减阻剂在油气管道上的应用

减阻剂在油气管道上的应用
减阻剂在油气管道上的应用

减阻剂在油气管道上的应用

摘要:油气在输送过程中与管壁之间的摩擦阻力是油气管道压降的主要原因,减阻剂能够降低摩擦阻力,减小压降。本文总结了天然气、原油与成品油管道减阻剂的作用机理以及使用特点,减阻剂对在新管道设计以及运行管道管理的影响。天然气管道与油品管道减阻剂在作用机理以及使用要求上有各自的特点。

关键词:减阻剂,天然气,油品,管道

1.引言

天然气、成品油、原油在管道输送过程中与管壁之间存在摩擦阻力,该阻力为管道压降的主要原因。降低管道压降,对改善管道的设计与操作、提高企业效益有重要的积极作用。对新建管道,可以在管道铺设前内涂层[1,2]的方式降低管壁粗糙度,降低流体流动时的摩擦阻力。对于已建成的管道,重新涂敷内涂层难度很高,采用减阻剂为常用且有效的方法。天然气管道与油品管道中使用的减阻剂均能对紊流下的流动起到减阻作用,但作用机理与使用方法各有特点。

2.天然气管道减阻剂

天然气管道中的流动一般为紊流,靠近管壁处气体分子会产生径向运动,造成能量的额外损耗。天然气减阻剂能够减弱气体的径向脉动,从而降低摩擦阻力。天然气减阻剂分子一端为极性端,另一端为

输油管道防腐

输油管道防腐 随着国民经济的发展,管道输油的优点日益突显出来。输油管道基本上都采用碳素钢无缝钢管、直缝电阻焊钢管和螺旋焊缝钢管。输油管道的敷设一般采用地上架空或埋地两种方式。但无论采用那种方式,当金属管道和周围介质接触时,由于发生化学作用或电化学作用而引起其表面锈蚀。这种现象是十分普遍的。金属管道遭到腐蚀后,在外形、色泽以及机械性能方面都将发生变化,影响所输油品的质量,缩短输油管道的使用寿命,严重可能造成泄漏污染环境,甚至不能使用。由于金属腐蚀而引起的损失是很大的,因此,了解腐蚀发生的原因,采取有效的防护措施,有着十分重大的意义。根据金属腐蚀过程的不同点,可以分为化学腐蚀和电化学腐蚀两种。 1.化学腐蚀 单纯由化学作用而引起的腐蚀叫化学腐蚀。例如,金属裸露在空气中,与空气中的O2 、H2S、 SO2、 CI2等接触时,在金属表面上生成相应的化合物(如氧化物、硫化物、氯化物等)。通常金属在常温和干燥的空气里并不腐蚀,单在高温下就容易被氧化,生成一层氧化皮(由FeO、Fe2O3、Fe3O4组成),同时还会发生脱碳现象。此外,在油品中含有多种形式的有机硫化物,环烷酸它们对金属输油管道也会产生化学腐蚀。 2.电化学腐蚀 当金属和电解质溶液接触时,由电化学作用而引起的腐蚀叫做电化学腐蚀。它和化学腐蚀不同,是由于形成了原电池而引起的。金属管道与含有水分的大气,土壤、湖泊、海洋接触。这些介质中含有CO2、SO2、HCI、NaCI及灰尘都是不同浓度的电解质溶液,金属本身由于含有杂质,由于铁元素和杂质元素的电位不同,所以当钢铁暴露于潮湿空气中时,由于表面的吸附作用,就使铁表面上覆盖一层极薄的水膜。水的电离度虽小,但仍能电离成H+离子和OH–离子,在酸性介质的大气环境中H+的数量由于水中溶解了CO2、SO2等气体而增加。因此,铁和杂质就好像放在含有H+、OH–、HCO3、HSO3-等离子的溶液中一样,形成了原电池。铁为阳极,杂质为阴极。 由于铁和杂质紧密地接触,电化学腐蚀作用得以不断进行。铁变成铁离子进入水膜,同时多余的电子移向杂质。水膜中的Fe2+离子和OH-离子结合,生成Fe(OH)2附着在铁表面,这样铁便很快遭受腐蚀。其反应如下: 阳极(铁) Fe=Fe2++2e Fe2++2OH-=Fe(OH)2 然后,Fe(OH)2被空气中的氧气氧化为Fe(OH)3。Fe(OH)3及其脱水产物Fe2O3是红褐色铁锈的主要成分。该腐蚀实际上是在酸性较强的情况下进行的。 在一般情况下,如果铁表面吸附的水膜酸性很弱或是中性溶液,则在阳极也是铁氧化成Fe2+离子,在阴极主要是溶解于水膜中的氧得到电子: 阳极 2Fe=2Fe2++4e 阴极 O2+2H2O+4e=4OH- 所以介质中不仅H+离子能引起金属腐蚀,含有氧时也能腐蚀。 3.腐蚀的防止 地下管道的腐蚀主要有电化学腐蚀、杂散电流腐蚀和微生物的腐蚀等。影响金属腐蚀的因素包括金属的本性和外界介质两个方面。就金属本身来说,金属越活泼就越容易失去电子而被腐蚀。外界介质对金属腐蚀的影响也很大,如果金属在潮湿的空气中,接触腐蚀性气体或电解质溶液,都易于腐蚀。输油管道的防腐一般采用如下方法: 3.1上管道外防腐 根据以往经验,普遍认好以红丹油性防锈漆、红丹醇酸防锈漆等作底漆。这些漆防绣

