高性能树脂基体的最新研究进展

高性能树脂基体的最新研究进展
高性能树脂基体的最新研究进展

高吸油树脂材料的研究进展

高吸油树脂材料的研究进展 班级:姓名:学号:成绩: 摘要介绍了高吸油树脂的分类和性能。系统阐述了高吸油树脂的合成方法,讨论了单体,引发剂,交联剂和分散剂对高吸油树脂吸油性能的影响,并对未来的发展趋势进行了展望。 关键词高吸油树脂,功能高分子材料,合成 前言 高吸油树脂作为一种新型的功能高分子材料具有吸油种类多、吸油速率快、吸油倍率高、吸油而不吸水等特点,拥有广阔的应用前景,其开发与研制越来越受到人们的重视。 1 吸油材料的分类 吸油材料根据其材料来源可分为有机和无机两类,而根据吸油机理的不同又可分为吸藏型、凝固型(凝胶化型) 和自溶胀型[1 ]。高吸油性树脂又可根据合成单体分为两大类[2 ]:一是丙烯酸酯类树脂。丙烯酸酯和甲基丙烯酸酯是常见合成单体,原料易得且聚合工艺较为成熟,可选用的酯以8个碳以上的烷基酯[3~5 ]为主,还有壬基酚酯以及2-萘基酯[6 ]等。 为了改进材料的内部结构,也常用丙烯酸乙酯或丁酯作为共聚单体。另一类是烯烃类树脂。烯烃分子内不含极性基团,该类树脂对各种油品的亲和性能更加优越。尤其是长碳链烯烃对各种油品均有很好的吸收能力,成为国外研究的新热点。吸油材料的分类及特性见表1 。 吸油速率与保油能力是高吸油树脂重要性能指标。其吸油速率一般较慢,且依赖于油的粘度、单位重量树脂的表面积、树脂的形态、温度等因素。例如,粒径数百微米的粒状树脂吸收高黏度油时约需10h才能饱和,而吸低黏度油10min就可以了。温度对吸油速度影响很大,温度升高,油的扩散速度增加,吸油速度加快,反之亦然。 表1 高吸油树脂的分类及特性

2 高吸油树脂的合成及研究进展 高吸油树脂是以亲油类单体通过交联剂经适度交联而合成的低交联聚合物,常见的高吸油树脂主要有丙烯酸酯类树脂和烯烃类树脂两大类。 丙烯酸酯类树脂是以丙烯酸酯类单体聚合得到的高吸油树脂,亲油基(酯基) 和油分子的相互亲合作用而吸油是该类吸油树脂的设计依据。酯基链越长则亲油能力越强。朱秀林等[3 ,7 ]以甲基丙烯酸十二酯与甲基丙烯酸丁酯为单体,或用甲基丙烯酸异丁酯、甲基丙烯酸乙酯代替甲基丙烯酸丁酯,并以二丙烯酸1 ,4-丁二醇酯或二丙烯酸1 ,6-己二酯

高性能基体树脂 复合材料增韧新途径

高性能基体树脂和复合材料增韧新途径前言:材料复合化是新材料技术的重要发展趋势之一。所谓高性能复合材料,是指具有高比模量、高比强度、优异的耐高温性能及多功能的复合材料。高性能复合材料主要以高性能纤维为增强体的复合材料为主,基体树脂作为高性能复合材料的重要组成部分,其性能及成本对高性能复合材料的设计、制备、性能、加工具有重要意义。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。环氧树脂是聚合物基复合材料中应用最广泛的基体树脂之一。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点。但环氧树脂固化后交联密度高,呈三维网状结构,存在内应力、质脆、耐疲劳性、耐热性、耐冲击性差等不足,以及剥离强度、开裂应变低和耐湿热性差等缺点,加之表面能高,在很大程度上限制了它在某些高技术领域的应用。因此,对环氧树脂的增韧研究一直是人们改性环氧树脂的重要研究课题之一。 一、高性能基体树脂及其复合 1. 高性能基体树脂 材料是先进科技发展的重要物质基础,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约[1]。高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料一性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。 典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用[2]。

(学生化工创业设计作品)高吸油树脂-介绍

高吸油树脂

目录 1.引言 (4) 2.吸油树脂种类 (4) 3.高吸油树脂的国内外发展现状 (4) 4.油树脂的发展趋势迥然 (5) 5.高吸油树脂的合成方法 (7) 5.1.单烯—双烯化学交联 (7) 5.2.溶剂致孔的单烯-双烯化学交联 (8) 5.3.官能团化学交联 (9) 6.油性树脂的作用原理 (9) 6.1.高吸油性树脂的结构特征 (9) 6.2.高吸油性树脂的吸油过程 (9) 6.3.影响树脂吸油性能的因素 (9) 6.3.1.交联度对树脂性能的影响 (9) 6.3.2.单体的结构对树脂性能的影响 (10) 6.3.3.吸收速度的影响因素 (10) 6.3.4.引发剂用量对吸油性能的影响 (11) 7.产品环保问题 (11) 7.1.生产工艺方面 (11) 7.2.应用方面 (12) 7.3.回收利用方面 (12) 参考文献 (12)

