(完整版)立体几何坐标法教师版

(完整版)立体几何坐标法教师版
(完整版)立体几何坐标法教师版

立体几何坐标法:

一:一般的公式:

1、空间角

(1)(线线)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.

(2)(线面)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|. (3)(面面)求二面角的大小

(ⅰ)如图①,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉

(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.

2、距离

(1)点面距的求法:设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·

n |

|n |.

(2)线面距、面面距均可转化为点面距

(3)两异面直线的距离求法:d =

|AB →·n |

|n |.(AB 是异面直线上任意两点)

二:如何选择建系:

8、在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且

2AC BC BD AE ===,M 是AB 的中点. (Ⅰ)求证:CM EM ⊥;

(Ⅱ)求CM 与平面CDE 所成的角.

11年重庆 19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)

如题(19)图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB BC ⊥,AD CD =,CAD ∠=30?.

(Ⅰ)若AD =2,AB BC =2,求四面体ABCD 的体积;

(Ⅱ)若二面角C AB D --为60?,求异面直线AD 与BC 所成角的余弦值.

28.【2012高考四川文19】(本小题满分12分)

如图,在三棱锥P ABC -中,90APB ∠=o

,60PAB ∠=o

,AB BC CA ==,点P

E

D

C

M A

B

在平面ABC 内的射影O 在AB 上。

A

B

C

P

(Ⅰ)求直线PC 与平面ABC 所成的角的大小; (Ⅱ)求二面角B AP C --的大小。

三:添加Z 轴,通过公式算出来的:S 点。

全国的 19.(本小题满分12分)(注意:在试题卷上作答无效.........

) 如图,四棱锥S ABCD -中, AB CD ∥,BC CD ⊥,侧面SAB 为等边三角形,

2,1AB BC CD SD ====.

(Ⅰ)证明:SD SAB ⊥平面;

(Ⅱ)求AB 与平面SBC 所成角的大小.

三:经典练习;

26.【2012高考全国文19】(本小题满分12分)(注意:在试题卷上.....作答无效....

) 如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底

面ABCD ,2

2AC =,2PA =,

E 是PC 上的一点,2PE EC =。 (Ⅰ)证明:PC ⊥平面BED ;

(Ⅱ)设二面角A PB C --为90o

,求PD 与平面PBC 所成角的大小。

成都二诊:

E

D

A

P

19.如图,正方体ABCD —A 1B 1C 1D 1棱长为8,E 、F 分别为AD 1,CD 1中点,G 、H 分别

为棱DA ,DC 上动点,且EH ⊥FG . (1)求GH 长的取值范围;

(2)当GH 取得最小值时,求证:EH 与FG 共面;并求出此时EH 与FG 的交点P 到直线1B B 的距离.

19、如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB+AD=4,

CD=2,?=∠45CDA .

(I )求证:平面PAB ⊥平面PAD ; (II )设AB=AP .

(i )若直线PB 与平面PCD 所成的角为?30,求线段AB 的

长;

(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?

说明理由。

O

C 1

B 1

A 1

C

B

A

22. 在三棱柱111ABC A B C -中,

已知14AB AC AA BC ====,在1A 在底面ABC 的

投影是线段BC 的中点O 。 (1)求点C 到平面11A ABB 的距离; (2)求二面角11A BC B --的余弦值;

(3)若M,N 分别为直线11,AA B C 上动点,求MN 的最小值。

用向量法做几何题:

2010 年河南 预赛:

6.已知一个正三棱柱的底面边长为1,两个侧面的异面对角线互相垂直.该正三棱柱的侧棱长为 .

解:填2

2

.

设三棱柱111,ABC A BC -侧棱长为

,a 侧面的异面对角线11,AB BC 互相垂直,则 1111111111111120()()00cos 6002.2

AB BC B B BA BB B C B B BB B B B C BA BB BA B C a a ?=?+?=??+?+?+?=?-+=?=

o u u u r u u u u r u u u r u u u r u u u r u u u u r

u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u u r

9、如图,在四棱锥ABCD P -中,底面ABCD 是矩形.

已知ο

60,22,2,2,3=∠====PAB PD PA AD AB .

(Ⅰ)证明⊥AD 平面PAB ;

(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.

A

B

C

A 1

B 1

C 1

O 59、

已知斜三棱柱111C B A ABC -的各棱长均为2, 侧棱1BB 与底面ABC 所成角为

3

π, 且侧面⊥11A ABB 底面ABC .

(1)证明:点1B 在平面ABC 上的射影O 为AB 的中点; (2)求二面角B AB C --1的大小 ; (3)求点1C 到平面A CB 1的距离.

答案:

28.【2012高考四川文19】(本小题满分12分)

如图,在三棱锥P ABC -中,90APB ∠=o

,60PAB ∠=o

,AB BC CA ==,点P

在平面ABC 内的射影O 在AB 上。

B

C

P

(Ⅰ)求直线PC 与平面ABC 所成的角的大小; (Ⅱ)求二面角B AP C --的大小。

命题立意:本题主要考查本题主要考查直线与平面的位置关系,线面角的概念,二面角的概念等基础知识,考查空间想象能力,利用向量解决立体几何问题的能力. 【答案】 【解析】

19.解法一:

(I )取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE=CB=2, 连结SE ,则, 3.SE AB SE ⊥= 又SD=1,故2