油田化学剂分类与命名

ICS 75.020 E 13 Q/SH 中国石油化工集团公司企业标准 Q/SH 0242—XXXX 代替Q/SH0242-2009 油田化学剂分类及命名规范 Specifications for classification and nomenclature of oilfield chemical agents (报批稿) XXXX-XX-XX发布XXXX-XX-XX

前言 本标准代替Q/SH 0242-2009 《油田化学剂分类及命名规范》。 本标准与Q/SH 0242-2009 相比主要技术差异为: ——增加了油田化学剂的定义。 ——增加了分类原则,增加了分类类型及化学名称的英文名称。 ——增加了命名原则,完善了命名方法。 ——删除了油田化学剂包装标志部分。 ——修改了油田化学剂的分类,“采油用化学剂”中增加了“防砂用化学剂”、“注水用化学剂”、“调剖堵水用化学剂”、“采油用其他化学剂”。 ——钻井液处理剂分类中将原标准中的“1 通用化学类化学剂”单独列出。删除了原标准中的“13 表面活性剂”、“17 高温稳定剂”,“9 页岩抑制剂”修订为“5 抑制剂”,增加了“4 防塌剂”、“14 屏蔽暂堵剂”和“18 其他类”。 ——油井水泥外加剂分类中,“5 降滤失剂”修订为“3 降失水剂”、“7 减轻剂”修订为“10 减轻外掺料”、“8 防漏剂”修订为“11 堵漏外掺料”,“9 加重剂”修订为“9 加重外掺料”、增加了“6 增强剂”、“7 膨胀剂”、“12 热稳定剂”、“13 其他类”。 ——酸化/酸压用化学剂分类中将原标准中的“1 酸化用防淤渣剂”修订为“15 抗酸渣剂”、“8 酸化用铁稳定剂”修订为“12 铁离子稳定剂”、“9 酸化用缓速剂”修订为“13 化学缓速剂”,增加了“2 交联剂”、“3 降阻剂”、“5 缓蚀增效剂”、“10 转向剂”、“14 互溶剂”和“17 其他类”。 ——压裂用化学剂分类中删除了原标准中的“3 压裂用缓蚀剂”和“11 压裂用支撑剂”,“8 压裂用减阻剂”修订为“3 降阻剂”、“14 转向剂”修订为“14 缝高控制剂”,增加了“5 抗高温稳定剂”、“6 防乳化剂”、“10 起泡剂”、“11 泡沫稳定剂”、“12 消泡剂”、“13 暂堵剂”和“16 其他类”。 ——防砂用化学剂分类中将原标准中的“6 采油用固砂剂”归入“防砂用化学剂”分类中的“固砂剂”,“防砂用化学剂”中增加了“稠化剂”、“交联剂”、“固化剂”、“抑砂剂”、“偶合剂”、“破胶剂”、“滤饼溶解剂”“pH调节剂”和“其他类”。 ——注水用化学剂分类中增加了“增注剂”、“氧化解堵剂”。 ——调剖堵水用化学剂分类中将原标准中的“2 采油用调剖剂”和“9 采油用堵水剂”合并为“调剖堵水剂”,增加了“发泡剂”、“暂堵剂”、“其他类”。 ——采油用其他化学剂分类中将“1 采油用解堵剂”删掉;将“2 采油用调剖剂”和“9 采油用堵水剂”合并为“调剖堵水剂”归入调剖堵水用化学剂;将“6 采油用固砂剂”和“7 采油用防砂剂”归入防砂用化学剂;将“8 采油用稠油乳化降黏剂”修改为“降黏剂”;增加了“防水锁剂”、“消泡剂”和“示踪剂”。 ——提高采收率用化学剂分类中删除了原标准中的“4 提高采收率用流度控制剂”,将“8 提高采收率用薄膜扩展剂”修改为“9 润湿反转剂”,将“9 提高采收率用稠化剂”修改为“1 增黏剂”,增加了“4 黏度稳定剂”、“5 杀菌剂”和“10 高温驱油剂”。 ——油气集输用化学剂分类中删除“4 流动性改进剂”、“5 抑泡剂”、“10 除垢剂”、“12 防蜡剂”、“14清蜡剂”、“16 杀菌剂”、“原油消泡剂”,增加“10 防垢剂”。 ——油田水处理用化学剂分类中删除“3 助滤剂”、“6 除油剂”,增加“8 反相破乳剂”。 本标准由中国石油化工股份有限公司物资装备部提出。 本标准由中国石油化工集团公司科技部归口。 本标准起草单位:中国石化石油工程技术研究院、胜利油田分公司采油工艺研究院、中原石油工程有限公司钻井工程技术研究院。

2021年油气管道安全保护距离摘要

油气管道安全保护距离摘要 欧阳光明(2021.03.07) 2012年2月

*欧阳光明*创编2021.03.07 目录 一、油气站场与建筑物、企业、交通线等安全距离1 二、油气管道与建(构)筑物的最小间距2 三、油气管道与其他管道、地下电缆敷设安全间距3 四、油气管道与架空送电线路平行的安全间距5 五、油气管道与交流接地体的安全距离6 六、油气管道与铁路安全间距7 七、油气管道与公路的安全间距8 八、油气管道穿越与其他工程安全间距9 九、油气管道跨越与其他工程安全间距10 附录111 法律、行政法规、地方法规11 附录214 技术规范(供参考)14