1.引言 随着人类社会的进步与发展,人类赖以生存的自然环境也受到了破坏。近年来,由于油船、油罐泄漏事故及含油废水排放等造成的河流、海洋污染倍受人们关注。有效的油品回收技术及含油工业废水净化材料的研究开发势在必行。由于传统吸油材料的吸油倍率低、油水选择性差、操作复杂、后处理困难等缺点已不能满足废油回收和环境治理的要求,而高吸油性树脂则是一种新型高效环保材科,是一种不同于普通吸油材料的功能高分子,是一种自溶胀型吸油材料。它具有与高吸水性聚合物基本相同的网络结构,有良好的耐热性、耐寒性、不易老化、吸油速度快、吸油率高、油水选择性好、受压后不漏油、回收方便、可吸油种多等诸多优点,用于处理各种油罐泄漏和排放所造成的水体污染,以达到净化水体的目的。高吸油树脂不仅为环保所需要,而且在固香剂、农药缓释剂、油墨和纸张添加剂、橡胶改性剂、热敏记录材料、油雾过滤器等方面的应用前景也很诱人。国内是近十年才开始研究吸油性树脂的,并且只是在少数高校和研究所开展了该项工作,目前尚无工业化报道,市场前景十分广阔。 2.吸油树脂种类 综观国内外吸油树脂的研究,根据单体可大致分为两类:一为丙烯酯系。丙烯酸酯和甲基丙烯酸酯是常见的聚合单体,来源广泛,聚合工艺比较成熟,成为国内目前主要研究方向。可选用的酯以8个碳以上的烷基酯为主,此外还有壬基酚以及2—荼基酯等。为改进材料内部结构也常用丙烯酸乙院或丁酯作为共聚单体。另一类是烯烃类树脂。烯烃分子内不含极性基团,因此该类树脂对油品亲和性能更加优越。尤其是长碳链烃对油品均有很好的吸收能力,成为国外研究的新热点。由于高碳烯来源较少,至今仍处于研究开发阶段。 3.高吸油树脂的国内外发展现状 1966年美国道化学公司首先用烷基苯乙烯为单体,二乙烯苯或二丙烯酸乙

高吸油性树脂

高吸油性树脂 摘要:高吸油性树脂是一种新型的吸油材料,在污染治理方面有着很广阔的应用前景。本文主要介绍了高吸油性树脂的吸油机理、材料结构对性能的影响、目前存在的问题以及今后的发展方向,并简要介绍了高吸油性树脂在其他工业领域的应用。 关键词:高吸油性树脂吸油材料原油泄漏 2010年7月,大连新港输油管发生爆炸,近万吨原油流入海洋,给当地的水产品养殖业和旅游业造成了致命的打击。2010年,美国墨西哥湾发生海上钻井平台爆炸事故,事故造成的经济损失难以估计,对环境的破坏更是毁灭性的(见图1)。 (图1) 近年来,由含油工业污水及油船、油罐泄漏而造成的环境污染日益严重。因此,对于含油废水的处理研究势在必行,除了控制源头、预防污染,还要找到一种高效、高选择性、可回收的廉价吸油材料。 1966 年,美国道化学公司以烷基苯乙烯为单体,经二乙烯苯交联,首次制得高吸油树脂。1973 年, 日本三井石油化学公司以烷基苯乙烯及丙烯酸烷基为单体进行聚合并交联,也获得了高吸油树脂。1990年,日本触媒化学工业公司以

丙烯酸类单体为原料,制得了侧链上有长链烷基的高吸油树脂。图2所示即为一种聚氨酯吸油材料: (图2) 一、高吸油性树脂的吸油原理 高吸油性树脂, 是由亲油性单体的低交联度聚合物构成的。聚合物呈三维交联网状结构, 内部具有一定的微孔。当高吸油性树脂投入油中时,油分子扩散进入聚合物微孔中,通过树脂分子内的非极性链段与油分子的溶剂化作用, 使链段伸展,聚合物发生溶胀。当油分子进入的足够多, 溶剂化作用充分, 链段伸展开来, 网络中只有共价键交联点存在, 此时由Flory-Huggins方程控制, 即由热力学推动力推动。当高分子充分溶胀, 高分子链伸展到一定程度的时候, 由于存在弹性回缩力,使链段慢慢回缩,最终达到热力学平衡态。 一个好的吸油材料,首先是要有高的吸油能力,即单位质量或体积的高分子所能吸附油的最大数量,还要有较快的吸油速率,要能在高效吸油地同时减少吸水量,以提高治污效率。此外,吸油材料的回收性和廉价性也很关键,这可避免二次污染并有效节省资源。