2

2

ED SE SD =+, 所以DSE ∠为直角。

…………3分

由,,AB DE AB SE DE SE E ⊥⊥=I , 得AB ⊥平面SDE ,所以AB SD ⊥。 SD 与两条相交直线AB 、SE 都垂直。 所以SD ⊥平面SAB 。

…………6分

(II )由AB ⊥平面SDE 知, 平面ABCD ⊥平面SED 。

作,SF DE ⊥垂足为F ,则SF ⊥平面ABCD ,

3

.2

SD SE SF DE ?=

= 作FG BC ⊥,垂足为G ,则FG=DC=1。

连结SG ,则SG BC ⊥, 又,BC FG SG FG G ⊥=I ,

故BC ⊥平面SFG ,平面SBC ⊥平面SFG 。 …………9分

作FH SG ⊥,H 为垂足,则FH ⊥平面SBC 。 37

SF FG FH SG ?=

=,即F 到平面SBC 的距离为21

.

由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 的距离d 也有21

.7

设AB 与平面SBC 所成的角为α, 则2121sin ,arcsin .d EB αα=

== …………12分

解法二:

以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C —xyz 。

设D (1,0,0),则A (2,2,0)、B (0,2,0)。

又设(,,),0,0,0.S x y z x y z >>>则

(I )(2,2,),(,2,)AS x y z BS x y z =--=-u u u r u u u r ,(1,,)DS x y z =-u u u r

由||||AS BS =u u u r u u u r 得

=

故x=1。

由22||11,DS y z =+=u u u r

又由222

||2(2)4,BS x y z =+-+=u u u r 得

即2

2

1410,,2y z y y z +-+==

=故 …………3分

于是133(1,,),(1,,(1,,222222S AS BS =--=-u u u r u u u r ,

1(0,0,0.22

DS DS AS DS BS =?=?=u u u r u u u

r u u u r u u u r u u u r

故,,,DS AD DS BS AS BS S ⊥⊥=I 又 所以SD ⊥平面SAB 。

…………6分

(II )设平面SBC 的法向量(,,)a m n p =,

则,,0,0.a BS a CB a BS a CB ⊥⊥?=?=u u u r u u u r u u u r u u u r

又3(1,,(0,2,0),22

BS CB =-=u u u r u u u

r

故30,220.m n p n ?-=???=?

…………9分

取p=2

(2),(2,0,0)a AB ==-u u u r

又。

cos ,||||

AB a AB a AB a ?==?u u u r u u u r u u u r

故AB 与平面SBC

所成的角为

4、如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB+AD=4,CD=2,?=∠45CDA .

(I )求证:平面PAB ⊥平面PAD ; (II )设AB=AP .

(i )若直线PB 与平面PCD 所成的角为?30,求线段AB 的长;

(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?

说明理

由。

本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想

象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。 解法一:

(I )因为PA ⊥平面ABCD ,

AC ?平面ABCD , 所以PA AB ⊥,

又,,AB AD PA AD A ⊥=I

所以AB ⊥平面PAD 。

又AB ?平面PAB ,所以平面PAB ⊥平面PAD 。 (II )以A 为坐标原点,建立空间直角坐标系 A —xyz (如图)

在平面ABCD 内,作CE//AB 交AD 于点E ,则.CE AD ⊥ 在Rt CDE ?中,DE=cos451CD ??=,

sin 451,CE CD =??=

设AB=AP=t ,则B (t ,0,0),P (0,0,t ) 由AB+AD=4,得AD=4-t ,

所以(0,3,0),(1,3,0),(0,4,0)E t C t D t ---,

(1,1,0),(0,4,).CD PD t t =-=--u u u r u u u r

(i )设平面PCD 的法向量为(,,)n x y z =,

由n CD ⊥u u u r ,n PD ⊥u u u r ,得0,(4)0.x y t y tx -+=??--=?

取x t =,得平面PCD 的一个法向量{,,4}n t t t =-,

又(,0,)PB t t =-u u u r

,故由直线PB 与平面PCD 所成的角为30?,得

222221cos 60||,,2

||||(4)2n PB n PB t t t x ??==?++-?u u u r u u u r 即 解得445t t =

=或(舍去,因为AD 40t =->)

,所以4

.5

AB = (ii )假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等, 设G (0,m ,0)(其中04m t ≤≤-)

则(1,3,0),(0,4,0),(0,,)GC t m GD t m GP m t =--=--=-u u u r u u u r u u u r

, 由||||GC GD =u u u r u u u r 得222(4)t m m t --=+,(2)

由(1)、(2)消去t ,化简得2340m m -+=(3)

由于方程(3)没有实数根,所以在线段AD 上不存在一个点G , 使得点G 到点P ,C ,D 的距离都相等。 从而,在线段AD 上不存在一个点G ,

使得点G 到点P ,B ,C ,D 的距离都相等。 解法二:

(I )同解法一。 (II )(i )以A 为坐标原点,建立空间直角坐标系A —xyz (如图) 在平面ABCD 内,作CE//AB 交AD 于E ,

则CE AD ⊥。

在平面ABCD 内,作CE//AB 交AD 于点E ,则.CE AD ⊥ 在Rt CDE ?中,DE=cos451CD ??=,

sin 451,CE CD =??=

设AB=AP=t ,则B (t ,0,0),P (0,0,t ) 由AB+AD=4,得AD=4-t ,

所以(0,3,0),(1,3,0),(0,4,0)E t C t D t ---,

(1,1,0),(0,4,).CD PD t t =-=--u u u r u u u r

设平面PCD 的法向量为(,,)n x y z =,

由n CD ⊥u u u r ,n PD ⊥u u u r ,得0,(4)0.

x y t y tx -+=??--=?