*欧阳光明*创编2021.03.07 中华人民共和国石油天然气管道保护法 “第三十一条:在管道线路中心线两侧和管道法第五十八条第一项所列管道附属设施周边修建下列建筑物、构筑物的,建筑物、构筑物与管道线路和管道附属设施的距离应当符合国家技术规范的强制性要求”。 一、油气站场与建筑物、企业、交通线等安全距离 国内现状: GB50183《石油天然气工程设计防火规范》对石油天然气站场(管道附属设施)与周围居民居住区(建筑物、构筑物)、相邻厂矿企业、交通线(铁路、公路、电力线路)等的防火间距,见表1.1(标准中表4.0.4)所示。根据GB50183的规定,输油气管道站场均属于五级站场。放空管按可能携带可燃液体的火炬间距减少50%。 表1.1石油天然气站场区域布置防火间距(m) 等作业需向县级以上管道保护主管部门申请,而GB50183《石油天然气工程设计防火规范》对爆炸作业场地(如采石场)的防火间距规定为300米,距离偏短。 《公路安全保护条例》第十八条规定,除按国家有关规定设立的为车辆补充燃料的场所、设施外,在(1)公路用地外缘起向外100米;(2) 公路渡口和中型以上公路桥梁周围200米;(3)公路隧道上方和洞口外100米,禁止设立生产、储存、销售易燃易爆、剧毒、放射性等危险物品的场所和设施。虽没有明文规定不许禁止埋设油气管道,但油气站场(尤其是首末站)属于储存易燃易爆危险品设施,应执行《公路安全保护条例》的规定,GB50183与《公路安

接地装置的种类及作用

接地的种类及作用探讨 电化四段张彬 摘要:在供电系统运行中接地装置起着至关重要的作用。它不仅是电力系统的重要组成部分,而且还是人身安全及保护用电器的主要措施。在日益发生的自然雷害面前我们特别论述防雷的危害性、重要性、必要性。 关键词:供电系统接地防雷、电磁脉冲防护LEMP 电子(逻辑)接地 正文: 通过近一段时间在对现场设备及临时电网的维修与维护,发现许多问题的发生及一些最终的解决方法都是与接地有密切关系的,也让我彻底改变了从前对供电系统及用电设备接地不重视、有时候则有要不要没有关系的想法,让自己总是停留在一个业余者的角度上。通过认真地请教、查询资料等途径,来充实自己。在电力系统运行中接地装置起着至关重要的作用。它不仅是电力系统的重要组成部分,而且还是保护人身安全及用电器的主要措施。供电系统和电气设备的某一部分与大地做金属性的良好接触,称为接地。按接地的目的可分为:工作接地、保护接地、保护接零以及防雷接地。特别论述配电网接地制式与建筑物电气设备的电磁兼容问题;接地网的电阻值及接地网的结构在防雷中的作用;外部防雷和内部防雷两个子系统的放电过程;指出了接地技术中的宣传误导。 一、接地分类及作用 1、工作接地 在正常或异常情况下,为了保证正常且可靠地运行,必须将供电系统中的某点与地做可靠的金属连接,称为工作接地。如变压器的中性点与接地装置的可靠金属连接等。其作用:①降低人体的接触电压,在中性点对地绝缘的系统中,当一相接地,而人体又触及另一相时,人体将受到线电压,但对中性点接地系统,

人体受到的为相电压。②迅速切断故障设备。在中性点绝缘的系统中,一相接地时,接地电流仅为电容电流和泄漏电流,数值很小,不足以使保护装置动作以切断故障设备。在中性点接地系统中,发生碰地时将引起单相接地短路,能使保护装置迅速动作以切断故障。③减轻高压窜人低压的危险。 2、保护接地 在正常工作状态下,各种电器的外壳是不带电的。但由于某些原因,造成设备绝缘损坏后可能使外壳带电,人或动物一旦接触到这种外壳带电的设备就有触电的危险。为了防止这种现象出现时危及人身安全,将电器设备正常时不带电的金属外壳、配电装置的金属部分同大地做良好的电气连接,称作保护接地。图1,设备外壳不接地。当故障时,由于带电线路对地电容存在,将产生电容电流。又因为设备外壳与大地间的接触电阻较大,若忽略其分流作用,则故障电流将全部由地中经人体返回设备外壳。即人体中的电流为:Ir=Ijd。由于人触电的危害程度主要决定于通过人体的电流。人体最小的感觉电流工频约为1mA,直流约为5mA。当工频电流超过10mA时,手已难于摆脱电源;当超过50mA且触电时间超过15~30s,即可致命,所以,在绝缘损坏时,人碰触到电器设备外壳是很危险的。若要使人们触及绝缘损坏的电器设备外壳不遭受触电的危险,关键是减少设备外壳与大地间的接触电阻,使流过人体的电流在安全要求的允许范围内。保护接地的目的就在于此。如图2所示,采用保护接地后,流入人体的电流为:Ir=Ijd*rjd/(r r+r jd)。式中:Ijd----接地电流(A);Ir----流入人体电流(A); rjd----接地电阻(Ω);r r----人体电阻(Ω)。由于人体电阻远大于接地电阻,则上式可以简化为:Ir= rjd/r r。流过人体的电流Ir与接地电阻rjd和接地电流Ijd成正比。因此,为了保证人身安全,应设法尽量减少接地电阻和故障电流的值。