高性能树脂基覆铜板的研究进展

高性能树脂基覆铜板的研究进展 周文胜 梁国正 房红强 任鹏刚 杨洁颖 (西北工业大学理学院应用化学系,西安 710072) 摘要 对高性能新型环氧树脂、双马来酰亚胺、氰酸酯等热固性树脂及聚苯醚、聚四氟乙烯、聚酰亚胺等热塑性树脂基覆铜板的近况及发展进行了综述。对用于覆铜板的新型环氧树脂体系、环氧固化体系、环氧改性剂的应用进行了重点阐述,并指出发展覆铜板的关键是加强高性能树脂基体的研究,即研制具有高耐热性、优异介电性能、阻燃环保性、能阻挡紫外光和具有自动光学检测功能等特性的树脂是今后的发展方向。 关键词 覆铜板 环氧树脂 印制线路板 (CE)等热固性树脂及聚苯醚(PPO)、聚四氟乙烯(PTFE)、聚酰亚胺(PI)等热塑性树脂基覆铜板的近况及发展进行了综述。 1 EP体系 EP因具有耐化学药品性和尺寸稳定性好、无挥发物、收缩率低、粘结强度高、综合性能优异、价格适宜等优点而在PC B中得到广泛应用,用量最大的是FR-4型覆铜板(占覆铜板的90%左右[2])。传统的FR-4型覆铜板存在耐热性不佳、玻璃化转变温度(T g)较低(130℃)[3]、耐湿性不好、介质损耗高、线胀系数偏高、阻燃性差等缺点,但由于该覆铜板综合性能较优,工艺成熟,已大量工业化生产,因此在该体系基础上进行改性提高性能是制作高性能覆铜板的一条很经济很重要的途径。 1.1 新型EP体系 刘拥君[4]用含萘酚环的EP和四溴双酚A进行扩链反应得到含溴萘酚EP,以二氨基二苯砜(DDS)作固化剂制得的覆铜板的T g比FR-4基材提高了60~70℃。生益公司在FR-4配方中采用新型的多官能EP研制的S1170型覆铜板,其T g为170℃[5]。王严杰[6]用高电性能的氰酸酯树脂改性EP,制得了在高频下使用的覆铜板。苏民社[7]采用具有良好耐热性和尺寸稳定性、低吸湿性、优异介电性能的PPO改性EP制得的改性FR-4覆铜板,其介电常数低,可以在高频下应用。陶文斌[8]在FR-4配方基础上加入了一些能吸收紫外光的树脂(如壳牌公司的EPON1031EP),用兼有催化和固化作用的22甲基咪唑代替双氰胺作促进剂,制得了综合性能日本松下电工公司开发的R1566(FR-4)板和R1551(FR-4半固化)片比通用FR-4性能更优。 日本住友电木公司采用添加型的三苯基膦氧化物(TPO)作为主阻燃剂制得的无卤化覆铜板达到了标准规定的各种性能要求(特别是耐化学药品性)。日本松下电工公司采用不含亚甲基结构的多官能耐热性EP与菲型磷化合物DOPO进行反应形成三种含磷EP结构,使制得的FR-4覆铜板耐热性更高(T g>190℃)。该公司还开发了一种EP/玻纤布覆铜板,树脂主要成分是含有磷的二官能团酚化合物的树脂。该基板可以确保阻燃性能,并且在燃烧中不会产生有害的物质,它还有浸焊耐热性高、铜箔与基板粘接性高、T g 高等特性。另外美国报道了一种新型树脂改性的阻燃EP可用于制作阻燃型覆铜板。 1.2 固化体系的研究 近年来出现了一些新的如含P、S i、B、F、Mg等元素的“半无机高分子”固化剂和含磷阻燃固化剂[11]。林江珍等[12]用氯化磷酰衍生物(DCP及PPDC)及不同分子质量的聚醚胺或芳胺合成的磷化聚醚胺类EP固化剂具有一定阻燃性。聚醚胺与含磷单体的导入使得EP的柔韧与耐热性得到提高。改性的硫醇系和改性的酚系固化剂也有不同程度的发展,此外末端有硫醇基的新的嵌段共聚物近年来也大量投放市场[13]。 方克洪[14]研究了以线性酚醛树脂作固化剂,辅以多官 收稿日期:2004203229

国外环氧树脂应用研究技术进展_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国外环氧树脂应用研究技术进展 国外环氧树脂应用研究技术进展吴良义陈德萍近年来,环氧树脂新产品开发和应用技术进展迅速,特别是复合材料、涂料、粘合剂、固化剂、韧性环氧树脂、液体环氧树脂以及催化剂、促进剂等产品,这是新型材料发展的需要,我们应予以重视。 一、复合材料 1、玻璃微珠环氧树脂复合材料用硅烷偶联剂(SA) 处理玻璃微珠(GB) 表面,以双酚 A 型环氧树脂(E828) 和乙烯二胺(EDA)固化剂作为复合材料基体,胺丙基三甲氧基硅烷(APS) 、胺丙基三乙氧基硅烷(AES)和 2氢基乙基苯硅烷(AAPS) 用作处理剂,对其处理条件与机械性能关系进行了研究。 结果表明: ①复合材料的玻璃化温度(Tg) 、弯曲模量和弯曲强度达到最大值的 SA 水溶液的最佳浓度序列是 AASAESAAPS。 ②复合材料机械性能达到最大值时, SA 水溶液的水解时间依赖于 SA的无机基团,乙氧基比甲氧基需要更长的时间。 ③在基体固化程度确立的工艺条件下,对 SA和 E828 的反应性进行研究。 表面处理后的 LB 在80150℃下与 E828 混合后,再加 EDA 固化剂,以增加 SA 和 E828 反应程度。 结果为150℃比80℃混料的复合材料 Tg 高。 2、硅充填环氧树脂复合材料使用环氧树脂作为基 1 / 12