取x t =,得平面PCD 的一个法向量{,,4}n t t t =-,

又(,0,)PB t t =-u u u r

,故由直线PB 与平面PCD 所成的角为30?,得

222221cos 60||,,2

||||(4)2n PB n PB t t t x ??==?++-?u u u r u u u r 即 解得4

45t t =

=或(舍去,因为AD 40t =->)

, 所以4

.5

AB =

(ii )假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等, 由GC=CD ,得45GCD GDC ∠=∠=?, 从而90CGD ∠=?,即,CG AD ⊥

∴sin 451,GD CD =??=

设,AB λλ=则AD=4-,

3AG AD GD λ=-=-,

在Rt ABG ?中,2222(3)GB AB AG λλ=

+=+-

239

2()1,22

λ=-+>

这与GB=GD 矛盾。

所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等, 从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等

19. 解:(1)以D 为原点,DA ,DC ,DD 1分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设DG=a ,DH=b ,则E (4,0,4),F (0,4,4),G (a ,0,0),H (0,b ,0).

∴EH =(-4,b ,-4),FG =(a ,-4,-4). ∵EH ⊥FG .

∴EH ·

FG =-4a -4b+16=0,则a+b=4,即b=4-a . 又G 1H 在棱DA ,DC 上,则0≤a≤8,0≤b≤8,从而0≤a≤4. ∴GH=22b a +=8)2(2)4(22

2

+-=

-+a a a .

∴GH 取值范围是[22,4] . ……6分

(2)当GH=22时,a=2,b=2.

∴GH =(-2,2,0),EF =(-4,4,0),即EF =2GH . ∴EF ∥GH ,即EH 与FG 共面.

所以EF=2GH ,EF ∥GH ,则??? ??--==

38,3

4

,3832EH EP .

设P (x 1,y 1,z 1),则=(x 1-4,y ,z 1-4).

∴x 1=

34,y 1=34,z 1=34,即P (34,34,34

). 则P (34,34,3

4)在底面上ABCD 上的射影为M (34,3

4

,0).又B (8,8,0),

所以MB =P 到直线1B B 的距离. ……12分

22.解:(1)

连接AO , 因为1

AO ⊥平面ABC ,所以1A O BC ⊥,因为,AB AC OB OC ==, 得AO BC ⊥

,1,AO

=在1AOA ?中, 12,A O =

在1BOA ?中,1A B =则1A AB S ?=又 2.C AB S ?= 设点C 到平面11A ABB 的距离为,h

则由11C A AB A

ABC V V --=得,

113A AB S h ??=11.3C AB S A O ??从而h =……4分 (2)如图所示,分别以1,,OA OB OA 所在的直线 为x,y,z 轴,建立空间直角坐标系,

则A(1,0,0), C(0,-2,0), A 1(0.0,2),B(0,2,0), 1(1,2,2)B -,1(1,2,2)C --.

设平面11BCC B 的法向量(,,)n x y z =r

,

又()11,0,2,BB =-u u u r ()0,4,0.CB =u u u r

由100n BB n CB ?=??=??r u u u r g r u u u r g

,得2040x z y -+=??

=?, 令1z =,得2,0x y ==,即(2,0,1)n =r

设平面1ABC 的法向量(,,)m a b c =u r , 又()1,2,0,AB =-u u u r ()-2,-21,2.AC =u u u u r

由100

m AB m AC ?=??=??u r u u u r g u r u u u u r

g ,得202220a b a b c -+=?

?--+=?,令1b =,得2,3a c ==,即(2,1,3)m =u r 。 所以cos ,||||m n m n m n <>==?u r r

u r r g

u u r u u r ,……7分 由图形观察可知,二面角11A BC B --为钝角, 所以二面角11A BC B --的余弦值是……9分

(3)方法1.在1AOA ?中,作1OE AA ⊥于点E ,因为11//AA BB ,得1OE BB ⊥.

因为1

AO ⊥平面ABC ,所以1A O BC ⊥,因为,AB AC OB OC ==, 得AO BC ⊥,所以BC ⊥平面1AA O ,所以BC OE ⊥, 所以OE ⊥平面11BB C C .从而1OE B C ⊥

在1AOA ?中,

5

OE =

为异面直线11,AA B C 的距离,即为MN 的最小值。……14分 方法2.设向量1111(,,)n x y z =r ,且1111,.n AA n BC ⊥⊥r u u u r r u u u u r

()11,0,2,AA =-u u u r Q ()11,4,2.B C =--u u u u r

111111

11120,420.n AA x z n BC x y z ∴=-+==--=r u u u r r u u u u u u r g g 令11z =,得112,0x y ==,即1(2,0,1)n =r 。()-1,-2,0.