输油管道减阻剂

输油管道减阻剂 减阻剂是一种能减少流体在输送时所受阻力的试剂。多为水溶性或油溶性的高分子聚合物。 简介 例如水溶性的聚环氧乙烷,只用25毫克/千克就能使水在管道中所受阻力下降75%,出水速率增加好几倍,用于灭火或其他紧急用水的场合;油溶性的聚异丁烯用量为60毫克/千克时,即可使原油在管道中的输送能力大大提高,起到增输节能的作用。 用于降低流体流动阻力的化学剂称为减阻剂(drag reducing agent),简称DRA。减阻剂广泛应用于原油和成品油管道输送,它是在特定地段提高管道流通能力和降低能耗的重要手段。流体的摩擦阻力限制了流体在管道中的流动,造成管道输量降低和能量消耗增加,而高聚物减阻法是在流体中注入少量的高分子聚合物,使之在紊流状态下降低流动的阻力。 发展历史 20世纪60年代末,美国Conoco公司研制成CDR-101型减阻剂,1972年取得专利,1977~1979年间首次商业化应用于横贯阿À­斯加的原­油管道的越站输送及提高输量方面,并取得巨大成功。1981年又研制成功CDR-102型减阻剂,比CDR-101型的性能成数倍地提高。20世纪80年代初,开展了成品油管道的减阻试验,用于汽油、煤油、柴油和NGL、LPG的减阻,到1984年正式在成品油管道上应用。70年代中期,美国Shellco公司和加拿大Shell Inc公司提出申请减阻剂专利。1983年,美国Atlantic Richfield co公司研制出Arcoflo减阻剂产品,加入5ppm即可达到20%的减阻效果。 减阻聚合物的生产条件很难控制,国际上只有极少数公司垄断了这项技术,其代表是美国的Conoco公司和Baker Hughes公司,他们的产品基本上代表了目前世界上减阻剂生产工艺的最高水平和发展方向。 1982年,我国浙½­大学开始国产减阻剂的开发和试验工作,1985年进行了EDR 型减阻剂的试生产,并在国内原­油管道上进行了中型试验,产品性能已达到国外70年代初期水平。1984年,成都科技大学也发表了PDR型减阻剂的研制成果,以上两校的试验,都曾采用过柴油和煤油等成品油。近年来,中国石油管道公司管道科技研究中心开展了减阻剂的研究工作,并取得了成功,其EP系列减阻剂产品的性能已经­达到国际同类产品的

减阻剂对血液循环的作用

减阻剂对血液循环的作用 刘强邵洪 关键词减阻聚合物 微循环 多糖类 中国图书资料分类号 1 年× 开创了对减阻现象和减阻剂的研究?摩擦压降 或摩擦阻力 限制了流体在管道中的流动 造成管道输量或能量消耗增加?在流体中注入少量的高分子聚合物 能在湍流状态下降低流动阻力 这种效应即高聚物减阻?用于降低流体流动阻力的化学制剂即为减阻剂 或减阻聚合物 ∏ 简称? ° ?目前 有关聚合物减阻现象的研究已经成为一门涉及到流体力学!流变学!高分子溶液和高分子化学的边缘学科 而减阻剂的应用也成为独特的综合性工程? 减阻剂对血液循环的作用及其机制 研究发现某些大分子物质具有一定的减阻性能和黏弹性 注入血液后 在极低用量 纳摩尔级 的情况下 即可明显改善不同动物模型的血流动力学 如 在不升高动脉血压的情况下 增加心输出量!动脉血流速度和组织微循环灌注 降低出血性休克模型动物的死亡率 增加和改善正常小鼠以及糖尿病模型动物的微循环 明显提高动物的运动能力 并且减少严重缺氧导致的死亡率?研究发现 无论是天然来源的或合成的不同化学结构的? ° 分子量在 ?以上 在实验中都具有相似的改善血液循环的作用 减阻性能 因此 在血管内发挥减阻性能!增加组织灌注的性能 极有可能由? ° 的物理性质所决定 而不依赖其化学特性≈ ? 自上世纪 年代 欧美一些国家 前苏联和美国等 的学者开始对线性大分子增加血液的流动性这一现象展开了研究 并尝试阐述其机制? 认为这些溶于血液的低浓度大分子物质能有效减少血液湍流的/阻力0 使保持一定的流速所消耗的能量少于纯溶剂流体 即/× 0?° 等发现秋葵中的多糖成分能明显改善血流动力学和血液流变学 提高心输出量 他们认为多糖降低了血液的黏滞度 从而带来此效应 然而 血液黏滞度的降低只能归咎于血细胞聚集程度的减少 没有其他物质既能减少血细胞的聚集 又能改变血流动力学 而且 血液在血管中并非呈湍流的形式流动 所以? ° 对血液循环的改善和促进作用 很难单纯地用上述机理完全解释?有实验显示 很少量的减阻聚合物可以显著减低血管阻力 同时血管张力并没有改变 能够增加外周血管的血流速度 ? 倍 这个现象很难用血管扩张的效应来解释 模拟真实血流动力学的状态下 发现? ° 明显减轻由于血管分叉和不同血管几何外形造成的血流流分离的程度 减少局部漩涡的产生和血液流动的阻尼 降低流体流动的能耗 在相同的血压下 血液流动更为顺畅 由于? ° 的作用 降低了沿动脉血管血压的压力降低值 从而前毛细血管的血压上升 促进更多功能性毛细血管网的开放 增加组织的血液灌注 改善微循环?此外 ? ° 可能对位于微血管中红细胞的流动行为有重要影响?研究发现 红细胞悬液在微管里流动时 在近管壁处会产生一个相对无细胞的区域 这种现象被称为/血浆撇清0 2 加入? ° 可以明显减少靠近管壁处的不含红细胞血浆层的厚度 使红细胞重新分布 更加贴近血管壁 使得在动脉及毛细血管中血液 气体交换更便利 另外 由于? ° 衰减了/血浆撇清0效应 造成血管局部的红细胞计数增加 相应血液的粘滞度上升 血流与管壁间的剪切力增大 可以促进微血管释放血管扩张因子 进而增加侧支循环和组织的灌流量?? ° 增加微循环的血流速度 还与其改变红细胞的变形能力有关 √ 等把聚环氧乙烷 ? °∞ )))一种减阻聚合物加入鼠红细胞悬液后 经过特别设计的滤过器 采用红细胞滤过指数 ? ≤? 评价红细胞的变形能力 结果显示? ° 显著提升了红细胞的 ≤? 1 ? 1 ?σ 1 ? 1 Π 1 在某些病理状况下 ? ° 减少了在毛细血管中红细胞的淤滞现象 增加血液流速和氧气供应 组织代谢得以部分恢复?? ° 单独使用可以明显改善机体大体血液循环和组织微循环 在临床使用的人造血液 含全氟化合物 中添加微量? ° 能明显增加氧气载体输送气体的能力 提供给组织相对正常的供氧水平?器官和组织的氧供应量 ? 可用公式? ??≤表示 ?为血液流速 ≤为每单位体积血液氧含量?加快血液循环 改善组织灌注 可以提高氧气载体的工作效率 在大大减少全氟化合物使用 ? 减至 ? 的同时 仍能使组织获得满意的氧气供给?因此 这一方法可以减少氧气载体的使用 降低生产成本 更重要的是降低了过多使用氧气载体而对人体 作者简介 刘强 医学硕士?主要从事创伤救治和药物开发研究 作者单位 成都地奥集团学术部 刘强!邵洪