体树脂的复合材料,具有优良的机械性能,但在高温下长时间使用就会出现时间和温度的特性。 用静态抗弯和疲劳试验检验时间、温度对抗弯强度的影响。 结果表明,时间温度叠加原理适用于静态弯曲强度。 与纯基体树脂和复合材料相比,纯树脂是影响复合材料静态强度和温度特性的主要因素。 疲劳测试表明,时间、温度叠加原理适用于最初的基体树脂的弹性强度,当温度、应力 LLt 助 D 时,塑性形变影响存在,抗弯强度和模量也有所增加。 3、镶嵌减振材料的石墨环氧树脂复合层压板复合材料中共固化弹性减震材料的减振性能有效的提高了材料的减振性能,然而,当减振材料没有达到层压固化的周期时,减振性能常常不如二次粘接的复合材料高。 共固化和二次粘接样品之间,减振性不同的原因是树脂渗入到减振材料所至。 在减振材料和环氧树脂之间有隔层的样品的比没有隔层共固化FasTapell25 有效的损失系数(视频率而定) 要高 15. 7%92. 3%,而比没有隔层的共固化 ISDll2 样品至少要高 168%。 这样的减振值,接近于二次粘接所达到的值。 研究结果表明,对减振材料粘弹性大多数都受固化期温度的影响。 4、炭纤维环氧树脂复合材料研究表明,杂质对碳

高性能T800碳纤维复合材料树脂基体_陈伟明

复合材料学报第23卷 第4期 8月 2006年A cta M ateriae Co mpo sitae Sinica Vo l .23 N o .4 A ugust 2006 文章编号:10003851(2006)04002907 收稿日期:20050911;收修改稿日期:20051230通讯作者:王成忠,讲师,主要从事碳纤维复合材料的研究 E -mail :czw ang @mail.bu https://www.360docs.net/doc/267359651.html, 高性能T800碳纤维复合材料树脂基体 陈伟明,王成忠*,周同悦,杨小平 (北京化工大学碳纤维及复合材料研究所,北京100029) 摘 要: 在分析T 800碳纤维表面上胶剂的基础上,系统研究了适用于制备高性能T 800碳纤维复合材料的树脂基体,测试了树脂浇注体及其复合材料的力学性能和热机械性能,研究了树脂基体对T 800碳纤维复合材料界面性能的影响。结果表明,T 800碳纤维表面上胶剂中酯基含量较高,与缩水甘油酯类环氧树脂有良好的界面相容性,经复配和优化的树脂体系其T 800碳纤维复合材料的层间剪切强度达到138M Pa ,N O L 环拉伸强度达到2530M Pa ,玻璃化温度(T g )达到213℃,具有优异的界面性能和耐热性能。关键词: T800碳纤维;环氧树脂;复合材料中图分类号: TB332 文献标识码:A High -performance resin matrix for T800carbon fiber composites C H EN Weim ing ,WANG Chengzhong *,ZH OU To ng yue ,YANG Xiaoping (Institute of Car bo n F iber and Compo site ,Beijing U niver sity of Chemical T echnolog y ,Beijing 100029,China )A bstract : H ig h -pe rfo rmance ca rbon fiber has been wide ly used in commer cial and military fields because o f its hig h streng th ,lig ht w eig ht and high stiffness.How ever ,the applicatio n of hig he r perfo rmance carbo n fiber (e.g.T 800)wo uld cause w o rse mechanical perfo rmance s because of the ex treme inertness o f its surface caused by the alig nment of g raphitic cry sta llites.In or der to pro duce the hig h -pe rfo rmance re sin mat rix ,w hich can bond T 800carbo n fibe r (CF )well ,the sizing of T 800CF w as analyzed.T he effect o f resin matrix 's structure and property o n T800CF co mpo site wa s studied based on the analy sis.M eanw hile ,the mechanical pro pe rty and ther mal mechanical property of the resin and its car bo n fiber com po site w ere analy zed.T he results sho w that T 800sizing po ssesse s hig h content of ester ,which can possess excellent inter facial proper ties with g ly ceride epox y.W ith the help of the o ptimized resin sy stem ,the T 800CF compo site po ssesse s ex cellent interfacia l proper ties and heat -r esistance proper ties.T he inter -laminar shea r streng th (IL SS )o f the composite is 138M Pa ,the te nsile str eng th o f N O L ring s is 2530M Pa ,and the glass t ransition temperature (T g )is 213℃. Keywords : T 800carbo n fiber ;epo xy re sin ;co mpo sites 碳纤维具有高强、质轻、耐疲劳等优异性能,以其为增强材料制备的高性能树脂基复合材料广泛应用于体育器材、航空航天等领域。T300、T700等通用级碳纤维复合材料已有较多的研究与应用,而对高性能T800碳纤维复合材料的研究较少,主要集中在对T800碳纤维的表面状态的分析 [1-4] 和复合材料成型工艺上[5] 。T800较T300及T700碳纤维的单丝直径小,纤维表面性能差别较大,而且T800表面结晶结构较完整,导致其表面惰性高[6,7] 。所以,现有的常规树脂基体不适用于T800碳纤维的成型工艺,不能发挥T800碳纤维应有的 强度,T800碳纤维复合材料的强度甚至低于T300、T700碳纤维复合材料的强度[8,9]。 商品碳纤维在出厂时表面涂有一层上胶剂,这层上胶剂在碳纤维成型过程中起到保护碳纤维的作用,同时又能增强碳纤维与树脂基体的粘接强度 [10,11] 。不同牌号的碳纤维,其上胶剂可能不同, 因此,必须根据T800碳纤维的表面特性,研究适用于T800碳纤维的树脂基体。 本文作者分析了T800碳纤维的表面特性,系统研究了适用于T800碳纤维高性能复合材料的树脂体系,使T800碳纤维复合材料具有优异的界面 DOI 牶牨牥牣牨牫牳牥牨牤j 牣cn ki 牣fhclxb 牣牪牥牥牰牣牥牬牣牥牥牰

