几何体的三视图如下图所示,则该几何 体的表面积为__________________. 【答案】2412π+ 考点三:体积类 7.★★(2011丰台期末文)3.若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是 A . 32225+π B .32 25 π C .3225π D .128 25 π 【答案】C 正视图侧视图 俯视图

立体几何(角度、距离、体积)

立体几何 一、角度问题。 1. 如图,四棱锥P ABCD -中,PA ABCD ⊥底面, 2,4,3 BC CD AC ACB ACD π ===∠=∠=,F 为PC 的中点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值. 【答案】

2. 如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底 面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°. (Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠. 【答案】解: (Ⅰ) PAB P D ,////C m AB CD CD PCD AB PCD ?=??设面面直线且面面 //AB m ?直线 ABCD m ABCD AB 面直线面//?? . 所以,ABCD D P PAB 的公共交线平行底面与面面C . (Ⅱ)

r PO OPF F CD r =??=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ? -?=?∠==????=?5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF . )223(3)],1-2(3[2 1cos ,1-25.22tan 12cos 2cos 22-==+∠=??-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以. 3. 如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是 AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=. (1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大 小. 【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且 3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ?面BDC ,所以 //PQ 面BDC ; 方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1// 2 PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以A B C D P Q M (第20题图)

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

坐标法解立体几何解答题

坐标法解立体几何解答题 教学目的:1、熟练掌握空间向量的有关知识; 2、能灵活运用坐标法解决立体几何解答题的有关问题; 3、进一步提高学生的空间想象能力和运算能力。 教学重点:1、建立适当的空间直角坐标系; 2、正确写出点的坐标; 3、求平面的法向量; 4、灵活运用坐标法解决空间角、空间距离等问题 教学难点:求平面的法向量 授课类型:专题复习 教学方法:启发引导式 教具准备:幻灯片20张 教学过程: 一、复习引入: 空间向量解决立体几何问题主要有两个基本方法:坐标法与基底法。本节课着重研究利 用坐标法解决立体几何解答题。 1、空间向量的有关知识:(幻灯片投影) (1)设点)z ,y ,B(x )z ,y ,A(x 222111、,则),,(121212z z y y x x AB ---=→ ; (2)设向量),,(),,,(222111z y x b z y x a ==→ →,则 ① 212121z z y y x x b a ++=?→ →; ② →a ∥),,(),,(222111z y x z y x b a b λλ=??=?→ →→; ③ 0212121=++=??⊥→ →→→z z y y x x b a b a ; (3)设向量),,(z y x a =→ ,则222z y x a ++= → ; (4)→ →→ →→ →→→?>=

l (3)解决问题:(幻灯片投影) (一)求空间角问题: 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角。 ① 求异面直线所成的角: 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos | ||||| a b a b 。 ② 求线面角: 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角 2 ,,2 π π θ- ><><-= → →→→n l n l 或 ③ 求二面角: 法一:在α内a l ⊥,在β内b l ⊥,其方向如图, 则二面角l αβ--的平面角=α法二:设m n 、 是二面角l αβ--的两个半平面的 法向量,其方向一个指向内侧,另一个指向外侧, 则二面角l αβ--的平面角=α (二)求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法。 设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ?== 二、例题讲解: 例1、四棱锥ABCD S -中,0 90=∠=∠ABC DAB ,⊥SA 平面ABCD ,a AD 2=, a BC AB SA ===。 (1)求证:平面⊥SAC 平面SCD ;(2)求A 到平面SCD 的距离;

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

专题06 立体几何(解答题)(教师版)

专题06 立体几何(解答题) 1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°, E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2) 17 . 【解析】(1)连结1,B C ME . 因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且11 2 ME B C =. 又因为N 为1A D 的中点,所以11 2 ND A D = . 由题设知11=A B DC ∥,可得11=BC A D ∥,故= ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ?平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H . 由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以1C E 17 CH =.

从而点C 到平面1C DE 的距离为 17 . 【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解. 2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上, BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1; (2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18. 【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ?平面ABB 1A 1, 故11B C BE ⊥.