关注油气管道安全管理示范文本

关注油气管道安全管理示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

关注油气管道安全管理示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近年来,我国有关中央企业在陆上石油、成品油和天 然气管道(以下简称油气管道)管理方面不断落实安全生 产主体责任,深入排查治理隐患。同时,在不断学习国际 先进经验、借鉴经实践验证的成熟管理方法基础上,积极 开展油气管道运行保障技术的研发和推广工作,为油气管 道的安全运行保驾护航。 在体制机制建设上,有关中央企业按照《石油天然气 管道保护法》《安全生产法》《特种设备安全法》以及 《危险化学品安全管理条例》等法律法规要求,建立了油 气管道配套管理、咨询机构,健全了管理机制,并将国家 法律法规标准与企业本身管理制度、技术要求等进行融 合,形成了适合企业自身实际的管理体制机制。

在安全意识培养上,有关中央企业通过确保全员培训教育,全面提高员工安全行为能力和综合素质,建立员工共同认可的安全价值观和行为规范,增强员工对生产过程的主观责任意识,接受员工的监督,营造自我约束、自主管理和团队管理的安全文化氛围。 在推进科技进步上,有关中央企业针对国内油气管道的情况,初步提出了以风险控制为核心的管理理念,探索了事故的预防性管理方法,搭建了管理体系框架,提升了管道风险防控和现场处置能力,研究探索了一系列安全技术,并在实际生产过程中推广应用,为保障管道安全高效运行发挥了积极作用。 在加强日常管理上,有关中央企业在重点防护管线或管段(人口密集区、打孔盗油频发段、地质灾害频发段、防恐重点部位、老原油管道)加强油气管道巡护,对部分因运行日久造成腐蚀老化等现象的老旧管道进行了更新改

页岩气清水压裂工艺中的降阻剂的应用

Exploration & Production 杂志 Aug 1, 2010 一种降摩阻聚合物在 Haynesville 页岩气的降阻水压裂工艺中的应用 摘要:本文介绍了一种新型高粘度合成聚合物,在路易斯安那北部的Haynesville 页岩气井的修井和降阻水压裂作业中使用,在恶劣工况条件下,该聚合物提供了良好的降摩阻性能。 作者: Dennis Goldwood 和Shane Bainum (Drilling Specialties Co.钻井特殊化学品公司) Tayvis Dunnahoe 高级主编 在路易斯安那北部的Haynesville 页岩地层,井深在3,200~4,115 m 。该地区的平均垂直井深为3,353 m ,并沿横断面延伸1,830 m 。在这样深的地层,井下的环境十分恶劣。Haynesville 页岩层,井底温度平均在157?C ,最高可达193?C 。伴随高温的同时还存在高压,Haynesville 页岩层的处理压力达到6,000 至 15,000 psi 。 现场在采用连续油管进行修井作业的同时,还要进行降阻水压裂作业。为了保证作业的成功,需要采用一种性能可靠的降摩阻剂。该降摩阻剂的采用,可以充分的降低操作中的循环摩阻压力,在相同泵数的情况下,在更高压的压力条件下能够进行压裂作业。这对于连续油管作业来说,不仅可以让操作中的HSE 得到改善,也为修井作业降低了成本。 钻井特殊化学品公司(Drilling Specialties Co.)的HE 150聚合物最 早是在2008年实现商品化的。该聚合 物在连续油管作业和降阻水压裂作业中 能够起到显著的降摩阻作用。在绝大多 数一价离子和氯化钙盐水中,其稳定的 使用温度高达204oC 。在密度更高的盐 水中,例如在溴化钙和溴化锌盐水中, 它的热稳定性也能达到149?C 。这种高 粘度合成聚合物经常被用作盐酸、盐水 和淡水的增稠剂。它不仅在高温下保持 稳定,其聚合物的单位用量下的增粘效 果也保持最佳。 液态HE 150聚合物是一种用异构链烷烃油配制的聚合物悬浮液,其有效成份为45%,密度为0.984g/cm 3,即有效成份为432kg/M 3。该聚合物即便 在严酷的冬季,使用也很方便。该悬浮