环氧树脂的改性研究发展

环氧树脂的改性研究发展 付东升 1 朱光明 1 韩娟妮2 (1西北工业大学化工系,2西北核技术研究所) 1、前言 近年来,科研工作者对环氧树脂进行了大量的改性研究,以克服其性脆,冲击性、耐热性差等缺点并取得了丰硕的成果。过去,人们对环氧树脂的改性一直局限于橡胶方面,如端羧基丁脂橡胶、端羟基丁腊橡胶、聚琉橡胶等[1—4]。近年来,对环氧树脂的改性不断深入,改性方法日新月异,如互穿网络法、化学共聚法等,尤其是液晶增韧法和纳米粒子增韧法更是近年来研究的热点。综述了近年来国内外对环氧树脂的改性研究进展。2、丙烯酸增韧改性环氧树脂 利用丙烯酸类物质增韧环氧树脂可以在丙烯酸酯共聚物上引入活性基团,利用活性基团与环氧树脂的环氧基团或经基反应,形成接技共聚物,增加两相间的相容性。另一种方法是利用丙烯酸酯弹性粒子作增韧剂来降低环氧树脂的内应力。还可以将丙烯酸酯交联成网络结构后与环氧树脂组成互穿网络(IPN)结构来达到增韧的目的。张海燕[5]等人利用环氧树脂与甲基丙烯酸加成聚合得到环氧-甲基丙烯酸树脂(EAM),其工艺性与不饱和聚酯相似,化学结构又与环氧树脂相似,得到的改性树脂体系经固化后不仅具有优异的粘合性和化学稳定性,而且具有耐热性好、较高的延伸率,固化工艺简单等优点。同时由于共聚链段甲基丙烯酸酯的引入,体系固化时的交联密度降低,侧基的引入又为主链分子的运动提供更多的自由体积,因此改性体系的冲击性能得以提高。 韦亚兵[6]利用IPN法研究了聚丙烯酸酯对环氧树脂的增韧改性。他将线性聚丙烯丁酯交联成网状结构后与环氧树脂及固化剂固化,形成互穿网络结构。该方法增加了丙烯酸丁酯与环氧树脂的相容性。该互穿网络体系具有较高的粘接强度和优异的抗湿热老化能力。 李已明[7]通过乳液聚合法首先制备出丙烯酸丁酯(PBA)种子乳液,在引发剂作用下合成出核乳液,然后在该种子上引入聚甲基丙烯酸甲酯壳层得到核壳粒子。利用该粒子来增韧环氧村脂时,由于聚甲基丙烯酸甲酯的溶解度参数与环氧树脂的溶解度参数相近,因此两者的界面相容性非常好。用SEM对其进行观察时可发现核壳粒子的壳层与环氧树脂溶为一体,而核芯PBA则在环氧基体中呈颗粒状的分散相。M.Okut[8]对PBA/PMMA核壳粒子增韧环氧基体体系进行了动态力学分析,在动态力学图谱上高温区可以发现没有与PMMA对应的玻璃化转化峰,只有与环氧树脂对应的玻璃化转变峰,这同时也证明了环氧树脂与PM MA的相容性。改性体系的缺口冲击强度显著提高,断口特征形貌由环氧树脂的脆性断裂转化为韧性断裂。 3、聚氨酯增韧环氧树脂 利用聚氨酯改性环氧树脂主要是为了改善其脆性,提高其柔韧性,增加剥离强度。聚氨酯粘接性能好,分子链柔顺,在常温下表现出高弹性。施利毅等[9]利用高分子合金的思想,采用熔体共混法制备出了PU/EP共混体系。他以异氰酸根封端的聚氨酯预聚体与环氧树脂在熔融条件下加入固化剂固化后得到共混改性体系:由于异氰酸根本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性,利用DMA分析,可发现其谱图上在m(PU):m(EP)=20:80时只有单一的宽的玻璃化转变蜂,这进一步证明了两相间的相容性。改性体系比环氧树脂的冲击强度有了大幅度提高。 目前研究最多的聚氨酯增韧环氧树脂体系是以聚氨酯与环氧树脂形成SIPN和IPN结构,这两种结构可起“强迫互容”和“协同效应”作用,使聚氨酯的高弹性与环氧树脂的良好的耐热性、粘接性有机地结合在一起,取得满意的增韧效果。 Y.Li[10]等利用双酚A环氧树脂与末端为异氰酸酯的聚醚聚氨酯低聚物进行改性接枝,二者在四氢呋喃溶液中形成均相溶液,然后在DDM固化剂作用下形成线性聚氨酯贯穿于环氧网络的半互穿网络结构。两者在用量比为

