高程测量的精度研究.

高程测量的精度研究.
高程测量的精度研究.

高程测量的精度研究

摘要

由于其高效方便,得到了迅猛发展,成为了现在地形测量、变形监测、低等级高程控制测量的首选。近年来在理论和技术高速发展的带动下在平面测量精度和高程测量精度方面都得到了很大的提高。硬件方面,扼流圈天线使得的多路径效应得到了有效的消除;理论方面,各种对流层、电离层延迟改正模型的提出及其应用,以及许多研究表明有效的消除误差理论的应用,使得的诸多与卫星及接收机之间的误差得到了很好的改正,所以在平面位置和高程的测量精度也进一步提高。由于测量的大地高应用于实际时需要经过高程转换为正常高,中间转换过程中需要解算高程异常,一系列的计算使得在高程控制测量方面误差偏大,影响了高程控制测量在许多方面的应用。本文在双频观测的基础上,通过解算原始的观测数据,建立一种区域的电离层延迟改正模型,取代现在最常用的克罗布歇模型来消除电离层对测量的影响,更好的消除电离层延迟的影响,以提高的解算数据的精度。

本文在阐述高程系统和高程测量原理的基础上,首先分析并总结了影响测高的各种因素及大地高的测定精度;其次对现有的高程转换方法进行了全面分析,结合工程算例,深入探讨了各种拟合模型的适合范围及精度情况;同时针对高程测量中几何方法转换的不足,本文研究了基于人工神经元网络转换高程的新方法,通过实例分析证明了该方法转换高程的可行性与可靠,对神经网络模型转换高程的BP网络结构中隐层单元数量的确定、隐含层数的确定、学习速率的选择、初始权值的选择、训练样本对网络泛化能力的影响等问题进行了较为深入的探讨。为避免应用单一模型进行高程拟合方法的局限性,在吸收和学习己有研究成果的基础上,将不同的拟合模型进行迭加,提高高程异常的逼近精度和可靠性。

关键词:1、三角高程;2、测量精度;3、井下三角;4、GPS高程测量

目录

一、绪论 (4)

二、基本概念概述 (6)

(一)三角高程测量定义 (6)

(二)三角高程测量基本原理 (6)

(三)全站仪三角高程测量的技术指标 (6)

三、测量精度分析 (9)

(一)测量精度分析 (9)

(二)误差方法的共同点 (9)

(三)提高精度的措施 (10)

四、井下三角高程测量的精度分析 (11)

五、GPS高程测量精度 (13)

(一)GPS高程测量概述 (13)

(二)影响GPS测高的各种因素 (13)

1、卫星分布不对称 (13)

2、对流层延迟改正残差的影响 (14)

3、基线起算点的坐标误差解算基线 (14)

(三)GPS高程测量精度研究 (14)

1、利用重力测量方法 (14)

2、转换参数法 (14)

3、GPS三角高程法 (14)

4、联合平差法 (14)

5、GPS水准法 (15)

六、结论 (16)

致谢 ................................................................................................ 错误!未定义书签。参考文献 .. (17)

一、绪论

全站仪,即全站型电子速测仪(Electronic Total Station)。是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。因其一次安置仪器就可完成该测站上全部测量工作,所以称之为全站仪。

全站仪是一种集光、机、电为一体的新型测角仪器,与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。电子经纬仪的自动记录、储存、计算功能,以及数据通讯功能,进一步提高了测量作业的自动化程度。

全站仪采用了光电扫描测角系统,其类型主要有:编码盘测角系统、光栅盘测角系统及动态(光栅盘)测角系统等三种。

全站仪按其外观结构可分为两类:

(1)积木型(Modular,又称组合型)

早期的全站仪,大都是积木型结构,即电子速测仪、电子经纬仪、电子记录器各是一个整体,可以分离使用,也可以通过电缆或接口把它们组合起来,形成完整的全站仪。

(2)整体性(Integral)

随着电子测距仪进一步的轻巧化,现代的全站仪大都把测距,测角和记录单元在光学、机械等方面设计成一个不可分割的整体,其中测距仪的发射轴、接收轴和望远镜视准轴为同轴结构。

全站仪几乎可以用在所有的测量领域。电子全站仪由电源部分、测角系统、测距系统、数据处理部分、通讯接口、及显示屏、键盘等组成。

全站仪的主要特点如下:

(1)电脑操作系统:全站仪具有像通常PC级一样的DOS操作系统。

(2)大屏幕显示:可显示数字、文字、图像,也可显示电子气泡居中情况,以提高仪器安置的速度与精度,并采用人机对话式控制面板。

(3)大容量内存:一般内存在1M以上,其中主内存有640K,数据内存320K,程序内存512K,扩展内存512K。

(4)采用国际计算机通用磁卡:所有测量信息都以文件形式记入磁卡或电子记录簿,磁卡优先采用无触点感应式,可以长期保留数据。

(5)自动补偿功能:补偿器装有双轴倾斜传感器,能直接检测出仪器的垂直轴,

在视准轴方向和横轴方向上的倾斜量,经仪器处理计算出改正值并对垂直方向和水平方向值加以改正,提高测角精度。

(6)测距时间短,耗电量低。

全站仪具有角度测量、距离(斜距、平距、高差)测量、三维坐标测量、导线测量、交会定点测量和放样测量等多种用途。内置专用软件后,功能还可进一步拓展。

全站仪的基本操作与使用方法:

1、水平角测量

(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A 。

(2)设置A 方向的水平度盘读数为00000'''?。

(3)照准第二个目标B ,此时显示的水平度盘读数即为两方向间的水平夹角。 2、距离测量

(1)设置棱镜常数。

测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。

(2)设置大气改正值或气温、气压值。

光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg 是仪器设置的一个标准值,此时的大气改正为0ppm 。实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。

(3)量仪器高、棱镜高并输入全站仪。

(4)距离测量。

照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。

3、坐标测量

(1)设定测站点的三维坐标。

(2)设定后视点的坐标或设定后视方向的水平度盘读数为其方位角。当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。

(3)设置棱镜常数。

(4)设置大气改正值或气温、气压值。

(5)量仪器高、棱镜高并输入全站仪。

(6)照准目标棱镜,按坐标测量键,全站仪开始测距并计算显示测点的三维坐标。

二、基本概念概述

(一)三角高程测量定义

三角高程测量(trigonometric leveling ),通过观测两点间的水平距离和天顶距(或高度角)求定两点间高差的方法。它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。

(二)三角高程测量基本原理

随着科学技术的高速发展,测量设备也不断换代更新。全站仪现已普遍用于控制测量、地形测量及工程测量中,并以其简捷的测量手段,高速的电脑计算和精确的边长测量,被广大测绘人员所钟爱。