坐标法解空间几何题常用模型

如何用坐标法解空间几何题专题 (中保高中2017届1,2班) 徐学松 2017.5 模型思考 空间几何中涉及的定义、定理和性质比较多,在解决综合问题时,运用多个定义、定理和性质形成的综合题时,遇到多种多样的题型,每一种题型的解法又有多种.学习和记忆名目繁多的题型和解法直接影响了学习立体几何的兴趣和效率.有没有一种比较统一的方法,能够使得解题过程比较一致,变化不多的模型呢?使得学生解题流程固定,方法比较简单,从而使学生解题思路流畅,正确率提高呢.坐标法作为一种工具,在解决立体几何问题中有着无比的优越性.运用坐标法解题,可使几何问题代数化,大大简化思维程序,使解题思路直观明了,模式固定,流程明了. 模型例析 例1.(线线平行)已知A(1,0,0),B(0,1,0),C(0,0,2),求满足DB ∥AC ,DC ∥AB 的点D 的坐标. 解模与识模:这道题是一道线与线平行的问题.可设点D 坐标为(x ,y ,z), 则?→ ?DB = (-x ,1-y ,-z),?→?AC = (-1,0,2),?→ ?DC = (-x ,-y ,2-z), ?→ ?AB = (-1,1,0). ∵DB ∥AC ,DC ∥AB ,∴?→ ?DB ∥?→?AC ,?→?DC ∥?→ ?AB . 即???? ?? ???=--=--=--=--.02, 1 1,01,2 1z y x y z x ??????==-=.2,1,1z y x ,即此时点D 的坐标为(-1,1,2). 从这道题的推理过程可以看到在建立了坐标系的情况下,得到各点的坐标后,就能得到有关向量的坐标,根据向量的平行,利用公式建立方程组.这里的公式是若()111,,z y x a =→ , ()222,,z y x b =→ ,且222,,z y x 均不为零,→ →b a //? 2 12121z z y y x x ==.进而达到求解的目的. 例2(线线垂直)在正方体ABCD —A 1B 1C 1D 1中,M 是棱DD 1的中点,O 为正方形ABCD 的中心,求证:1OA ⊥AM . 解模与识模: 直线与直线的垂直可以转化为直线的方向向量互相垂直.设直线a ,b 的 方向向量分别是 ()111,,z y x a =→ ,()222,,z y x b =→,a ⊥b ? → a ⊥ → b ?0212121=++z z y y x x .要想利用坐标法解决这一问题首先要建立空间坐标系.常见

三角函数与立体几何(二)教师版

1.如图,在ABC ?中,点D 在边BC 上, 4 CAD π ∠= , 72AC = , cos 10 ADB ∠=-. (1)求sin C ∠的值; (2)若ABD ?的面积为7,求AB 的长. 【答案】(1) sin C ∠= 4 5 ;(2) AB = 【解析】试题分析:(1)由同角三角函数基本关系式可求sin ADB ∠,由4 C ADB π ∠=∠- ,利用两角差 的正弦函数公式及特殊角的三角函数值即可求值得解;(2)先由正弦定理求AD 的值,再利用三角形面积公式求得BD ,与余弦定理即可得解AB 的长度. 试题解析:(1 )因为cos 10ADB ∠=- ,所以sin 10 ADB ∠=, 又因为4 CAD π ∠= ,所以4 C ADB π ∠=∠- , 所以sin sin 4C ADB π? ? ∠=∠- ?? ? sin cos cos sin 4 4 ADB ADB π π =∠-∠ 4 1021025 = +?=. (2)在ADC ?中,由正弦定理 sin sin AD AC C ADC =∠∠, 故( )74sin sin sin sin sin sin AC C AC C AC C AD ADC ADB ADB π? ?∠?∠?∠==== ∠-∠∠ = 又11sin 72210 ABD S AD AB ADB BD ?= ???∠=??=,解得5BD =. 在ADB ?中,由余弦定理得 2 2 2 2cos AB AD BD AD BD ADB =+-??∠ 8252537AB ?=+-??=?= ?? 2.在ABC ?中,内角A,B,C,所对应的边为,,a b c 且b c ≠,且 22sin sin cos cos C B B B C C -=