AC =u u u r

Q

所以异面直线11,AA B C

的距离11||

AC n d n ==u u u r u r g u u r 即为MN 的最小值。……14分

59、(1)证明:过B 1点作B 1O ⊥BA 。∵侧面ABB 1A 1⊥底面ABC

∴A 1O ⊥面ABC ∴∠B 1BA 是侧面BB 1与底面ABC 倾斜角

∴∠B 1BO=

3π 在Rt △B 1OB 中,BB 1=2,∴BO=2

1

BB 1=1 又∵BB 1=AB ,∴BO=2

1

AB ∴O 是AB 的中点。

即点B 1在平面ABC 上的射影O 为AB 的中点

…………4分

(2)连接AB 1过点O 作OM ⊥AB 1,连线CM ,OC ,

∵OC ⊥AB ,平面ABC ⊥平面AA 1BB 1 ∴OC ⊥平面AABB 。 ∴OM 是斜线CM 在平面AA 1B 1B 的射影 ∵OM ⊥AB 1 ∴AB 1⊥CM ∴∠OMC 是二面角C —AB 1—B 的平面角

在Rt △OCM 中,OC=3,OM=

2tan ,23==∠∴OM

OC OMC ∴∠OMC=cosC+sin2

∴二面角C —AB 1—B 的大小为.2arctan

…………8分

(3)过点O 作ON ⊥CM ,∵AB 1⊥平面OCM ,∴AB 1⊥ON

∴ON ⊥平面AB 1C 。∴ON 是O 点到平面AB 1C 的距离

515

2

1523

32

8433.23,3,=?

=

?=

∴=+=∴=

=?CM

OC

OM ON CM OM OC OMC Rt 中在

连接BC 1与B 1C 相交于点H ,则H 是BC 1的中点

∴B 与C 1到平面ACB 1的相导。

又∵O 是AB 的中点 ∴B 到平面AB 1C 的距离 是O 到平面AB 1C 距离的2倍 是G 到平面AB 1C 距离为.5

15

2 …………12分

立体几何中的最值(教师版)2014.10.06

立体几何中的最值问题 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 解析:如图1,由于点P 、Q 分别在线段BD 、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。过O 作OQ ⊥SC ,在Rt △SOC 中,5 5 2=OQ 中。又P 在BD 上运动,且当P 运动到点O 时,PQ 最小,等于OQ 的长为5 5 2,也就是异面直线BD 和SC 的公垂线段的长。故选B 。 图1 图2 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 解析:如图2,过点B 作平面α的垂线,垂足为O ,连结AO ,则∠BAO=30°。过B 作BE//CD 交平面α于E ,则BE=CD 。连结AE ,因为AB ⊥CD ,故AB ⊥BE 。则在Rt △ABE 中,BE=AB ·tan ∠BAE ≥AB ·tan ∠BAO=3·tan30°=3。故3≥CD 。 三、展成平面求最值 例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 图3-2 解析:如图3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且AB=CD ,AC=BD ,AD=BC ,所以,A 与A ’、D 与D ’在四面体中是同一点,且''////D A BC AD , '//CD AB ,A 、C 、A ’共线,D 、B 、D ’共线,BD DD AA 2''==。又四边形PQRS 在展开图中变 为折线S ’PQRS ,S ’与S 在四面体中是同一点。因而当P 、Q 、R 在S ’S 上时, RS QR PQ P S +++'最小,也就是四边形PQRS 周长最小。又''SA A S =,所以最小值''DD SS L ==b BD 22==。 故选B 。

排列组合问题之 插板法应用小结!

数算]排列组合问题之插板法应用小结! 插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。 应用插板法必须满足三个条件: (1)这n个元素必须互不相异 (2)所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。QZZN有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。有条件的朋友可以到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的一个网站,极力的推荐给大家(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)。大家好好学习吧!最后,祝大家早日上岸。此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。 =================================================== 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用 a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法) 例1 :把10个相同的小球放入3个不同的箱子,问有几种情况? 3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入 1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况? 显然就是c12 2=66 ------------------------------------------------- 例2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?

立体几何三视图教师版

考点24 三视图 考点一:棱长类 1.★(2014西城二模4)某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ,且4A (B A ,且4 A (C ) 2A ,且A (D A A 【答案】D 2.★(2015年北京丰台区高三一模理科)上图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是 (A) 4 (B) 5 (C) (D) 正(主)视图 侧(左)视图 俯视图

【答案】D 考点二:面积类 3.★(2013海淀二模4) 某空间几何体的三视图如右图所示,则该几何体的表面积为( ) A.180 B.240 C.276 D.300 【答案】B 4.★(2012西城一模4) 已知正六棱柱的底面边长和侧棱长相等,体积为33.其三视图中的俯视图如图所示,则其左视图的面积是( ) (A )23(B )2 23(C )28cm (D )2 4cm 【答案】A 6 6 6 5 俯视图

正视图 俯视图 5.★★★(2012朝阳二模8) 有一个棱长为1的正方体,按任意方向正投影, 其投影面积的最大值是( ) A. 1 B. 2 C. D. 【答案】D 6.★★(2010海淀期末理)11.一个几何体的三视图如下图所示,则该几何 体的表面积为__________________. 【答案】2412π+ 考点三:体积类 7.★★(2011丰台期末文)3.若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是 A . 32225+π B .32 25 π C .3225π D .128 25 π 【答案】C 正视图侧视图 俯视图

立体几何之及球有关的高考试题老师

立体几何与球专题讲义 一、球的相关知识 考试核心:方法主要是“补体”和“找球心” 1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的切球其棱长为球的直径. 3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线.4.正四面体的外接球与切球的半径之比为3∶1. 5.性质的应用 2 2 2 1 2r R OO d- = = ,构造直角三角形建立三者之间的关系。 真题回放: 1.(2015高考新课标2,理9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( ) A.36π B.64π C.144π D.256π

参考答案1、 2. 3. 4.