图2.1三角高程测量原理图

三角高程测量的基本原理如图2.1,A 、B 为地面上两点,自A 点观测B 点的竖直角为α2.1,S 0为两点间水平距离,i 1为A 点仪器高,i 2为B 点觇标高,则A 、B 两点间高差为212.102.1tan h i i S -+=α,上式是假设地球表面为一平面,观测视线为直线条件推导出来的。在大地测量中,因边长较长,必须顾及地球弯曲差和大气垂直折光的影响。为了提高三角高程测量的精度,通常采取对向观测竖直角,推求两点间高差,以减弱大气垂直折光的影响。

(三)全站仪三角高程测量的技术指标

随着全站仪在工程测量中的广泛使用,全站仪三角高程测量也得到广泛的应用。新颁布的《工程测量规范》对其主要技术要求作了具体规定,见下表2.1。

表2.1全站仪三角高程测量的技术指标 等级 仪器 测回数

指标差较差(″) 竖直角较差(″) 对向观测高差较差

(mm)

附合或环形闭合差(mm ) 三丝法 中丝法 四等 2DJ 3 7±≤ 7±≤

D 40± D ∑±20 五等 2DJ 1 2 10±≤ 10±≤ D 60± D ∑±30

传统的几何水准测量在坡度较大的地区难以实施,由于测站太多,精度很难保证。利用三角高程测量时,由于大气折光误差、垂直角观测误差以及丈量仪器仪器高和目标高的误差影像,精度很难有显著的提高。理论和实践表明,当距离小于400m 时,大气折光的影像不是主要的。因此只要采取一定的观测措施,达到毫米级的精度是可能的。

三、测量精度分析

(一)测量精度分析

根据三角高程测量中误差计算公式,可计算每测段高差中误差及归算为每千米路线的高差中误差。如果垂直作业按平地、丘陵和山地的平均值,取为?=5α;垂直角观测采用2DJ 级全站仪观测;取5.3m ''=α;边长测量中误差按全站仪测距精度s ppm mm s *22m +=计算;大气垂直折光系数中误差取5.0m ±=k ,i m 、v m 均按±8mm 计算。可以看出仪器高与觇标高的量取误差较大,影响了整个三角高程的测量精度,若加大测段边长,可相对减小仪器高与觇标高的量取误差。因此,全站仪三角高程测量,测段边长在500~800米间,其高差测量精度较好,可代替精度较低的水准测量。如城市工程水准测量、线路水准测量等。

表4.1 全站仪三角高程精度表 α 1° 10° 20° 三等水准限差 四等水准限差

项目m (mm )S(m)

2mh 2mh 2mh 12D mm 20D mm 50

2.91

3.48 3.86 2.68

4.47 100

3.15 3.41

4.09 3.79 6.32 300

4.99

5.19 5.73

6.57 10.95 500

7.42 7.55 7.92 8.49 14.14 700

10.01 10.09 10.31 10.04 16.73 1000

14.00 14.01 14.05 12.00 20.00 2000 27.57 27.40 26.92 16.97 28.28

标称精度通常是指仪器核心部件的设计加工精度和标准观测精度,只有在理想的环境条件下才有可能实现。

(二)误差方法的共同点

在上述介绍的两种全站仪三角高程测量方法中,无论是对向观测法还是中间法观测,观测高差中误差均随着竖直角和观测距离的增大而增大。这说明在三角高程的高差测量中,应尽量控制竖直角和观测距离在一定范围内。其次,当视线距离较小时,仪器高和棱镜高量测误差是全站仪三角高程的主要误差。

(三)提高精度的措施

(1)影响高差测量精度主要是竖直角观测误差、测距误差、仪器高与棱镜高量测误差,其中竖直角观测误差较之其他两项的影响要大的多。故竖直角的测定误差是全站仪三角高程测量的主要误差,所以在观测中应采取适当的措施提高竖直角的观测精度。

(2)若要再次提高三角高程测量精度,只有提高垂直角观测精度,减小仪器高与觇标高的量取误差,才能有效地提高三角高程测量精度。

(3)在平坦地区,视线离地表的高度基本一致,其上各点处的温度大致相同,气象代表性误差较小,故在平坦地区进行测距作业时既不必选择气温梯度逆转时刻,也不需按上段介绍的大气模型进行修正。在丘陵山区和高山地区,要想真正实现精密全站仪的标称测距精度,除了应选择最佳观测时间或按大气模型进行气象代表性误差的修正之外,还需定期对仪器(包括温度计、气压表) 进行检验、校正,并正确地测量气象参数。

四、井下三角高程测量的精度分析

矿山测量是煤矿开采的基础工作,煤矿的所有井巷工程都已测量先导,测量工作主要确定巷道的平而位置和垂直位置,平而主要采用导线测量,垂直位置即高程有两个途径:二角测量和准测量,井下巷道高低变化较多,采用两种测量方法,测量人员任务量大,影响生产时间长,本章通过分析计算,在实际工作中,用三角测量替代水准测量。

生产中对高度的要求是满足生产需要,生产实际中对高程测量要求最高的应是贯通工程。一般情况下,主要贯通中腰线偏差小于220mm 即可认为能满足生产需要。要求二角高程闭合差应小于L mm 100±,(L 为闭合线路长度,单位km)。

要使贯通对高程闭合差小于220mm,即200100 L 则L<4km 。由此可见在贯通路线长度小于4km 时,采用二角高程测量即能满足要求,那么,对于路线长度大于 4km 的贯通工程又如何呢?在倾斜巷道中必须采用二角高程测量,这里则卞要讨论在水平巷道中垂直角小于2°情况下的二角高程测量。

二角高程测量两点间的高差中误差为:

2

222

222

cos sin u i i li h m m m I m m ++=βδδδ 由于水平巷道中垂直角石很小,故由量边误差所引起的高差中误极小,可以忽略不计。为便于讨论,设导线边长基木相等,平均边长为L ,则单位长度海km ,以下同的高差中误差弹位为的为:

11000cos 2222

22)(u i i hi m m m I m ++=βδδ 仪器高、胡标高丈量相同,利一认为其中误差相等为i

m ,且1cos ≈δ,如果L 单

位为米,δm 单位为秒,hi M 、i

M 单位为毫米,则

I

m m i

hi 22200040Im +=δ

胡标高、仪器高的丈量误差一般小于3mm ,两次平均值误差则小于2mm ,由伽榔中垂直角测量限差得出垂直角中误差对于6级仪器为小于9,2级仪器小于5",水准返往测量高差较差应小于50mm ,则单位长度高差中误差应小于17.6m m ,采用6"级仪器又垂直角,当边长在40m 以上时,二角高程单位长度中误差小任17.6mm ,当采用2"级仪器观测垂直角时,平均边长L 和单位长度高差中误差Mh.存在以下关系:

从以上关系中可以看出,当平均边长等于110米时,Mh为最小,平均边长在70m-200m时,mh小于13mm。目前在大型贯通工程和}基木控制测量中普遍采用了光电测距仪,从而使导线边长有所加大,人们普遍认为光电测距导线边长在100mm-200mm 时,对观测较为有利,以上结果表明,导线边长在此范围内,也使得二角高程测量成果最佳,即单位长度中误差为最小,mh<13mm,生产实际中常常采用的是边长垂直角往砚测,完全达到水准测量要求。

在边长较短时,仪器高、胡标高的丈量误差在高差中误差中比垂直角误差比重大,因此在边长较短时,我们应注意仪器高、胡标高的的丈量,严格按伽榔的要求操作,测前测后各量一次,以提高二角高程测量精度当贯通长度小于4km时,采用二角高程测量,即能满足贯通工程搞成上的要求对于导线长度大于4km的贯通工程和井下基木控测量,由于采用了光电测距仪,其平均边长远远大于30m,因此采用二角高程测量同样能满足要求。

五、GPS高程测量精度

(一)GPS高程测量概述

由GPS相对定位得到的三维基线向量,通过GPS网平差,可以得到高精度的大地高差。如果网中有一点或多点具有精确的WGS-84大地坐标系的大地高程,则在GPS 网平差后,可以求得各GPS点的WGS - 84大地高H。但在实际应用中,我国国家高程系基准点,统采用的是正常高系统,通过水准测量确定的是正常高H,。大地高和正常高的关系为:

ξ

H

=H

-

r

显然如果知道了各GPS点的高程异常值ξ,则不难由各GPS点的大地高求得各GPS 点的正常高。而实际上,很难获得高精度的高程异常值ξ,一般测区内缺少高精度的GPSGPS网平差后,很难得到高精度的大地高H,精确计算各GPS点的正常高。但如果在测区中的一些GPS点上同时进行水准测量,则可求得这些点上的高程异常值咨,内插其它GPS测点的高程异常值,进而可将各点的GPS大地高转换为各点的正常高,这是GPS高程控制测量的常用方法。

(二)影响GPS测高的各种因素

一般说来,GPS测量的各种误差对平面、高程两方面均会有影响,但影响的程度不尽相同,影响GPS高程测量中大地高精度的因素主要来源于GPS卫星、卫星信号的传播过程和地面接收设备,还有与地球整体运动有关的地球潮汐、负荷潮等的影响。影响GPS测高的各种因素主要来自于。

1、卫星分布不对称

GPS测量中所有被观测卫星均在地平面以上,平面定位时可以通过对时段及卫星的选择来保证卫星分布的基本对称,以消除或削弱测距误差、星历误差、信号传播中大气延迟误差等的影响;但对于测高来讲,所有被观测的卫星均在地平面以上,卫星分布总是不对称的,许多系统性的误差难以消除。这种影响是GPS测量的固有特征,作为事实无法改变。但是在实际工作中,我们可以适当限制基线的长度,使基线两端所产生的误差具有更好的相关性,通过差分可大大削弱这种误差对测高的影响;另外,通过减小测距误差、星历误差、大气延迟误差的残差等误差,也可取得一定的效果。

2、对流层延迟改正残差的影响

对流层延迟改正不完善残留下来的误差将主要影响高程分量的精度,对于短基线这种影响尤为明显。星历误差卫星星历误差是GPS定位中的一个重要误差源。

3、基线起算点的坐标误差解算基线

需要用到基线向量一个端点的坐标作为起算数据。该起算点的坐标误差将影响基线的解算结果,使解算出来的基线向量在垂直面上旋转一个角度。其它误差电离层延迟改正的残余误差,多路径误差,接收机天线相位中心的误差以及天线高的量测误差等也都会影响GPS测高的精度。

(三)GPS高程测量精度研究

1、利用重力测量方法

高程异常是地球重力场的参数,利用地球重力场模型,根据卫星跟踪数据、地球重力数据、卫星测高数据等重力场信息,由地球扰动位的球谐函数级数展开式求出高程异常咨,结合GPS求出的大地高,再求出正常高。由物理大地测量学知道,地面点P的扰动位T与该点引力位V和正常引力位U之间的关系为:T=V-U}而P点的高程异常值为}=Tlr,其中;为地面点P的正常重力值。正常重力值;和正常引力位U可以精确计算,可见只要求出地面点P的引力位V,就可求出高程异常。模型,除利用国外资料外,还用了我国5万多个重力资料,采用该模型,在沿海平原地区计算咨可达到厘米级精度,山区为0.2米精度,其他地区为1.0-1.5米左右。可见对于实施水准测量比较困难得丘陵和山区,利用重力测量方法是比较实用且可靠的方法,但是需要足够多且精度足够高的重力测量资料。

2、转换参数法

在某一区域内,如果有一定数量的点具有己知的平面坐标和高程,即可根据坐标转换的原理,求得参考椭球面与似大地水准面之间的平移和旋转参数,并把这些参数加入GPS网平差,在己知点的约束下,通过平差即可求得GPS观测点的平面坐标和正常高高程。这种方法的精度取决于己知点的密度,己知数据的精度以及平移旋转参数的精度。

3、GPS三角高程法

这种方法是在GPS点上加测各GPS点间的高度角(或天顶距),利用求出的边长,按三角高程测量公式计算GPS点间的高差,从而求出GPS点正常高的一种方法。

4、联合平差法

当测区内具有天文大地、重力测量、水准测量及GPS测量等多种观测数据时,我

们即可用整体平差模型将这些观测数据进行联合平差,最终可求得地面点的平面坐标及(正常高)高程的最优无偏估值。此种方法的精度取决己知高程点的分布及其精度。

5、GPS水准法

这种方法一般是将部分GPS点布设在已知高的控制点上,或使用水准联测的方法,使部分GPS点具有水准高程。从而GPS网中部分点既有大地高,又有水准高(这些点称为水准重合点),求得这些点的高程异常。因高程异常变化平缓,可利用一定的数学模型对其进行拟合,从而求得未知点的高程异常,进而求得各未知点的正常高。

六、结论

全站仪三角高程测量由于其简便灵活,可以与地表导线复测同时进行,尤其在山区的高程控制和平面控制点的高程测定中已广泛应用。实践证明,它的精度可以代替三、四等几何水准,而且从经济指标方面比较,则远较几何水准为优。由于垂直角观测误差、大气垂直折光误差和外业实测条件和不利的影响,全站仪三角高程测量误差较难克服。因此,全站仪三角高程测量不能普遍代替水准高程测量,只有在精度要求较低的高程测量中才使用全站仪三角高程测量。合理巧妙地利用全站仪,以满足具体工作中的需求,使测量工作省时、省力、简便迅捷,既提高了工作效率,又提高了测量精度,在实际工作中具有较好的应用价值。