立体几何中角度与距离求法

立体几何中角度距离的求法 一 空间向量及其运算 1 .空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则 称a 与b __________,记作a ⊥b . ②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是 ________________________. 推论,如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB → =a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM → +yOA →+zOB → ,其中x +y +z =______. (3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

立体几何证明题专题(教师版)分析

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是__________ . 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现 两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. ABC —A B C D'中,直线BB丄AB, BB丄CB但AB与CB不平行,???⑥错. AB // CD BB n AB= B,但BB与CD不相交,.??⑦错?如图(2)所示,AB= CD BC= AD四边形ABCD不是平行四边形,故⑧也错. I、m外的任意一点,贝U ( A.过点P有且仅有条直线与I、m都平行 B.过点P有且仅有条直线与I、m都垂直 C.过点P有且仅有条直线与I、m都相交 D.过点P有且仅有条直线与I、m都异面 答案 B 解析对于选项A,若过点P有直线n与I , m都平行,则I // m这与I , m异面矛盾. 对于选项B,过点P与I、m都垂直的直线,即过P且与I、m的公垂线段平行的那一条直线. 对于选项C,过点P与I、m都相交的直线有一条或零条. 对于选项D,过点P与I、m都异面的直线可能有无数条.

解说立体几何中的“坐标法”

解说立体几何中的“坐标法” 江苏省姜堰中学张圣官(225500) 空间直角坐标系是现行高中数学新增加的内容,在使用上就是把空间的点、向量先用坐标表示,然后利用坐标来计算有关角的大小与线段的长度,或者判断与证明线线、线面以及面面的位置关系。利用“坐标法”解(证)立体几何题,所作的辅助线明显比纯几何推理需要作的要少,且思路简单明了,更易于程序化来解题。用“坐标法”解题是数与形结合的典范,它特别适用于易于建立空间直角坐标系的图形(如正方体等)。下面分别介绍在空间直角坐标系中如何确定点的坐标、常见特殊点的坐标特点及利用“坐标法”解(证)立体几何题的步骤。 一、如何确定空间点的坐标 空间点的坐标是有序实数对(x,y,z),其中的三数x,y,z包含坐标的符号与坐标的绝对值。要确定一个点的坐标,应先判断三个坐标的符号,然后再确定三个坐标的绝对值。 1.点的坐标的符号判断 点在坐标平面上的射影位于坐标轴的正方向,则这点对应的坐标的符号为正,否则符号为负。如点位于x轴正方向,则横坐标为正;点位于z轴负方向,则竖坐标为负。 2.点的坐标的绝对值确定 过这个点向三个坐标平面作垂线,看垂线段平行于哪个轴,则这条线段的长度就是该点的绝对值。如这条垂线段平行于y轴且长度为a,则点的纵坐标的绝对值是a;如这条垂线段平行于z轴且长度为a,则点的竖坐标的绝对值是a 。 二、常见特殊点的坐标特点 1.坐标轴上点的坐标的特点 ①x轴上的点的纵坐标和竖坐标均为0,形如(a,0,0);②y轴上的点的横坐标和竖坐标均为0,形如(0,a,0);③z轴上的点的横坐标和纵坐标均为0,形如(0,0,a)。 2.坐标平面上点的坐标的特点 ①XOY平面上所有点的竖坐标是0,形如(a,b,0);②YOZ平面上所有点的横坐标是0,形如(0,a,b);③ZOX平面上所有点的纵坐标是0,形如(a,0,b)。 三、利用“坐标法”解(证)立体几何题的步骤 第一步,建立坐标系通常取垂直且相交于同一点的三条直线作为三条坐标轴,它们的交点作为原点,并选取适当的单位长度; 第二步,表示点的坐标将题中相关点(即在问题中出现的且要求的点)用坐标表示,这一步是解(证)题的关键; 第三步,表示向量的坐标根据点的坐标可以求出所需要的向量的坐标,即用向量终点的坐标减去起点的坐标; 第四步,求出问题的解将点或向量的坐标代入公式(如两向量的夹角公式等); 第五步,作出结论根据上一步所求得的结果,作出问题的正确结论。 [例题]如图,已知正方体ABCD—A1B1C1D1的棱长为1,M是棱AA1的中点,点O 是对角线BD1的中点。 (1)求证:BD1⊥AC; (2)求异面直线CM与BD1所成的角; (3)求证:OM是异面直线AA1与BD1的公垂线; (4)求异面直线AA1与BD1的距离。