题型总结 类型一:有公共底边的等腰三角形,借助余弦定理求球心角。(两题互换条件形成不同的题) 1.如图球O 的半径为2,圆1O 是一小圆,1 OO =A 、B 是圆1O 上两点,若A ,B 两点间的球面距离为23 π ,则1AO B ∠= . 2.如图球O 的半径为2,圆1O 是一小圆,1 OO ,A 、B 是圆1O 上两点,若1AO B ∠=2 π ,则A,B 两点间的球面距离为 (2009年文科) 类型二:球接多面体,利用圆接多边形的性质求出小圆半径,通常用到余弦定理求余弦值,通过余弦值再利用正弦定理得到小圆半径 r C c 2sin =,从而解决问题。 3. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=?, 则此球的表面积等于 。 4.正三棱柱111ABC A B C -接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 . 5.12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S —ABC 的体积为 A .33 B .32 C .3 D .1

排列组合--插板法、插空法、捆绑法32415

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻) 插板法(m为空的数量) 【基本题型】 有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法? ”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的, 【总结】 需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。 注意:这样对于很多的问题,是不能直接利用插板法解题的。但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。 插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法. 应用插板法必须满足三个条件: (1)这n个元素必须互不相异 (2)所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用 e 二次插板法 例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况? -o - o - o - o - o - o - 三个节目abc 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 所以一共是c7 1×c8 1×c9 1=504种 【基本解题思路】 将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。

坐标法解立体几何解答题

坐标法解立体几何解答题 教学目的:1、熟练掌握空间向量的有关知识; 2、能灵活运用坐标法解决立体几何解答题的有关问题; 3、进一步提高学生的空间想象能力和运算能力。 教学重点:1、建立适当的空间直角坐标系; 2、正确写出点的坐标; 3、求平面的法向量; 4、灵活运用坐标法解决空间角、空间距离等问题 教学难点:求平面的法向量 授课类型:专题复习 教学方法:启发引导式 教具准备:幻灯片20张 教学过程: 一、复习引入: 空间向量解决立体几何问题主要有两个基本方法:坐标法与基底法。本节课着重研究利 用坐标法解决立体几何解答题。 1、空间向量的有关知识:(幻灯片投影) (1)设点)z ,y ,B(x )z ,y ,A(x 222111、,则),,(121212z z y y x x AB ---=→ ; (2)设向量),,(),,,(222111z y x b z y x a ==→ →,则 ① 212121z z y y x x b a ++=?→ →; ② →a ∥),,(),,(222111z y x z y x b a b λλ=??=?→ →→; ③ 0212121=++=??⊥→ →→→z z y y x x b a b a ; (3)设向量),,(z y x a =→ ,则222z y x a ++= → ; (4)→ →→ →→ →→→?>=

l (3)解决问题:(幻灯片投影) (一)求空间角问题: 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角。 ① 求异面直线所成的角: 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos | ||||| a b a b 。 ② 求线面角: 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角 2 ,,2 π π θ- ><><-= → →→→n l n l 或 ③ 求二面角: 法一:在α内a l ⊥,在β内b l ⊥,其方向如图, 则二面角l αβ--的平面角=α法二:设m n 、 是二面角l αβ--的两个半平面的 法向量,其方向一个指向内侧,另一个指向外侧, 则二面角l αβ--的平面角=α (二)求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法。 设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ?== 二、例题讲解: 例1、四棱锥ABCD S -中,0 90=∠=∠ABC DAB ,⊥SA 平面ABCD ,a AD 2=, a BC AB SA ===。 (1)求证:平面⊥SAC 平面SCD ;(2)求A 到平面SCD 的距离;

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

专题06 立体几何(解答题)(教师版)

专题06 立体几何(解答题) 1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°, E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2) 17 . 【解析】(1)连结1,B C ME . 因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且11 2 ME B C =. 又因为N 为1A D 的中点,所以11 2 ND A D = . 由题设知11=A B DC ∥,可得11=BC A D ∥,故= ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ?平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H . 由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以1C E 17 CH =.

从而点C 到平面1C DE 的距离为 17 . 【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解. 2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上, BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1; (2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18. 【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ?平面ABB 1A 1, 故11B C BE ⊥.

立体几何证明题专题(教师版)分析

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是__________ . 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现 两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. ABC —A B C D'中,直线BB丄AB, BB丄CB但AB与CB不平行,???⑥错. AB // CD BB n AB= B,但BB与CD不相交,.??⑦错?如图(2)所示,AB= CD BC= AD四边形ABCD不是平行四边形,故⑧也错. I、m外的任意一点,贝U ( A.过点P有且仅有条直线与I、m都平行 B.过点P有且仅有条直线与I、m都垂直 C.过点P有且仅有条直线与I、m都相交 D.过点P有且仅有条直线与I、m都异面 答案 B 解析对于选项A,若过点P有直线n与I , m都平行,则I // m这与I , m异面矛盾. 对于选项B,过点P与I、m都垂直的直线,即过P且与I、m的公垂线段平行的那一条直线. 对于选项C,过点P与I、m都相交的直线有一条或零条. 对于选项D,过点P与I、m都异面的直线可能有无数条.