参考文献

[1] 鹿利军,杜子涛,全站仪在高程测量中的应用研究[J],测绘与空间地理信息,2005(06)

[2]圣少兵,全站仪EDM三角高程测量及其精度分析[J],辽宁科技学院学报,2005(03)

[3] 何习平,全站仪中间法与水准测量的精度比较[J],水电自动化与大坝监测,2004(04)

[4] 王凤艳,陶元洲,测区垂直大气折光系数的变化及因地选择大气折光系数的意义[J],测绘通报,2005(04)

[5] 刘丽霞,乔万亮,佟艳丽,利用全站仪进行三角高程测量的中误差计算[J],黑龙江水专学报,2005(02)

[6] 刘惠明,张波,陈俊林,全站仪中间法高程测量及其精度探讨[J],华南农业大学学报.,2004(04)

[7] 王永,光电测距三角高程测量问题的探讨[J],企业技术开发,2004(08)

[8]冯显堂,大气折光系数的取值[J],鞍钢技术,1996(02)

[9] 薛迎春,赵立,用全站仪测量高程的精度分析[J],三晋测绘,2004(01)

[10]陶海生,全站仪应用于高程测量之精度探讨[J],中南公路工程,2003(03)

[11] 覃辉,徐卫东,任沂军吗,测量程序与新型全站仪的应用[M],北京机械工业出版社,2005.

[12] 华锡生,黄腾,精密工程测量技术及应用[M],南京河海大学出版社,2002.

[13] 刘培文,公路施工测量技术[M],人民交通出版社,2001.

[14] 何习平,全站仪高差测量精度探讨[J],水电自动化与大坝监测,2002.

[15] 蒋利龙,施昆,削减大气折光对三角高程影响的新途径[J],2000.

[16] 徐虎城,阿里木江,全站仪测量三角高程的新方法[J],水利建设与管理,2006.

[17] 孔祥元,郭际明,刘宗泉,大地测量学基础[M],武汉大学出版社,2006.

[18]聂让,全站仪与高等级公路测量[M],北京人民交通出版社,1997.

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

全站仪三角高程测量精度分析报告

全站仪三角高程测量精度分析 作者修涛 容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析

Total Station trigonometric leveling accuracy analysis Abstract T otal Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction. Research and verify through practice, Total Station trigonometric leveling observations amendment can fully meet the accuracy requirements of the third and fourth level measurement, Can take advantage of Excel's powerful data processing capabilities, more convenient to make the processing of observational data.Article based on trigonometric leveling principle and law of error propagation, Total Station trigonometric leveling application and accuracy in the measurement are discussed. Different methods of measurement for triangulation were compared, analyzed and summarized. Trigonometric leveling Total Station Standards test, measurement accuracy analysis. Key words Electronic Total Station;trigonometric leveling;accuracy analysis

三角高程测量与水准测量精度对比分析

中南林业科技大学本科毕业论文在工程测量中三角高程与水准高程的对比研究 三角高程测量与水准测量的精度对比分析 1 绪论 1.1 研究背景和意义 1.1.1 研究背景 在当今的高程测量中,水准测量是高程控制的最主要方法之一。但是,普通的水准测量速度比较慢。虽然国外有使用自动化水准测量,但是也没有显著提高它的效率,并且需要的劳动强度大。在长倾斜路线上受到垂直折光误差累积性影响,当前、后视线通过不同高度的温度层时,每公里的高差可能产生系统性的影响。尽管现在已有不少的研究人员提出了一些折光差改正的计算公式,但这些公式中仍然还存在系统误差??。并且,近年来还发现地球磁场对补偿式精密水准仪也有很影响。1 此外,水准测量的转点多,而且标尺与仪器也存在下沉误差,这又是一项系统误差。由于上述原因,如果在丘陵、山区等地使用水准测量进行高程传递是非常困难的,有时甚至是不可能的。如果采用三角高程测量就比较容易实现。近些年来,由于全站仪的发展,使得测角、测距的精度不断提高。再加上学者对三角高程测量的深入研究,使三角高程测量的精度也有很大的提高。三角高程测量传递高程比较灵活、方便、受地形条件限制较少等优点,使三角高程测量在工程测量中得到广泛的应用。 1.1.2 研究意义 本文旨在研究在工程测量中三角高程测量和水准测量的精度对比研究,

通过对三角高程测量和水准测量的原理、方法、误差来源等进行分析。然后针对这些因素改善其观测条件,探求合适的观测方法来消减误差,并拟定相应的作业规程,对比在三等高程控制测量过程中二者的精度和效率。得出在一定的测量条件下,三角高程测量代替三等水准测量作业方法是可行的。以提高作业效率,减少劳动强度,并实现高程测量的自动化。 1.2 相关概念 1.2.1 水准测量 水准测量又名“几何水准测量”,是用水准仪和水准尺测定地面上两点间高差 第 1 页

全站仪测量误差分析

全站仪测量误差分析 随着新仪器新设备的不断出现,测量技术的不断提高,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们建筑施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测 角精度以及外界的影响等。 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA±HAB得到B点的高程HB。 当A、B两点距离较短时,用上述方法较为合适。 在较长距离测量时要考虑地球曲率和大气折光对高差的影响。 设仪器高为i,棱镜高度为l,测得两点间的斜距为S,竖直角α,则AB两点的高差为: 一般情况下,当两点距离大于400m时须考虑地球曲率及大气折光的影响,在高差计算时需加两差改正。 式中R为地球曲率半径,取6371km, k为大气折光差系数,k=1-2RC (C为球气差,C=0.43D2/R,D:两点间水平距离)。 从上式中可以看出,当距离较远时,影响高差精度的主要因素就是地球曲率及大气折光,如果高程传递次数较多,累计误差就会加大,在测量时,最好是一次传递高程,若有需要,往返测高程,取其平均值以减小误差。 (1)、地球曲率改正 以水平面代替椭球面时,地球曲率对高差有较大的影响,测量中,采取视距离相等,消除其影响。三角高程测量是用计算影响值加以改正。地球曲率引起的高差误差,按下式计算 P=D2 /2R (2)、大气折光改正 一般情况下,视线通过密度不同的大气层时,将发生连续折射,形成向下弯曲的曲线。视线读数与理论位值读数产生一个差值,这就是大气光引起的高差误差。按下式计算 r =D2 /14R

高程测量的精度研究.