树脂基复合材料研究进展

先进树脂基复合材料研究进展 摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。 关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITES ABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology. Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology 先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。可见复合材料的应用和发展是大幅提高飞机安全性、经济性等市场竞争指标的重要保证,复合材料的用量已成为衡量飞机先进性和市场竞争力的重要标志。 纤维增强树脂基复合材料是在树脂基体中嵌人高性能纤维,比如碳纤维、超高分子量聚乙烯纤维和芳纶纤维等所制得的材料[3]。树脂基体可以分为热塑性树脂和热固性树脂两种,常用的热塑性树脂有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等;常用的热固性树脂有酚醛树脂、环氧树脂和聚醋树脂等。由于纤维增强复合材料具有高强度、高模量、低密度等一系列优良特性,其在航空航天、汽车、建筑、防护、运动器材和包装等领域已有广泛的应用。然而新材料新技术的发展使人们对纤维增强复合材料的性能有了更高的期望,所以高性能纤维增强树脂基复合材料依然是近年来的研究热点。 1 先进树脂基复合材料体系 1.1 纤维增强 纤维增强树脂基复合材料由纤维和树脂基体两部分组成,纤维起承担载荷的作用,树脂均匀传递应力,界面在应力传递的过程中起到关键的作用,是纤维与树脂问应力传递的纽带.随着对复合材料界面性能研究的不断的深入,人们发现纤维的浸润性能、纤维与树脂间的键台及纤维与树脂间的机械嵌合作用等因素对复合材料的性能影响显著,并以此设计出一系列提高界面粘接强度的方法,有效地提高了纤维复合材料的界面性能[4]. 1.1.1碳纤维(CF)增强树脂基复合材料 碳纤维以热碳化方式由聚丙烯睛、沥青或粘胶加工而成,具有高强度、高模量、优异的耐酸碱性和抗蠕变性[4J。对碳纤维增强树脂基复合材料的研究主要集中在对纤维进行改性、对树脂基体进行改性和改善纤维和树脂基体的粘接性能这几个方面。 1.1.2超高强度聚乙烯纤维(uHMPE), 超高分子量聚乙烯纤维(UHMWPE)是1975年由荷兰DSM公司采用凝胶纺丝一超拉伸技术研制成功并实现工业化生产的高强高模纤维。UHMWPE纤维中大分子具有很高的取向度和结晶程度,纤维大分子几乎处于完全伸直的状态,赋予最终纤维高强度、高模量、低密度、耐酸碱

[基体,研究进展,高性能]简说高性能树脂基体的最新研究进展

简说高性能树脂基体的最新研究进展 引言 材料是先进科技发展的重要物质基础。一代材料,一代装备,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。 目前通用的高性能树脂基体通常可以分为两大类: 热塑性和热固性树脂。典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用。 高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。按树脂应用性能特点可分为结构复合材料和功能复合材料热固性树脂。结构用热固性树脂制备的复合材料力学性能较优,一般用于航空航天飞行器的主、次承力结构,包括环氧树脂、双马来酰亚胺树脂、聚酰亚胺树脂等; 功能用热固性树脂制备的复合材料往往具有透波、吸波或抗烧蚀等特性,可作为航空航天飞行器功能结构部件,包括酚醛树脂、氰酸酯树脂等。此外,近年来国内外还发展了一些新型树脂体系,如聚三唑树脂、邻苯二甲腈树脂和有机/无机杂化树脂等。本文主要介绍高性能热固性树脂的研究进展。 1 双马来酰亚胺树脂 双马来酰亚胺树脂作为航空耐高温结构材料的主力树脂,其复合材料的耐高温性能和抗冲击损伤性能是影响应用的关键因素。北京航空材料研究院研制开发了QY260 树脂,该树脂体系经260℃固化后,Tg为325℃,其复合材料在260℃力学性能保留率55%,T300 复合材料冲击后压缩强度为202 MPa,综合性能基本达到美国氰特公司5270 双马来酰亚胺树脂的性能水平. 北京航空材料研究院张宝艳等采用烯丙基双酚A、双酚A 和E51 环氧在催化剂作用下制备一种新型改性剂,并以此改性双马树脂研制了5428、5429、6421 系列双马树脂,其树脂体系具有优异的抗冲击损伤能力,CAI 可达260 MPa。其中5428、5429 适用于热压罐和模压工艺,6421 可适用于RTM 成型工艺。 苏州大学梁国正课题组采用端氨基超支化聚硅氧烷改性双马来酰亚胺树脂,探讨了端氨基超支化聚硅氧烷含量对树脂性能的影响。研究结果表明,少量聚硅氧烷的加入不仅可以显著提高固化物的韧性,而且能有效加快树脂的凝胶时间,同时大幅度提高固化树脂的耐热性、介电性能和耐湿性。 中科院化学所赵彤课题组采用烯( 炔) 丙基醚化酚醛树脂改性双马树脂,研制了一类可