成品油管道应用减阻剂研究

第28卷第1期 油 气 储 运实验研究 成品油管道应用减阻剂研究 戴福俊3(中国石化销售有限公司华南分公司) 鲍旭晨 张志恒 李春漫 刘 兵 徐海红(中国石油管道研究中心) 戴福俊 鲍旭晨等:成品油管道应用减阻剂研究,油气储运,2009,28(1)19~23。 摘 要 依据减阻剂减阻机理、室内试验及现场应用情况,确定了减阻剂应用效果、管道流态和减阻剂结构必须具备的三个条件,给出了提高减阻率或增输率的方法。分析了减阻剂对成品油品质的影响,提出了实现减阻增输和水力越站时应注意的事项。 主题词 成品油 管道 减阻剂 减阻 效果 分析 应用 一、前 言 近年来,我国的成品油管道建设取得了飞速发展,已建成的长距离成品油管道约7000km ,计有兰成渝管道(长为1247km )、乌兰管道(长为1842km )、珠三角(总长为2890km )以及西南管道等。“十一五”期间,我国预计新建成品油管道约10000km ,新增输油能力约8400×104t/a ,将逐渐形成成品油管道运输网络。因此,保障成品油管道安全、高效运行非常重要。减阻剂是一种超高分子量(>106)的单长链聚合物,在湍流液体管道中只需注入微量减阻剂,便可获得明显的减阻增输效果,经济效益可观。减阻剂减阻技术具有简便、安全、灵活和成本低的特点。油品管道应用减阻剂已有近30年的历史。1979年美国CONOCO 公司首次成功地在横贯阿拉斯加的原油管道上应用了减阻剂。1986年我国第一次在铁大线上进行了减阻剂应用现场试验,此后在多条管道上应用,减阻增输效果明显。但是,减阻剂在成品油管道上应用较少,至今仅在西南和兰成渝等管道上进行了现场试验。二、减阻剂应用效果分析 (1)降低新建管道的固定投资。由于减阻剂可在保持输量不变的条件下明显降低沿程摩擦阻力,因此在保证设计输量的前提下可以降低输油泵规 模,减小管径或壁厚。 (2)提高在役管道的输油量。在管段两端压差 不变的情况下,注入减阻剂可以提高输量。对于单 泵站输油管道,只需在出站口注入减阻剂;对于多泵 站输油管道,由于各站段的最大可行输量不同(由各 站段的最高出站压力和最低进站压力所决定),因此 存在最大可行输量最低的站段,称为“瓶颈段”,“瓶 颈段”的最大可行输量就是全线的最大可行输量。 若在“瓶颈段”注入减阻剂提高输量,则全线最大可 行输量也将得到提高。但此时又存在新的“瓶颈 段”,若想继续提高输量,则应在新的“瓶颈段”处注 入减阻剂。 (3)确保已腐蚀管道的安全运行。埋地管道受 周围土壤和管内油品中腐蚀性物质的影响,管壁内 外表面都会受到腐蚀,使管壁变薄,耐压能力下降。 注入减阻剂后,既可以维持原输量,又可使出站压力 明显降低,从而保障管道运行安全。 (4)避免在自然条件恶劣地区建泵站。长输管 道沿途会经过沙漠、沼泽、高山、严寒等自然条件恶 劣的地区。从交通、生产、安全和生活等方面考虑, 在这些地区应尽量不建或少建输油泵站。应用减阻 剂可以明显降低沿程摩阻,因而在输量和出站压力 不变的情况下能够延长站间距,并合理调整管道参 数,可以达到在某一区域不建或少建泵站的目的。 (5)满足油泵轮换维修和连续输油的需要。一 个输油站通常为多台油泵同时运行,应用减阻剂可 以减少运行泵的数量,增加备用泵数量,避免出现因 泵故障而停输的危险。 3511455,广东省广州市南沙区黄阁镇小虎大道小虎油库;电话:(020)39916188。 ?91?

Q SY 65.1-2010 油气管道安全生产检查规范 第1部分 安全生产管理检查通则

中国石油天然气集团公司企业标准 Q/SY65.1—2010 油气管道安全生产检查规范第1部分:安全生产管理检查通则 Safety inspection code for oil and gas pipelines— Part 1:General inspection rules for safety management 2010-04-02发布2010-06-01实施中国石油天然气集团公司发布

Q/SY 65.1—2010 目次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 检查内容及标准 (1) 3.1 安全管理组织和制度 (1) 3.2 危害识别、评价和控制 (1) 3.3 特种设备管理 (2) 3.4 锁定管理 (2) 3.5 作业许可管理 (2) 3.6 安全培训 (4) 3.7 交通安全管理 (4) 3.8 承包商安全管理 (4) 3.9 应急管理 (5) 3.10 管道维抢修管理 (5) 3.11 防汛管理 (5) 3.12 管道管理 (5) 3.13 劳动保护管理 (6) 3.14 事故管理 (6) 3.15 职业健康管理 (7) 3.16 HSE信息系统管理 (7) 3.17 可燃气体检测报警器管理 (7) I