高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

第7章立体几何 全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制2道小题、1 道解答题,分值约占22分. 2.考查内容 (1)小题主要考查三视图、几何体 体积与表面积计算,此类问题属于 中档题目;对于球与棱柱、棱锥的 切接问题,知识点较整合,难度稍 大. (2)解答题一般位于第18题或第19 题的位置,常设计两问:第(1)问 重点考查线面位置关系的证明;第 (2)问重点考查空间角,尤其是二 面角、线面角的计算.属于中档题 目. 空间几何体的结构及其表面积、体积 [考试要求] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. 4.了解球、棱柱、棱锥、台体的表面积和体积的计算公式.

1.多面体的结构特征 名称棱柱棱锥棱台 图形 底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点 侧面形状平行四边形三角形梯形 (1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形. (2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体. 3.旋转体的结构特征 名称圆柱圆锥圆台球 图形 母线互相平行且相 等,垂直 于底面 长度相等且相交 于一点 延长线交于一点 轴截面全等的矩形全等的等腰三角 形 全等的等腰梯形圆 侧面展开图矩形扇形扇环 旋转图形矩形直角三角形直角梯形半圆三视图画法规则:长对正、高平齐、宽相等 直观图斜二测画法: (1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°(或

坐标法解立体几何习题及解析

坐标法解立体几何 1空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =,123(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈,1122330a b a b a b a b ⊥?++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系 中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4模长公式:若 123(,,)a a a a =,123(,,)b b b b =,则222123||a a a a a a =?=++, 222 123||b b b b b b =?=++.5.夹角公式: 112233222222 123123 cos ||||a b a b a b a a a b b b ??= =?++++. 异面直线所成的夹角: 6.两点间的距离公式:若 111(,,)A x y z ,222(,,)B x y z ,则2 222212121||()()()AB AB x x y y z z ==-+-+-,或 222,212121()()()A B d x x y y z z =-+-+-7、法向量 ①直线的法向量:在直线L 上取一个定向量,则与垂直的非零向量叫直线L 的 法向量 ②平面的法向量:与平面α垂直的非零向量叫平面α的法向量. 构造直线或平面的法向量,在求空间角与距离时起到了桥梁的作用,在解题过程中只须求出而不必在图形中作出来.在空间直角坐标系下,构造关于法向量坐标的三元一次方程组,得到直线(或平面)的法向量坐标的一般形式,再取特值. 其向上或向下的方向可根据竖坐标的符号来确定. 一、平面的法向量 例1 已知AB =(2,2,1),AC =(4,5,3),求平面ABC 的法向量解:设面ABC 的法向量(,,)n x y z =,则n ⊥AB 且n ⊥,即n ·AB =0,且n ·=0,即2x +2y +z=0且 4x +5y +3z=0,解得1,2,x z y z ? =???=-? ∴n =z (21 ,-1,1) 点评:一般情况下求法向量用待定系数法由于法向量没规定长度,仅规定了方向,所以有 一个自由度,可把n 的某个坐标设为1,再求另两个坐标平面法向量是垂直于平面的向量,故法向量的相反向量也是法向量。

9.6立体几何大题1(教师版)

A B C D 1 A 1 C 1B E 科 目 数学 年级 高三 备课人 高三数学组 第 课时 9.2立体几何大题1 1、(2013新课标)如图,直棱柱111ABC A B C -中,,D E 分别是1,AB BB 的 中点,12 2 AA AC CB AB === . (Ⅰ)证明:1//BC 平面1A CD ; (Ⅱ)求二面角1D A C E --的正弦值. 【答案】 2、(2013湖南)如图5,在直棱柱 1111//ABCD A BC D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=, 13AD AA ==. (I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值. 【答案】 解(Ⅰ) AC BB ABCD BD ABCD BB D C B A ABCD ⊥??⊥∴-111111,面且面是直棱柱 D B AC BDB D B BDB AC B BB BD BD AC 11 111,,⊥∴?⊥∴=?⊥,面。面且又 . (证毕)