插板法插空法解排列组合问题

插板法、插空法解排列组合问题 华图教育 邹维丽 排列组合问题是行测数学运算中的经常碰到的一类问题,试题具有一定的灵活性、机敏性和综合性,也是考生比较头疼的问题。掌握排列组合问题的关键是明确基本概念,熟练基本题型。解决排列组合问题的方法很多,有插板法,捆绑法,优先法等等,本文主要介绍插板法、插空法在行测数学运算中的应用,以供大家参考。 所谓插板法,就是在n 个元素间的n-1个空中插入若干个(b )个板,可以把n 个元素分成b+1组的方法,共有b n C 1-种方法。 应用插板法必须满足三个条件: (1) 这n 个元素必须互不相异; (2) 所分成的每一组至少分得一个元素; (3) 分成的组别彼此相异 举个普通的例子来说明。 把8个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题 干满足条件(1),(2),(3),所以适用插板法。在8个小球间的7个空插入3个板,共有3537=C 种情况。 上面介绍的插板法主要是用解决相同元素的名额分配问题,而对于排列组合中常出现的几个元素的不相邻问题,我们可以用插空法来解决,对这种问题,可先将余下的元素进行排列,然后在这些元素形成的空隙中将不相邻的元素进行排列。 下面我们通过几道题来熟悉这两种方法的应用。 例1 某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?( )(国2010 -46) A.7 B.9 C.10 D.12 【解析】C 。本题乍一看不满足应用插板法的条件,插板法的条件(2)要求所分成的每一组至少分得一个元素,可本题要求每个部门至少发放9份材料。事实上,我们可以分两步来解这道题: 1. 先给每个部门发放8份材料,则还剩下30-8*3=6份材料。 2. 本题即可转化为:将6份学习材料发放给3个部门,每个部门至少发放1份材料。 问一共有多少种不同的发放方法?应用插板法可得共有1035=C

坐标法解空间几何题常用模型

如何用坐标法解空间几何题专题 (中保高中2017届1,2班) 徐学松 2017.5 模型思考 空间几何中涉及的定义、定理和性质比较多,在解决综合问题时,运用多个定义、定理和性质形成的综合题时,遇到多种多样的题型,每一种题型的解法又有多种.学习和记忆名目繁多的题型和解法直接影响了学习立体几何的兴趣和效率.有没有一种比较统一的方法,能够使得解题过程比较一致,变化不多的模型呢?使得学生解题流程固定,方法比较简单,从而使学生解题思路流畅,正确率提高呢.坐标法作为一种工具,在解决立体几何问题中有着无比的优越性.运用坐标法解题,可使几何问题代数化,大大简化思维程序,使解题思路直观明了,模式固定,流程明了. 模型例析 例1.(线线平行)已知A(1,0,0),B(0,1,0),C(0,0,2),求满足DB ∥AC ,DC ∥AB 的点D 的坐标. 解模与识模:这道题是一道线与线平行的问题.可设点D 坐标为(x ,y ,z), 则?→ ?DB = (-x ,1-y ,-z),?→?AC = (-1,0,2),?→ ?DC = (-x ,-y ,2-z), ?→ ?AB = (-1,1,0). ∵DB ∥AC ,DC ∥AB ,∴?→ ?DB ∥?→?AC ,?→?DC ∥?→ ?AB . 即???? ?? ???=--=--=--=--.02, 1 1,01,2 1z y x y z x ??????==-=.2,1,1z y x ,即此时点D 的坐标为(-1,1,2). 从这道题的推理过程可以看到在建立了坐标系的情况下,得到各点的坐标后,就能得到有关向量的坐标,根据向量的平行,利用公式建立方程组.这里的公式是若()111,,z y x a =→ , ()222,,z y x b =→ ,且222,,z y x 均不为零,→ →b a //? 2 12121z z y y x x ==.进而达到求解的目的. 例2(线线垂直)在正方体ABCD —A 1B 1C 1D 1中,M 是棱DD 1的中点,O 为正方形ABCD 的中心,求证:1OA ⊥AM . 解模与识模: 直线与直线的垂直可以转化为直线的方向向量互相垂直.设直线a ,b 的 方向向量分别是 ()111,,z y x a =→ ,()222,,z y x b =→,a ⊥b ? → a ⊥ → b ?0212121=++z z y y x x .要想利用坐标法解决这一问题首先要建立空间坐标系.常见

三角函数与立体几何(二)教师版

1.如图,在ABC ?中,点D 在边BC 上, 4 CAD π ∠= , 72AC = , cos 10 ADB ∠=-. (1)求sin C ∠的值; (2)若ABD ?的面积为7,求AB 的长. 【答案】(1) sin C ∠= 4 5 ;(2) AB = 【解析】试题分析:(1)由同角三角函数基本关系式可求sin ADB ∠,由4 C ADB π ∠=∠- ,利用两角差 的正弦函数公式及特殊角的三角函数值即可求值得解;(2)先由正弦定理求AD 的值,再利用三角形面积公式求得BD ,与余弦定理即可得解AB 的长度. 试题解析:(1 )因为cos 10ADB ∠=- ,所以sin 10 ADB ∠=, 又因为4 CAD π ∠= ,所以4 C ADB π ∠=∠- , 所以sin sin 4C ADB π? ? ∠=∠- ?? ? sin cos cos sin 4 4 ADB ADB π π =∠-∠ 4 1021025 = +?=. (2)在ADC ?中,由正弦定理 sin sin AD AC C ADC =∠∠, 故( )74sin sin sin sin sin sin AC C AC C AC C AD ADC ADB ADB π? ?∠?∠?∠==== ∠-∠∠ = 又11sin 72210 ABD S AD AB ADB BD ?= ???∠=??=,解得5BD =. 在ADB ?中,由余弦定理得 2 2 2 2cos AB AD BD AD BD ADB =+-??∠ 8252537AB ?=+-??=?= ?? 2.在ABC ?中,内角A,B,C,所对应的边为,,a b c 且b c ≠,且 22sin sin cos cos C B B B C C -=