高程测量的精度研究

摘要 由于其高效方便,得到了迅猛发展,成为了现在地形测量、变形监测、低等级高程控制测量的首选。近年来在理论和技术高速发展的带动下在平面测量精度和高程测量精度方面都得到了很大的提高。硬件方面,扼流圈天线使得的多路径效应得到了有效的消除;理论方面,各种对流层、电离层延迟改正模型的提出及其应用,以及许多研究表明有效的消除误差理论的应用,使得的诸多与卫星及接收机之间的误差得到了很好的改正,所以在平面位置和高程的测量精度也进一步提高。由于测量的大地高应用于实际时需要经过高程转换为正常高,中间转换过程中需要解算高程异常,一系列的计算使得在高程控制测量方面误差偏大,影响了高程控制测量在许多方面的应用。本文在双频观测的基础上,通过解算原始的观测数据,建立一种区域的电离层延迟改正模型,取代现在最常用的克罗布歇模型来消除电离层对测量的影响,更好的消除电离层延迟的影响,以提高的解算数据的精度。 本文在阐述高程系统和高程测量原理的基础上,首先分析并总结了影响测高的各种因素及大地高的测定精度;其次对现有的高程转换方法进行了全面分析,结合工程算例,深入探讨了各种拟合模型的适合范围及精度情况;同时针对高程测量中几何方法转换的不足,本文研究了基于人工神经元网络转换高程的新方法,通过实例分析证明了该方法转换高程的可行性与可靠,对神经网络模型转换高程的BP网络结构中隐层单元数量的确定、隐含层数的确定、学习速率的选择、初始权值的选择、训练样本对网络泛化能力的影响等问题进行了较为深入的探讨。为避免应用单一模型进行高程拟合方法的局限性,在吸收和学习己有研究成果的基础上,将不同的拟合模型进行迭加,提高高程异常的逼近精度和可靠性。 关键词:1、三角高程;2、测量精度;3、井下三角;4、GPS高程测量

三角高程测量的方法与精度分析

南昌工程学院 毕业论文 水利与生态工程系(院)测绘工程专业毕业论文题目全站仪三角高程测量的方法与误差分析 学生姓名倪忠利 班级07测绘工程 学号2007101191 指导教师陈伟 完成日期 2010年 06月 17 日

全站仪三角高程测量的方法与误差分析 Total Station trigonometric leveling method and error analysis 总计毕业设计(论文) 25 页 表格 2 个 插图 3 幅

本文介绍了三角高程测量原理以及全站仪三角高程测量的不同方法,对于每种方法所能达到的精度进行分析。在相同条件下采用不同的方法, 对高差精度的影响是不同的, 所能达到的测量精度等级要求也是不一样的。从而在实际生产应用中可针对不同的精度要求和具体的客观实际情况选择不同的测量方法。 关键词:三角高程测量单向观测对向观测中间自由设站精度分析

This paper introduces the measuring principle and triangular elevation of trigonal height measurement method for each different, the precision of the method can be analyzed.Under the same conditions used different methods, the influence of accuracy of elevation is different, can achieve the measurement precision level requirement is different.Thus in the actual production application can be in view of the different accuracy and the objective reality of specific select different measuring methods Key word: trigonometric levelling ;One-way observation ;Two-way observation ;Free among set up observation;Precision analysi

GPS(RTK)控制测量平面及高程精度分析

GPS(RTK)控制测量平面及高程精度分析 摘要:近年来随着gps发展采用载波相位实时动态差分技术进行相对定位的gps rtk方法,能够在野外实时地得到厘米级定位精度,可以极大地提高作业效率。本文对gps rtk的精度进行试验研究,利用实测数据对其校正精度进行对比分析,并探讨影响校正精度的主要因素。 关键词:gps rtk 控制测量控制点精度 1、gps(rtk)控制测量 为了确定动态gps(rtk)控制测量的精度,笔者在哈尔滨对已布设了d级gps控制网进行了动态gps(rtk)测量和静态gps测量成果的比较。并联测了四等水准的1个d级gps点,进行了水准测量和用动态gps(rtk)测量高程的比较。设计方案如下:使用南方9600 gps 接收机进行动态gps(rtk)测量的实验。选择3个分部比较均匀地已知点进行解算转换参数。基准站设定在测区中央,地势较高,周围无遮挡物,对d级gps控制网进行了动态gps(rtk)测量,并且联测了四等水准的1个d级gps点。共观测了15个重复点。 本次观测采用南方9600 gps接收机进行动态gps(rtk)测量的实验。 1.1 对测区转换参数的确定 选择3个分部比较均匀地已知点进行解算转换参数。 操作:工具→计算七参数

为了获得更精确的七参数坐标转换,这时用户需要知道三个已知点的地方坐标和这三个点的wgs-84坐标,可以计算出七个参数,即wgs-84坐标转换到地方坐标的七个转换参数,用户单击确定,就会输入到七参数对话框中。可以直接输入三个已知点的地方坐标和这三个点的wgs-84坐标,按右上方的“ok”按钮,就会计算出七参数,计算出七参数后,系统会自动打开参数开关,单击“ok”按钮,则在测量中就可以利用该参数进行校正得出测量点的正确坐标。 1.2 使用两点校正 步骤如下: (1)使用测量菜单下的校正向导菜单。选中菜单后,界面如下图1.1: 图1.1 校正模式选择 选择下一步后,界面如下图1.2: 图1.2 基准站架设在未知点(向导1) 根据向导提示,输入已知坐标后,直接校正。 (2)完成移动站1的单点校正后,到第二个移动站使用测量菜单下的校正向导菜单。选中菜单后,界面如下图1.3: 图1.3 校正模式选择 选择下一步后,界面如下图1.4: 图1.4 基准站架设在未知点(向导1)