(Ⅱ) 。 的夹角与平面的夹角即直线与平面直线θ111111,////ACD AD ACD C B AD BC C B ∴ 轴正半轴。 为轴正半轴,为点,量解题。设原点在建立直角坐标系,用向X AD Y AB A ()BD AC y BD y AC y C y B D D A ⊥-== ),0,,3(),0,,1()0,,1(),0,,0(),3,0,3(),0,0,3(,00,01,则,设 ). 3,0,3(),0,3,1(.30,003012==∴=?>=+-?=?AD AC y y y BD AC ) ,,(),,(的一个法向量平面则的法向量为设平面303,313-.0 ,111==??????=?=?AD n ACD AD n AC n n ACD 721 3 733|,cos |sin 003,313-1=?= ><=?==∴AD n AD n ACD θ),,(),,(的一个法向量平面 7 21 11夹角的正弦值为 与平面所以ACD BD . 3、(2013 北京)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5. (Ⅰ)求证:AA 1⊥平面ABC ; (Ⅱ)求二面角A 1-BC 1-B 1的余弦值; (Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求 1 BD BC 的值. 【答案】解: (I)因为AA 1C 1C 为正方形,所以AA 1 ⊥AC. 因为平面ABC⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC. (II)由(I)知AA 1 ⊥AC,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB⊥AC. 如图,以A 为原点建立空间直角坐标系A-xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),

立体几何中的常见模型化方法

立体几何中的常见模型化方法 建构几何模型的两个角度:一是待研究的几何体可与特殊几何体建立关联,二是数量关系有明显特征的几何背景 例题一个多面体的三视图如图1 所示,则该多面体的体积是 A. 23/3 B. 47/6 C.6 D.7 分析该几何体的三视图为 3 个正方形,所以可建构正方体模型辅助解答. 解图 2 为一个棱长为2 的正方体. 由三视图可知,该几何体是正方体截去两个小三棱锥后余下的部分,其体积V=8-2 X 1/3X 1/2X 1 X 1 X仁23/3选A. 解后反思大部分几何体可通过对正方体或长方体分割得到,所以将三视图问题放在正方体或长方体模型中研究,能够快速得到直观图,并且线面的位置关系、线段的数量关系明显,计算简便. 变式1已知正三棱锥P-A BC,点P, A , B , C都在半径为的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为_______ 分析由于在正三凌锥P-ABC 中,PA,PB,PC 两两互 相垂直,所以可以将该正三棱锥看作正方体的一部分,构造正方体模型.

解构造如图 3 所示的正方体. 此正方体外接于球,正方体的体对角线为球的直径EP,球心为正方体对角线的中点0,且EP丄平面ABC , EP与平 面ABC相交于点F.由于FP为正方体体对角线长度的1/3, 所以又0P为球的半径,所以0P=.故球心0到截面ABC的距离解后反思从正方体的8 个顶点之中选取不共面的点,可构造出多种几何体,这些几何体可以分享正方体的结构特征. 变式2-个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为 A.3 n B.4 n C.3 n D.6 n 分析将一个正方体切掉四个大的“角” ,就可得到一个正四面体. 解如图4 所示,构造一个棱长为1 的正方体 ABCD-A1B1C1D1 ,连接AB1,AD1 ,AC,CD1,CB1, B1D1,?t 四面体B1-ACD1 为符合题意的四面体,它的外接球的直径 AC1=,所以此正方体外接球的表面积S=4 n R2=3 n .选A. 解后反思正四面体的体积也可通过这种切割的方法求 得.由图形分析可知,正四面体的体积是它的外接正方体体积的}.若正四面体的棱长为a,则其体积为 变式 3 四面体A-BCD 中,共顶点A 的三条棱两两互相垂直,且其长分别为1,2, 3.若四面体A-BCD 的四个顶点同在一个球面上,则这个球的表面积为_____________ .

立体几何二面角5种常见解法

立体几何二面角大小的求法 二面角的类型和求法可用框图展现如下: 一、定义法: 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。 A P H

二、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。 例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. p A B L H A B C D A 1 B 1 C 1 D 1 E O

例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小 例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小. 图4 B1 A α β A1 B L E F

相关文档
最新文档