Q/SY 65.1—2010 II 前言 Q/SY 65《油气管道安全生产检查规范》是对Q/SY 65—2007《原油天然气管道安全生产检查规 范》的修订。 Q/SY 65《油气管道安全生产检查规范》分为三个部分: ——第1部分:安全生产管理检查通则; ——第2部分:原油成品油管道; ——第3部分:天然气管道。 本部分为Q/SY 65的第1部分。 本部分是对油气管道安全生产检查中共性的内容进行归纳,同时结合近年安全生产管理工作的要求,增加相应检查内容,总结提炼后形成的。与Q/SY 65—2007相比,主要变化如下:——增加了“危害识别、评价和控制”的内容; ——增加了“特种设备管理”的内容; ——增加了“锁定管理”的内容; ——增加了“作业许可管理”的内容; ——增加了“安全培训”的内容; ——增加了“交通安全管理”的内容; ——增加了“承包商安全管理”的内容; ——增加了“应急管理”的内容; ——增加了“HSE信息系统管理”的内容。 本部分由中国石油天然气集团公司天然气与管道专业标准化技术委员会提出并归口。 本部分起草单位:中国石油天然气股份有限公司管道分公司、中国石油天然气股份有限公司天然气与管道分公司。 本部分主要起草人:苏奇、闫啸、刘锴、郭晓瑛、宋兆勇、张彦敏、白杨。

降阻剂具有的性能特点

降阻剂由多种成份组成,其中含有细石墨、膨润土、固化剂、润滑剂、导电水泥等,一般为灰黑色。它是一种良好的导电体,将它使用于接地体和土壤之间,一方面能够与金属接地体紧密接触,形成足够大的电流流通面;另一方面它能向周围土壤渗透,降低周围土壤电阻率,在接地体周围形成一个变化平缓的低电阻区域。 目前降阻剂用途十分广泛,用于国民经济的各个领域中。它用于电力、电信、建筑、广播、电视、铁路、公路、航空、水运、国防军工、冶金矿山、煤炭、石油、化工、纺织、医药卫生、文化教育等行业中的电气接地装置中。 性能特点 1、降低土壤电阻率 降阻剂具有良好的扩散和渗透性能,可以有效降低接地体周围的土壤电阻率,但降阻剂的稳定性能和长效性能比较差,主要是因为其容易随雨水流失。一般化学降阻剂的扩散和渗透性能要优于其它型式的降阻剂。 2、增大接地体有效截面 降阻剂的使用可以有效地增加接地体的有效截面。一般固体类和膨润土类降

阻剂要优于化学状和树脂状的降阻剂,因为化学状和树脂状的降阻剂对接地体的有效截面的增大效果会随着时间的推移变得越来越不明显。 3、消除接触电阻 降阻剂自身电阻率很低,一般都小于5Ω·m,与土壤电阻率相比可以忽略不计。接地体的电阻由两部分组成,一是接地体和周围大地的电阻;另一是接地体与周围土壤的接触电阻,总电阻。的大小与接地体周围的土壤有关,土壤越松散,越大,相反,土壤越紧实,则越小。另外还与电极表面状况有关,接地极表面越光滑,越小;而表面越粗糙,则越大。接地极生锈会导致表面变得粗糙,会相应地增大。施加某些物理降阻剂和膨润土类降阻剂后,会逐渐增大,而化学和流质降阻剂不具备这方面的性能,甚至有些降阻剂会腐蚀电极而使增大。 4、良好的吸水性和保水性 土壤的导电性能不仅与土壤中的金属离子有关,还与土壤的含水量有关。一些降阻剂如膨润土类降阻剂,具有较强的吸水性和保水性,吸水后体积膨胀并能保持充足的水分,使接地电阻保持稳定不受气候的影响。 湖州至鸿防雷科技有限公司(原杭州至鸿防雷科技有限公司)从事新型铜钢复合接地材料的研发生产销售及技术服务,为各种接地工程提供专业化的接地产品及技术服务。公司拥有多条生产线、多年积累的宝贵经验和完善的安全生产管理制度,为客户提供了产品和服务,也欢迎广大客户来我司莅临指导。公司目前主要产品有:铜覆钢接地棒、铜覆钢接地圆线、铜覆钢扁钢、铜覆钢绞线,电解离子接地极、热熔焊剂、焊接模具等等。