水准高程测量试题及答案

高程测量测试题 部门: 姓名: 得分: 一、单项选择题:(每题2分,共30分) 1、在水准测量中设A为后视点,B为前视点,并测得后视点读数为1、124m,前视读数为1、428m,则B点比A点( B )。 A、高 B、低 C、等高 D、无法判断 2、视准轴就是连接物镜光心与( C )得连线。 A、目镜光心 B、调焦透镜光心 C、十字丝分划板中心 D、光学对中器光心 3、水准测量中,A,B分别为前、后视点,后视读数为1、235m,前视读数为1、450m,则h BA=( A )。 A、-0、215m B、0、215m C、0、140m D、-0、140m 4、水准测量中,A、B分别为后、前视点,H A=2 5、000m,后视读数为1、426m,前视读数为1、150m,则仪器得视线高程为( D )。 A、24、724m B、26、150m C、25、276m D、26、426m 5、在下列型号得水准仪中,精度最高得就是( A )。 A、DS05 B、DS1 C、DS3 D、DS10 6、转动物镜对光螺旋得目得就是( B )。 A、瞧清十字丝 B、使目标成像清晰 C、整平水准管 D、对中 7、视差产生得原因就是( A )。 A、目标成像与十字丝分划板平面不重合 B、目标成像与目镜平面不重合 C、目标成像与调焦透镜平面不重合 D、目标成像与观测者视界面不重合 8、某附合水准测量路线,已知水准点A,B高程HA=18、552m,HB=25、436m。实测高差总与为6、870m,则该水准路线得高差闭合差为( B )mm。 B、-14 C、12 D、-12 9、水准仪得使用中双手调节脚螺旋,使圆水准气泡居中,气泡移动方向与( B )运动得方向一致。 A.右手大拇指 B.左手大拇指 C.以上都不对 10、右图塔尺读数应为( A )m A.1、534m B.1、554m C.1、538m D、 1、544m 11、高程测量得基本原理就是: 利用水准仪提供得( B ),测量两点间高差, 从而由已知点高程推算出未知点高程。 A.相对视线 B.水平视线 C、相对高程 D、大地水准面 12、右图塔尺读数应为( A )m A.0、437m B.0、432m C.0、442m D、 0、447m

GPS高程测量的精度分析

GPS高程测量的精度分析 介绍了GPS在市政工程高程测量中的应用,并揭示了造成实践应用不广泛的主要原因—测量精度。进而从GPS卫星、卫星信号的传播过程和地面接收设备以及地面高程的转化四个方面分析了GPS高程测量的精度问题。 标签:市政工程高程测量GPS信号接收机测量精度 一、引言 在工程测量中,高程测量的精度问题一直被测绘学界的工作者们广泛关注。水准测量的精度较高,但是测量工作量太大、测量速度较慢。相较于水准测量而言,GPS测量高程在效率上有很大的提高。理论与试验研究表明,如果在测量时加上一些特定的措施,GPS的高程测量精度可以达到三、四等水准测量的要求。近年来,随着RTK技术的广泛应用,尤其是多基站连续运行卫星定位服务综合系统在各城市的相继建立,高程测量方法得到了有效扩展,作业效率大大提高,但由于高程异常变化复杂,所以,GPS高程的精度普遍不高,分析影响GPS测量精度的影响因素,提高GPS的测量精度有重要的实践意义。 二、GPS高程测量的影响因素分析 1.与卫星相关的因素。卫星是GPS测量的信息发出点,卫星的分布、数量、稳定性对GPS测量结果的稳定性和精确度影响很大。 (1)卫星的个数及稳定程度。在解算整周模糊度时,至少需要有5颗公共卫星。星数越多,解算模糊度的速度越快、越可靠。当周围高层建筑物密集且有大树时,公共卫星数如果少于5颗,就很难得到固定解。当降低卫星的截止高度角时,公共卫星数将增加,但将使采集的数据含有较低的信噪比,使GPS接收机解算模糊度的时间延长,且观测精度较差,很难满足要求;当周围只是一侧或部分遮挡,此时的卫星个数需根据实际情况而定,如果卫星正好在遮挡物的一侧,此时,可能导致卫星数少于5颗,或者卫星数时而增加,时而减少。这样就会造成测回间的数据精度不稳定;当周围较空矿时,一般都能达5颗或者5颗以上,且卫星个数固定,此时采集的数据精度也比较稳定,但不排除个例。 (2)卫星分布情况。卫星分布用PDOP值(位置精度强弱度,为玮度、经度和高程等误差平方和的平方根)来衡量。PDOP值越小,说明卫星的分布越好,定位精度越高。一般规定,PDOP值应小于6。 2.与卫星信号传播相关的因素。卫星信号要经由大气空间传播到GPS数据接收器上来,在传播过程中,信号可能受到大气层的影响而发生波动,这就会对GPS接收到的数据造成影响,进而影响解算结果,影响测量的精度。 (1)对流层延迟。对流层延迟是指电磁波信号通过高度在50km以下的未

谈全站仪的高程测量精度

谈全站仪的高程测量精度 本人在从事工程技术管理的工作中,经常听到有测量工程师抱怨说某某全站仪不好用,测高程测不准。于是我问他:测距离准不准?得到回答是,测距离没问题!于是我就奇怪了,为什么测距离准,测高程不准呢?全站仪工作时测得夹角a和距离L,如下图: s H L a H=L*sina S=L*cosa 既然S准确,相应的H也应该准确,因为他们的计算变量都是一样的。但经过本人实际操作,全站仪测高程精度确实比较差。到底是什么原因使得同样的参数,计算出来的结果一个精确,另一个却不精确呢?进过详细分析,本人发现其实并不是仪器的问题,而是误差给大家带来的麻烦:

90sinx cosx Y Y1 Y2 上图是正弦曲线和余弦曲线示意图,我们可以发现在全站仪镜头水平x=0°—竖直x=90°期间y值的变化,当我们在接近0°附近测量时f(x)=cosx相对于g(x)=sinx对x的增量来说不敏感,也就是说,当我们在仪器测量a角时,一个增量Δa引起的S的变化比H的变化小的多,而实际操作中,各位测量工程师也会发现,由于仪器的构造限制,很少有机会在测量的时候使全站仪仰俯超过45°,而真正当仰俯角超过45°,(例如在近距离测量盖梁或者墩顶高程)时,全站仪的高程测量精度并不比水平坐标的测量精度低。例如:sin10.1-sin10=0.00171855,cos10.1-cos10=-0.0003045,这表明在角度误差0.1°的情况下,瞄准接近100米的目标,高程会差17cm,而距离只差3cm,这就是为什么大家都抱怨全站仪测高程不精确的原因。 当然测量高程精度不准还与另外一些因素有关,如:1、仪器高不能准确测得,2、镜杆高度由于标杆底的磨损产生偏差,3、对站标时习惯性只左右对中,不上下对中等。这些原因都可能使全站仪的高

全站仪三角高程测量精度分析

全站仪三角高程测量精度 分析 Prepared on 22 November 2020

全站仪三角高程测量精度分析 作者修涛 内容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析 Total Station trigonometric leveling accuracy analysis Abstract Total Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction.