高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

第7章立体几何 全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制2道小题、1 道解答题,分值约占22分. 2.考查内容 (1)小题主要考查三视图、几何体 体积与表面积计算,此类问题属于 中档题目;对于球与棱柱、棱锥的 切接问题,知识点较整合,难度稍 大. (2)解答题一般位于第18题或第19 题的位置,常设计两问:第(1)问 重点考查线面位置关系的证明;第 (2)问重点考查空间角,尤其是二 面角、线面角的计算.属于中档题 目. 空间几何体的结构及其表面积、体积 [考试要求] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. 4.了解球、棱柱、棱锥、台体的表面积和体积的计算公式.

1.多面体的结构特征 名称棱柱棱锥棱台 图形 底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点 侧面形状平行四边形三角形梯形 (1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形. (2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体. 3.旋转体的结构特征 名称圆柱圆锥圆台球 图形 母线互相平行且相 等,垂直 于底面 长度相等且相交 于一点 延长线交于一点 轴截面全等的矩形全等的等腰三角 形 全等的等腰梯形圆 侧面展开图矩形扇形扇环 旋转图形矩形直角三角形直角梯形半圆三视图画法规则:长对正、高平齐、宽相等 直观图斜二测画法: (1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°(或

三角函数、立体几何(教师)

源于名校,成就所托 高中数学备课组教师班级学生日期上课时间 学生情况: 主课题:三角函数、立体几何 教学目标: 教学重点: 教学难点: 考点及考试要求:

教学内容 三角函数 1、已知:函数()2(sin cos )f x x x =-. (1)求函数()f x 的最小正周期和值域; (2)若函数()f x 的图象过点6(,)5 α, 34 4π πα<< .求()4 f π α+的值. 解:(1)()2(sin cos )f x x x =-222(sin cos )22 x x =? -?2sin()4x π=----3分 ∴函数的最小正周期为2π,值域为{|22}y y -≤≤。--------------------------------------5分 (2)解:依题意得:62sin(),45π α-= 3 sin(),45 πα-=---------------------------6分 ∵ 3.4 4π πα<< ∴0,42 ππ α<-< ∴cos()4π α- =2234 1sin ()1()455 πα--=-=-----------------------------------------8分 ()4f π α+=2sin[()]44 π π α-+ ∵sin[()]sin()cos cos()sin 444444π πππππααα- +=-+-=23472 ()25510 += ∴()4 f π α+= 72 5 ------------------------------------------------------------------------------12分 2、在ABC ?中,2AB =,1BC =,3 cos 4 C =. (Ⅰ)求sin A 的值; (Ⅱ)求BC CA ?的值. 解:(1)在ABC ?中,由3cos 4C = ,得7sin 4 C =…………………………2分 又由正弦定理 sin sin AB BC C A = ………………………………………3分 得:14 sin 8 A = …………………………………………………………………………………4分 (2)由余弦定理:222 2cos AB AC BC AC BC C =+-??得:23 2124 b b =+-? ……6分

(推荐)排列组合问题之插板法

排列组合问题之插板法: 插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢? 例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法? 【解析】:题目中球的分法共三类: 第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。其分法种数为C37=35。 第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。其分法种数2*C27=42。第三类:有1个班分到4个球,其余的6个班每班分到1个球。其分法种数C17=7。 所以,10个球分给7个班,每班至少一个球的分法种数为84:。 由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。 将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。 由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。 由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以 下3个条件: ①所要分的元素必须完全相同; ②所要分的元素必须分完,决不允许有剩余; ③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。 下面再给各位看一道例题: 例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法. A.35 B.28 C.21 D.45 【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。例2和例1的最大区别是:例1的每组元素都要求“非空”,而例2则无此要求,即可以出现空盒子。

解说立体几何中的“坐标法”