酚醛树脂纤维的研究进展详解

酚醛树脂纤维的研究进展 *** 中北大学材料科学与工程学院,山西太原,030051 摘要:简单的介绍了酚醛树脂及其重要性能、合成原理,酚醛树脂改性的目的主要是改进它脆性或其它物理性能,提高它对纤维增强材料的粘结性能并改善复合材料的成型工艺条件等。最后对酚醛树脂纤维未来的发展方向进行了展望。 关键词:酚醛树脂、纤维、改性、复合材料 引言:酚醛树脂耐热性好,机械强度高,电绝缘性和耐高温蠕变性能优良,价格低廉且成型加工性好,特别是其良好阻燃性及很少产生有害气体的特性,使该种具有近百年历史的合成材料得到进一步发展,应用于塑料、复合材料、胶粘剂、涂料和纤维等各个领域。经过改性的酚醛树脂广泛应用于高尖端技术领域。所以,酚醛树脂纤维很受欢迎的。 一、酚醛树脂的简介 酚醛树脂也叫电木,又称电木粉,英文名称:phenolic resin, 简称PF。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,比重 1.25~1.30,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。液体酚醛树脂为黄色、深棕色液体。 酚醛树脂由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。因选用催化剂的不同,可分为热固性和热塑性两类。热固性酚醛树脂具有很强的浸润能力,成型性能好,体积密度大,气孔率低,用于耐火制品,该树脂在15℃- 20℃下可保持三个月。酚醛树脂制品优点主要是尺寸稳定,耐热、阻燃,电绝缘性能好,耐酸性强,它主要应用于运输业、建筑业、军事业、采矿业等多种行业,应用广泛。在NH4OH、NaOH或NaCO3等碱性物质的催化下,过量的甲醛与苯酚(其摩尔比大于1)反应生成热固性酚醛树脂。其反应过程如下:在碱性催化剂存在下使反应介质PH大于7,苯酚和甲醛首先发生加成反应生成一羟甲基苯酚。室温下,在碱性介质中的酚醇是稳定的,一羟甲基苯酚中的羟甲基与苯酚上的氢的反应速度比甲醛与苯酚的邻位和对位上的氢的反应速度小,因此一羟甲基苯酚不容易进一步缩聚,只能生成二羟甲基苯酚和三羟甲基苯酚。热塑性酚醛树脂(或称两步法酚醛树脂),为浅色至暗褐色脆性固体,溶于乙醇、丙酮等溶剂中,长期具有可溶可熔性,仅在六亚甲基四胺或聚甲醛等交联剂存在下,才固化(加热时可快速固化)。主要用于制造压塑粉,也用于制造层压塑料、清漆和胶粘剂。 由于采用酚、醛的种类、催化剂类别、酚与醛的摩尔比的不同可生产出多种多样的酚醛树脂,它包括:线型酚醛树脂、热固性酚醛树脂和油溶

吸油材料的吸油机理

高吸油树脂的研究及应用进展 1高吸油树脂的吸油机理 高吸油树脂是通过亲油基和油分子间产生的范德华力来实现吸油目的,其吸油机理是高分子链段的溶剂化过程。将高吸油树脂投入油中,开始阶段是分子扩散控制;吸入一定量的油后,油分子与高分子链段发生溶剂化作用,此时仍是分子扩散控制;当吸入的油分子足够多时,溶剂化作用充分,链段伸展开来,网络中只有共价键交联点存在,此时由热力学推动力推动;当高分子充分溶胀,链段伸展到一定程度,会慢慢回缩,即存在弹性回缩力,最终达到热力学平衡[1]。因此,低交联的聚合物中亲油基和油分子间的相互亲和作用是高吸油树脂的吸油推动力。故改变吸油树脂的网络结构,提高亲油基团与油分子之间的相互作用力,是改善树脂吸油性能的关键[3]。 高吸油树脂的研究现状 2高吸油树脂的分子结构及吸油机理 2.1 分子结构 高吸油树脂的微观结构特征是低交联度聚合物。交联度的形成主要有以下3种方式。 2.1.1化学交联 化学交联是长链大分子间通过共价键结合起来,形成一种三维空间的网状结构。目前合成的高吸油树脂主要以化学交联为主,其共价键的键能最大,化学交联的形式最为稳固,形成的交联网状结构也就稳定,难以破坏,相应的树脂性能也最稳定。 2.1.2离子交联 长链大分子之间通过金属离子相互联系在一起,形成长链大分子的缠结。2.1.3物理交联 利用分子间力使其相互缠绕在一起。一种是氢键结合,长链大分子上带有羟基或其他极性基团,相互吸引而使长链大分子相互缠结在一起;另一种是分子间的范德华力,长链大分子的链段间相互吸引而缠结。 近两年,浙江大学对在强化学交联中引入物理交联进行了研究,证明了这样的交联可以大大提高高吸油树脂的吸油和保油性能。 2.2 高吸油性树脂的吸油机理 高吸油性树脂由亲油性单体制得的低交联度聚合物,具有三维交联网状结构,内部有一定的微孔。吸油时,树脂分子中的亲油基链段与油分子发生溶剂化作用,油分子进入到树脂的网络结构中足够多时,高分子链段开始伸展,树脂发生溶胀,但是由于交联点的存在,高分子链段伸展到一定程度后慢慢回缩,直到平衡。高吸油性树脂的吸油机理与高吸水性树脂的吸水机理相似,但是后者除范德华力外还可利用氢键吸水,正是因为这一区别,高吸油性树脂不可能像高吸水