水准仪与高程测量

第二章 水准仪与高程测量 第一节 水准测量的原理 确定地面点高程的测量工作,称为高程测量。高程测量又是测量三项基本工作之一。根据使用仪器和施测方法的不同,高程测量可分为水准测量、三角高程测量和气压高程测量。用水准仪测量高程,称为水准测量,它是高程测量中最常用、最精密的方法。 水准测量的原理: 水准测量是利用一条水平视线,并借助水准尺,来测定地面两点间的高差,这样就可由已知点的高程推算出未知点的高程。测定待测点高程的方法有高差法和仪高法两种。 1.高差法 如图2-1所示,若已知A 点的高程A H ,欲测定B 点的高程B H 。在A 、B 两点上竖立两根尺子,并在A 、B 两点之间安置一架可以得到水平视线的仪器。假设水准仪的水平视线在尺子上的位置读数分别为A 尺(后视)读数为a ,B 尺(前视)读数为b ,则A 、B 两点之间的高程差(简称高差AB h )为 b a h AB -= (2-1) 于是B 点的高程B H 为 AB A B h H H += (2-2) b a H h H H A AB A B -+=+= (2-3) 这种利用高差计算待测点高程的方法,称高差法。这种尺子称为水准尺,所用的仪器称为水准仪。 图2-1 水准测量原理 2.仪高法 由式2-3可以写为 b a H H A B -+=)( (2-4)

如图2-2所示,即 b H H i B -= 上式中i H 是仪器水平视线的高程,常称为仪器高程或视线高程。仪高法是,计算一次仪高,就可以测算出几个前视点的高程。即放置一次仪器,可以测出数个前视点的高程。 综上所述,高差法和仪高法都是利用水准仪提供的水平视线测定地面点高程。必须注意 ①前视与后视的概念一定要清楚,不能误解为往前看或往后看所得的水准尺读数。 ②两点间高差AB h 是有正负的,计算高程时,高差应连其符号一并运算。在书写AB h 时,注意h 的下标,AB h 是表示B 点相对于A 点的高差;BA h 则表示是A 点相对于B 点的高差。AB h 与BA h 的绝对值相等,但符号相反。 图2-2 仪高法水准测量 第二节 水准仪使用 水准测量所使用的仪器为水准仪,工具为水准尺和尺垫。 水准仪按其精度可分为DS 05、DS l 、DS 3和DS l0等四个等级。工程测量广泛使用DS 3级水准仪,因此,本章着重介绍这类仪器。 一、水准仪的结构 根据水准测量的原理,水准仪的主要作用是提供一条水平视线,并能照准水准尺进行读数。因此,水准仪构成主要有望远镜、水准器及基座三部分。如图2-3所示。

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 2010-11-28 01:58:11| 分类:工程测量|举报|字号订阅 [教程]第二章水准测量 未知2009-12-13 16:21:06 网络 内容:理解水准测量的基本原理;掌握 DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量( Height Measurement )的概念 测量地面上各点高程的工作 , 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量 (leveling) (2)三角高程测量 (trigonometric leveling) (3)气压高程测量 (air pressure leveling) (4)GPS 测量 (GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数 A ——后视点 b ——前视读数 B ——前视点 1、A 、 B 两点间高差: 2、测得两点间高差后,若已知 A 点高程,则可得B点的高程: 。 3、视线高程: 4、转点 TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

数字高程模型和精度分析

数字高程模型和精度分析 最近几年,GIS架构下的数据库、高效态势下的微机,正在被延展运用。因此,数据质量的管控,就增添了原有的价值。DEM这一模型,是GIS特有的信息源头,是空间架构下的基础设施。数字高程这样的模型,也被划归到现有的DGDF,预设了规模化这一生产路径。因此,有必要明晰DEM特有的获取路径,考量现有的精度影响,辨识误差根源。只有这样,才能限缩模型偏差,创设可用的管控办法。 标签:数字高程模型模型精度具体分析 数字高程模型,是在既有的区段范畴以内,应用新颖的离散路径,去表征区段现有的表层地貌。在工程建构的多样领域,DEM这一模型,都带有偏大的运用范畴。比对惯用的地形图,DEM这样的高程图形,带有数字架构下的表征方式,更易被辨识。DEM这一新颖路径,替代了惯用的地形描画办法,在城区现有的测绘架构下,延展了原初的应用范畴。要接纳精度评析的可用路径,提升原有的管控水准。 1明晰影响要点 DEM特有的误差,是建构模型这一流程内,产出的综合差值。如上的建模误差,带有独特的要点: 首先,地形固有的表层特性,决定了现有的建模难度。这样的特性要点,在辨识表面精度这一流程内,凸显出了侧重的价值。在地面表层现有的特性之内,坡度这样的特性,被看成侧重的描画要素。通常情形下,可用特有的坡度及特有的坡长,去辨识这一区段内的地形。原始数据固有的布设影响,是侧重架构下的影响要素。数值的布设态势,可以利用固有的方位及构架,予以描画。常常接纳矩形架构下的规则格网,去描画现有的数值布设。原初数据固有的密度,可以依循平均态势下的间距、单位面积表征出来的数目、空间范畴内的数值更替、特有的截止频率,予以辨识并确认。在摄影测量这一范畴内,要预设精准的立体交会,就应当辨识影像之间特有的同名点。这一点,是数字架构下的摄影测量,必备的核心辨识点,也就是特有的影像匹配。 其次,表面架构下的建模路径,能影响原初的模型精度。可以预设两种路径,去建构如上的模型。一种路径,是经由测量,得到特有的量测数据;另一种路径,是接纳间接构建这一方式,抽取出可用的随机点,预设内插处理这一流程,以便建构出DEM架构下的模型。如上的归整过程,会损耗掉原初的可信程度。原始数据特有的损失,会经由建构好的模型,传递到现有的表面层级。DEM固有的表面特性,表征了地形架构下的吻合因素,也决定了现有的建模精度。DEM架构下的可视表达,带有侧重的辨识价值。摄影测量这一范畴内的可视表达,涵盖了现有的影像匹配。惯常情形下,影像匹配预设的基础,是特有的灰度分布,因此,如上的影像匹配,也被看成特有的灰度匹配。此外,还可以接纳特征匹配这