解说立体几何中的“坐标法” 江苏省姜堰中学张圣官(225500) 空间直角坐标系是现行高中数学新增加的内容,在使用上就是把空间的点、向量先用坐标表示,然后利用坐标来计算有关角的大小与线段的长度,或者判断与证明线线、线面以及面面的位置关系。利用“坐标法”解(证)立体几何题,所作的辅助线明显比纯几何推理需要作的要少,且思路简单明了,更易于程序化来解题。用“坐标法”解题是数与形结合的典范,它特别适用于易于建立空间直角坐标系的图形(如正方体等)。下面分别介绍在空间直角坐标系中如何确定点的坐标、常见特殊点的坐标特点及利用“坐标法”解(证)立体几何题的步骤。 一、如何确定空间点的坐标 空间点的坐标是有序实数对(x,y,z),其中的三数x,y,z包含坐标的符号与坐标的绝对值。要确定一个点的坐标,应先判断三个坐标的符号,然后再确定三个坐标的绝对值。 1.点的坐标的符号判断 点在坐标平面上的射影位于坐标轴的正方向,则这点对应的坐标的符号为正,否则符号为负。如点位于x轴正方向,则横坐标为正;点位于z轴负方向,则竖坐标为负。 2.点的坐标的绝对值确定 过这个点向三个坐标平面作垂线,看垂线段平行于哪个轴,则这条线段的长度就是该点的绝对值。如这条垂线段平行于y轴且长度为a,则点的纵坐标的绝对值是a;如这条垂线段平行于z轴且长度为a,则点的竖坐标的绝对值是a 。 二、常见特殊点的坐标特点 1.坐标轴上点的坐标的特点 ①x轴上的点的纵坐标和竖坐标均为0,形如(a,0,0);②y轴上的点的横坐标和竖坐标均为0,形如(0,a,0);③z轴上的点的横坐标和纵坐标均为0,形如(0,0,a)。 2.坐标平面上点的坐标的特点 ①XOY平面上所有点的竖坐标是0,形如(a,b,0);②YOZ平面上所有点的横坐标是0,形如(0,a,b);③ZOX平面上所有点的纵坐标是0,形如(a,0,b)。 三、利用“坐标法”解(证)立体几何题的步骤 第一步,建立坐标系通常取垂直且相交于同一点的三条直线作为三条坐标轴,它们的交点作为原点,并选取适当的单位长度; 第二步,表示点的坐标将题中相关点(即在问题中出现的且要求的点)用坐标表示,这一步是解(证)题的关键; 第三步,表示向量的坐标根据点的坐标可以求出所需要的向量的坐标,即用向量终点的坐标减去起点的坐标; 第四步,求出问题的解将点或向量的坐标代入公式(如两向量的夹角公式等); 第五步,作出结论根据上一步所求得的结果,作出问题的正确结论。 [例题]如图,已知正方体ABCD—A1B1C1D1的棱长为1,M是棱AA1的中点,点O 是对角线BD1的中点。 (1)求证:BD1⊥AC; (2)求异面直线CM与BD1所成的角; (3)求证:OM是异面直线AA1与BD1的公垂线; (4)求异面直线AA1与BD1的距离。

排列组合--插板法、插空法、捆绑法

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻) 插板法(m为空得数量) 【基本题型】 有n个相同得元素,要求分到不同得m组中,且每组至少有一个元素,问有多少种分法? 图中“"表示相同得名额,“”表示名额间形成得空隙,设想在这几个空隙中插入六块“挡板",则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含得名额数分给第一、二、三……七所学校,则“挡板"得一种插法恰好对应了10 个名额得一种分配方法,反之,名额得一种分配方法也决定了档板得一种插法,即挡板得插法种数与名额得分配方法种数就是相等得, 【总结】?需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素得n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。? 注意:这样对于很多得问题,就是不能直接利用插板法解题得。但,可以通过一定得转变,将其变成符合上面3个条件得问题,这样就可以利用插板法解决,并且常常会产生意想不到得效果。 插板法就就是在n个元素间得(n—1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组得方法. 应用插板法必须满足三个条件: (1) 这n个元素必须互不相异 (2)所分成得每一组至少分得一个元素?(3)分成得组别彼此相异 举个很普通得例子来说明 把10个相同得小球放入3个不同得箱子,每个箱子至少一个,问有几种情况? 问题得题干满足条件(1)(2),适用插板法,c9 2=36 ?下面通过几道题目介绍下插板法得应用 e二次插板法?例8:在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况??-o — o -o-o -o—o —三个节目abc 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 所以一共就是c71×c81×c9 1=504种 【基本解题思路】 将n个相同得元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m—1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序得m份,每个组依次按组序号分到对应位置得几个元素(可能就是1个、2个、3个、4个、…。),这样不同得插入办法就对应着n个相同得元素分到m组得一种分法,这种借助于这样得虚拟“档板”分配元素得方法称之为插板法。

坐标法解立体几何习题及解析

坐标法解立体几何 1空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =,123(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈,1122330a b a b a b a b ⊥?++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系 中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4模长公式:若 123(,,)a a a a =,123(,,)b b b b =,则222123||a a a a a a =?=++, 222 123||b b b b b b =?=++.5.夹角公式: 112233222222 123123 cos ||||a b a b a b a a a b b b ??= =?++++. 异面直线所成的夹角: 6.两点间的距离公式:若 111(,,)A x y z ,222(,,)B x y z ,则2 222212121||()()()AB AB x x y y z z ==-+-+-,或 222,212121()()()A B d x x y y z z =-+-+-7、法向量 ①直线的法向量:在直线L 上取一个定向量,则与垂直的非零向量叫直线L 的 法向量 ②平面的法向量:与平面α垂直的非零向量叫平面α的法向量. 构造直线或平面的法向量,在求空间角与距离时起到了桥梁的作用,在解题过程中只须求出而不必在图形中作出来.在空间直角坐标系下,构造关于法向量坐标的三元一次方程组,得到直线(或平面)的法向量坐标的一般形式,再取特值. 其向上或向下的方向可根据竖坐标的符号来确定. 一、平面的法向量 例1 已知AB =(2,2,1),AC =(4,5,3),求平面ABC 的法向量解:设面ABC 的法向量(,,)n x y z =,则n ⊥AB 且n ⊥,即n ·AB =0,且n ·=0,即2x +2y +z=0且 4x +5y +3z=0,解得1,2,x z y z ? =???=-? ∴n =z (21 ,-1,1) 点评:一般情况下求法向量用待定系数法由于法向量没规定长度,仅规定了方向,所以有 一个自由度,可把n 的某个坐标设为1,再求另两个坐标平面法向量是垂直于平面的向量,故法向量的相反向量也是法向量。

相关文档
最新文档