环氧树脂增韧改性技术研究进展和新方法及其机理_刘野

综术与专论 S UMMAR I Z ATION AND SPEC IAL COMMENT 收稿日期:2007-01-03 作者简介:刘野(1979-),男,黑龙江巴彦人,研实员,研究方向胶黏剂测试。 环氧树脂增韧改性技术研究进展和新方法 及其机理 刘 野, 杜 明 (黑龙江省石油化学研究院,黑龙江哈尔滨150040) 摘要:简单介绍了环氧树脂技术的研究进展和近期的主要应用,并概述了环氧树脂的改性技术。主要介绍了增韧改性的一些新方法,包括热塑性树脂增韧、互穿网络增韧、热致性液晶增韧、原位聚合增韧、核壳结构聚合物增韧等,主要介绍了用橡胶弹性体、热塑性树脂、刚性粒子、核壳型结构聚合物来增韧环氧树脂,以及环氧树脂绝缘性、耐湿热性和阻燃性等的改进方法,并对其中的增韧机理作了总结分析。最后本文综述了环氧树脂增韧改性技术发展及其未来展望。 关键词:环氧树脂;增韧;改性 中图分类号:T Q 433.437 文献标识码:A 文章编号:1001-0017(2007)03-0197-05 Research Pr ogress in Modificati on Techniques,Ne w Methods and Mechanis m of T oughening Epoxy Resins L I U Ye and DU M ing (Heilongjiang Institute of Petroche m istry,Harbin 150040,China ) Abstract:Research p r ogress and recent app licati on of epoxy resin are summarized aswell as the modificati on techniques .The ne w methods of t ough 2ening epoxy resins,such as ther mop lastic resin,for m ing inter penetrating net w orks poly mer,in -situ poly merizati on,ther motr op ic liquid crystalline poly 2mer and core -shell latex poly mer are intr oduced .Novel methods of t oughening epoxy resin with rubbers,elast omers,ther mop lastic resins,rigid particles and core -shell structure poly mers are detailed .And the methods of i m p r oving insulati on,resistance t o wet heat and fla me retardati on of epoxy resin are als o intr oduced as well as their mechanis m s .The devel opment and p r os pect of modificati on techniques of epoxy resin are p resented at the end of this pa 2per . Key words:Epoxy resin;t oughening;modificati on 前 言 环氧树脂是一类重要的热固性树脂,是聚合物 复合材料中应用最广泛的基体树脂。环氧树脂具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能,以及收缩率低、易加工成型和成本低廉等优点,在胶黏剂、电子仪表、轻工、建筑、机械、航天航空、涂料、电子电气绝缘材料 及先进复合材料等领域得到广泛应用[1] 。常见的环氧树脂主要有2种类型,一种是双酚A 缩水甘油醚型环氧树脂。通常被称为双酚A 环氧树脂,占环氧树脂总产量的90%,可由2,2’-双对羟基苯基丙烷(双酚A )与环氧氯丙烷在碱存在下聚合而得;另一种是高官能度环氧树脂(分子中具有2个以上环氧基)。它可由线型酚醛树脂和环氧氯丙烷聚合得 到,也可由4,4′-二氨基二苯甲烷或4,4′-二胺基二苯醚与环氧氯丙烷缩合得到。由于纯环氧树脂具有高的交联结构,因而存在质脆,耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制,因此对环氧树脂的改性工作一直是中外研究的热门课题。 传统的增韧方法,如用端羧基丁腈橡胶等橡胶弹性体来改性环氧树脂,在基础研究和应用开发方面都取得了较大成果,但是,这种改性的结果常常是冲击强度得到显著提高,而相应固化物的耐热性和模量随之下降,因而往往不尽人意。近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I P N )体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合

水性环氧树脂固化剂的研究进展

龙源期刊网 https://www.360docs.net/doc/267359651.html, 水性环氧树脂固化剂的研究进展 作者:高念潘恒管蓉 来源:《粘接》2016年第09期 摘要:概述了水性环氧固化剂改性的原理,介绍了水性环氧固化剂改性的3种方法,同时综述了第Ⅰ代、第Ⅱ代水性环氧固化剂的国内外研究进展,并对水性环氧固化剂的发展趋势进行了展望。 关键词:环氧树脂;水性环氧固化剂;改性;研究进展 中图分类号:TQ323.5 文献标识码:A 文章编号:1001-5922(2016)09-0062-04 水性环氧涂料体系在保留传统环氧体系所具有的优异附着性、热稳定性、耐化学品性、绝缘性等特性的基础上,以水为分散介质,不含或只含有少量有机溶剂,是一类环境友好的高分子材料。随着对环境保护的要求日益严格,不含挥发性有机溶剂(voc)或低挥发性有机溶剂、不含有害空气污染物(NHAP)的水性环氧体系已成为当前研究的热点。在环氧树脂固化剂中,胺类固化剂种类多、用量大、用途广,但是一般的胺类固化剂在常温下挥发快、毒性大、固化速度较快、配比要求严格、甚至会吸收二氧化碳降低固化效果。而水性环氧固化剂是经过对传统的胺类固化剂改性而得,它克服了未改性胺类固化剂的缺点,不影响涂膜的物理和化学性能,且以水为溶剂,VOC含量符合环保要求。本文概述了水性环氧固化剂的改性原理,并介绍了水性环氧固化剂改性的几种方法,同时介绍国内外水性环氧树脂固化剂的研究现状。 1 水性环氧固化剂的改性原理 要使环氧树脂与固化剂之间能充分混合、固化,就要使2者的溶解度参数相匹配。溶解度参数大的固化剂与疏水性的环氧树脂间的溶解度参数差异较大,得到的涂膜的综合性能不好;而溶解度参数小的固化剂与环氧树脂溶解度参数匹配,但它难溶于水,不能稳定地分散在水中,因此,需对其进行改性。水性环氧固化剂改性的原理是对多元胺进行改性,使其成为具有亲环氧树脂结构的水性环氧固化剂,同时该固化剂又作为阳离子型乳化剂完成对环氧树脂的乳化。用该方法制备的水性环氧树脂乳液具有良好的稳定性,并且由于环氧树脂组分不需进行亲水改性,可以保证涂膜的耐化学药品性能良好。 2 水性环氧固化剂改性方法 常用的水性环氧固化剂大多为多元胺或其改性产物。其中,改性产物主要利用其分子中胺基上的活泼氢与环氧树脂分子中的环氧基发生反应进行改性。多元胺常用的改性方法有以下3种:(1)由多元胺与单脂肪酸反应制得的酰胺化的多胺;(2)由二聚酸与多元胺进行缩合而成的聚酰胺;(3)由多元胺与环氧树脂加成得到的多胺一环氧加成物。这3种方法均采用在

相关文档
最新文档