全站仪高程控制测量精度与误差分析

全站仪高程控制测量精度与误差分析 【摘要】水准测量操作简单,数据量相对较小,容易计算与处理,而且精度高。但是,由于位置差异,在一些特殊的地理位置采用全站仪进行高程控制测量更能提高效率。例如在一些山区、丘陵地带,应用几何水准测量效率就很会很低,在应用全站仪进行高程测量的时候,采用什么方法来进行数据处理也是非常重要的。为了提高计算精度与工作效率,更有利于设计最佳方案进行测量工作,那么我们将采用几种方法进行精度与误差分析比较。精度与误差也是我们最需要关注的。经过实践操作证明,使用全站仪进行山地水准测量能够达到三、四等要求。因此,采用全站仪进行高程控制测量能够达到精度要求,大大提高了工作效率。 【关键词】全站仪;高程;精度分析;误差分析 1.引言 随着测绘专业的不断发展,全站仪的应用越来越广泛,并以其操作简捷,电脑计算,大大提高工作效率,而被广大测绘人员所青睐。目前,人们对全站仪的研究也是越来越深入,希望能够将它应用到更多的工作中,而在山地高程控制测量中,使用水准仪的传统方式进行测量虽然精度高,但是工作量大,耗时长,效率太低;而采用三角高程控制测量虽不受地形限制,但是它受地球曲率、棱镜高和仪器高的因素的影响,精度与水准测量相比过低,误差相对较大。那么,使用全站仪绝对是一个很好的发展方向,这就可以摆脱传统的水准测量方式,减少了数据量,降低了工作难度,不受地区地形限制,影响测量精度因素较少。我们通过实践与研究,对全站仪高程测量精度与误差进行了分析。 2.全站仪高程测量原理与精度分析 (1)基本原理 全站仪高程测量的基本原理是把全站仪当作水准仪来使用,使棱镜高相同,达到抵消仪器高和棱镜高的目的,从而不必量取棱镜高和仪器高,这样既能在地形复杂地区进行快速的高程传递,又能确保足够的高程测量精度。如果在较短的距离内不考虑两差对高差测量的影响,那么观测计算得到的A,B两点高差只受垂直角测量和距离测量精度的影响。如果两点间高差较大或距离较远,仅安置一次仪器不能测出其高差时,就可以在两点间安置多次仪器,加设多个转点,然后再分段设站观测。图1中各符号所含意义如下:SCA为后视斜距;SCB为前视斜距;DCA为后视平距;DCB为前视平距;iA为后视点棱镜的高度;iB为前视点棱镜的高度;VC为全站仪的高度;hAC为后点A至测站点C的高差;hCB为测站点C至前点B的高差;h1为后视棱镜中心至全站仪横轴的高差;h2为全站仪横轴至前视棱镜中心的高差;hAB为后视点A至前视点B的地面高差;A1为全站仪观测后视棱镜中心点的竖直角(俯角或仰角);A2为全站仪对前视棱镜中心点的竖直角(俯角或仰角)。原理图如下:

三角高程测量原理

§5.9 三角高程测量 三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。三角点的高程主要是作为各种比例尺测图的高程控制的一部分。一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。 5.9.1 三角高程测量的基本公式 1.基本公式 关于三角高程测量的基本原理和计算高差的基 本公式,在测量学中已有过讨论,但公式的推导是 以水平面作为依据的。在控制测量中,由于距离较 长,所以必须以椭球面为依据来推导三角高程测量 的基本公式。 如图5-35所示。设0s 为B A 、两点间的实测水 平距离。仪器置于A 点,仪器高度为1i 。B 为照准 点,砚标高度为2v ,R 为参考椭球面上B A ''的曲率 半径。AF PE 、分别为过P 点和A 点的水准面。PC 是PE 在P 点的切线,PN 为光程曲线。当位于P 点 的望远镜指向与PN 相切的PM 方向时,由于大气折 光的影响,由N 点出射的光线正好落在望远镜的横 丝上。这就是说,仪器置于A 点测得M P 、间的垂 直角为2,1a 。 由图5-35可明显地看出,B A 、 两地面点间的高差为 NB MN EF CE MC BF h --++==2,1 (5-54) 式中,EF 为仪器高NB i ;1为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。由 2021s R CE = 2021s R MN ' = 式中R '为光程曲线PN 在N 点的曲率半径。设 ,K R R ='则 20202.21S R K S R R R MN ='= K 称为大气垂直折光系数。 图5-35

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

RTK测高试验与精度分析

马永来宋海松弓增喜(黄河水利委员会水文局郑州450004) 摘要:RTK技术是基于载波相位观测量的实时动态定位技术。为了解RTK技术的应用情况,在小浪底库区及花园口大堤做了RTK测高试验,并对实测资料进行了分析。分析结果表 明:RTK测高精度能够达到仪器标称精度,数据可靠;若选择VDOP<4、可用卫星为5颗以上的情况下进行观测,可提高观测精度;RTK测量高差通过布尔莎模型转化后,仍为大地高高差,经高程拟合消除高程异常后,所得正常高可以达到五等水准测量要求。 关键词:精度实时动态测量RTK快速静态测量高程拟合 GPS即全球定位系统,80年代主要是基于载波相位差分的静态测量,要得到可靠的解向量,通常需要观测一二个小时l至更长时间、随着GPS应用技术的发展,义出现了GPS快速定位技术(快速静态、动态、伪静态)、当基线长度小于15 km时,GPS快速定位技术可在较短的时间内达到厘米级的定位精度,具有。·短、平、快,,的优点、然而,观测时需要对己知数据点进行各种各样的初始化,对卫星凡何条件及卫星跟踪都有较高要求,而巨只能通过事后数据处理得到测量结果、为缩短观测时间,提高工作效率,在小范围测量中,义逐渐提出了一种新技术实时动态测量RTK(Real Time Kine matic技术)。 1.RTK技木简介 RTK技术是基于载波相位观测量的实时动态定位技术,一般中基准站、移动站、数据通讯链3部分组成、其工作原理是:基准站接收机~调制器~发射电台~转发器~接收电台~解调器~移动站接收机、基准站和移动站同时接收GPS卫星定位信息、通过差分数据链,移动站接收基准站发送的GPS数据,结合自月采集的GPS数据进行实时处理,在Is内以厘米级的精度给出移动站的点位信息、通过OTF(Oil The Fly)实时处理算法,移动站在动态环境下可进行初始化处理,无需在己知点上进行初始化、RTK测量必须有伪距和相位观测值(最好带双频P码,有利于实时快速解求模糊度)。 2.RTK测高试验与精度 2.1试验基本情况 RTK测量和解算是在WGS84坐标系中进行的,实时给出的高程为大地高、我国采用的高程为丁常高,在实际应用时还需将大地高转换为丁常高、因此,RTK的应用范围,RTK技术确定丁常高的精度和可靠性,以及将大地高转换为丁常高时采用的方法等都是人们十分关心的问题、为此我们在小浪底库区进行了RTK实地测量、为了解平原地区倩况,又在郑州郊区黄河花园口大堤选驭部分试验点,试验点高程范围为98 856-314053 m,移动站至基准站间距离为0-1049 km、试验点均经快速静态布网测量,井经过平差,得到了WGS84大地坐标和大地高成果、试验之前对所有试验点进行了四、五等水准测量、RTK试验所用仪器为Trimble4000SSE(OTF)、仪器实时动态(RTK)标称精度:水平10 mm+ZD。10‘,垂直20 mm+ZD。10‘;快速静态标称精度:水平10 mm+D。10‘,垂直10 mm+ZD。10‘、D表示测量基线的距离。

相关文档
最新文档