减阻剂在原油管道运行中的应用 戴超

减阻剂在原油管道运行中的应用戴超 摘要:在输油生产过程中,使用减阻剂可以有效的提升管道输送能力,是一种 常用的输送工艺。文章对原油管道添加减阻剂进行了现场实验分析,研究了减阻 剂添加后对管道运行的影响。通过对实验进行分析可以,减阻剂的使用可以有效 的提升管道输送能力,满足了炼化企业原油加工需求,提升了企业生产运行调节 和管理水平。 关键词:原油管道;减阻剂;增输 一、HG减阻剂现场试验 以A、B、C三处为试验对象,在原油管道进行了添加减阻剂运行的现场试验,并获得了完满成功。 ①确定减阻剂注入点。为确保减阻效果,减阻剂注入点应尽可能避开弯头、 阀门等节流设备,注入点后不应有可对减阻剂产生严重剪切的设备。因此,注入 点选择在输油泵后出站直管段。注入管线为DN57mm至DN15mm的变径管线。 ②对管线进行停输密闭开孔作业,安装高压阀门。 ③在添加HG减阻剂输送现场试验期间,分三个阶段实施,第一阶段是在仪征、和县、无为、怀宁四站满负荷运行,最大限度的提高输送能力,使进站压力 尽可能低,出站压力尽可能高,稳定后采集未加剂情况下的空白基础数据;第二 阶段,考察四站同时添加浓度为10mg/L情况下的减阻和增输效果;第三阶段, 考察四站同时添加浓度为15mg/L情况下的减阻和增输效果。 第一阶段:输送鲁宁油和进口油的比例为1:1.5,混油密为886kg/m3 当仪征--黄梅管段不加减阻剂时,全线最大输量稳定运行时,管线平均流量为3699m3/h。仪征干线的输量为7.86万吨/天,安庆支线的输量为1.36万吨/天, 九江支线的输量为1.35万吨/天,武汉支线的输量为1.98万吨/天,洪湖支线的输量为0.93万吨/天,长岭的输量为2.24万吨/天。仪长线全线外管道的总压降为43.91 MPa,其中仪征---黄梅外管道的总压降为21.06MPa。 第二阶段:加入H(}减阻剂浓度为10mg/L运行后,全线最大输量稳定运行时, 管线平均流量为3954m3/h ,管线的实际增输率为6.89%。仪征干线的输量为8.41 万吨/天,安庆支线的输量为1.35万吨/天,九江支线的输量为1.31万吨/天,武 汉支线的输量为2.17万吨/天,洪湖支线的输量为0.97万吨/天,长岭的输量为 2.61万吨/天。仪长线全线外管道的总压降为4 3.14MPa,其中加剂段仪征---黄梅 外管道的总压降为18.70MPa。 第三阶段:加入HG减阻剂浓度为15mg/L运行后,全线最大输量稳定运行时,管线平均流量为4033m3/h,管线的实际增输率为9.03%。仪征干线的输量为8.57 万吨/天,安庆支线的输量为1.34万吨/天,九江支线的输量为1.41万吨/天,武 汉支线的输量为2.20万吨/天,洪湖支线的输量为0.9 3万吨/天,长岭支线的输 量为2.69万吨/天。仪长线全线外管道的总压降为42.96MPa,其中加剂段仪征-- 黄梅外管道的总压降为18.87MPa。 二、管道运行数据分析 2.1增输效果分析 增输率计算公式: 对于添加减阻剂的同一管道而言,λ可以认为基本不变,L和d是一定的,这样沿程摩阻 损失h之和输量Q有关系,即h与Q的平力成正比。而对于在水力光滑区正常运行的管道,

陆上油气管道建设项目安全审查规范

编号:SM-ZD-23933 陆上油气管道建设项目安 全审查规范 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

陆上油气管道建设项目安全审查规 范 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 一、工作简况 20xx年4月13日,应急管理部在《应急管理部关于印发20xx年安全生产行业标准制修订计划的通知》(应急函〔2018〕9号)文件中下达了《陆上油气管道建设项目安全审查规范》标准制订计划。中国安全生产科学研究院作为牵头单位,会同相关单位共同制订该标准。 标准编制组接受委托后收集美国、加拿大、欧盟等国外发达国家和地区陆上油气管道安全监督管理的有关法规、标准,结合我国陆上油气管道安全监督管理现状,起草了《陆上油气管道建设项目安全审查规范》(初稿)。 未完待续! 二、编制原则和主要内容说明 (一)编制原则

本次标准编制的主要原则是进一步规范陆上油气管道建设项目安全审查及其监督管理工作,贯彻《中华人民共和国安全生产法》等法律法规及标准的规定,落实“建设项目安全设施必须与主体工程同时设计、同时施工、同时投入生产和使用”的要求,充分做好安全评价、安全设施设计、安全验收、安全审查和监督管理工作,从源头上消除安全隐患,有效防范陆上油气管道生产安全事故的发生,进一步促进陆上油气管道安全平稳运行。 (二)主要内容 本次标准编制的主要内容如下: 1.第一章是标准适用范围,明确本标准适用于中华人民共和国境内新建、改建、扩建的油气管道建设项目安全评价报告、安全设施设计报告和安全验收评价报告主要安全审查内容及审查程序要求。 2.第二章是规范性引用文件,罗列了本标准引用和相衔接的相关标准,如《危险化学品重大危险源辨识》、《油气输送管道完整性管理规范》等。 3.第三章是一般规定,对安全评价报告、安全设施设计

物理降阻剂广泛应用范围说明

物理降阻剂广泛应用范围说明 一、降阻剂可应用于发电厂、变电站、开关站、高压输电线路、电气化铁路、电信、移动基站、微波中继站、地面卫星接收站、雷达站等等工作,接地、安全接地和防雷接地施工的使用; 二、物理降阻剂亦可用于贵重精密仪器、计算机设备、邮电程控设备、广播电视设备、电子医疗设备等工作接地和保护接地。 三、还可以用于建筑接地,例如:各种高层建筑及高大构筑物、名胜古建筑、高大纪念塔等防雷接地; 四、应用于石油输送管道及油气罐,易燃易爆物质仓库防雷接地的应用。 接地降阻剂施工过程中的常规操作注意事项 1、在接地降阻剂的施工操作过程中,如果不谨慎发生溶液溅在手、脸或眼睛上的情况,立刻用清水洗净即可,不必惊慌; 2、操作接地降阻剂前首先要摇匀。溶液向大口容器倒入之前,先上下翻转用力摇几下,以使物料混匀。 3、在气温较低的季节或地区施工情况,要注意接地降阻剂搅拌聚合时间变长,但温度对产品性能是不产生影晌的;极冷情况下可将溶液加温到10~20℃,再进行搅拌,以缩短聚合时间; 4、在气温较高的季节或地区施工,搅拌聚合时间就会稍短,同时要注意加快接地降阻剂施工进度。 天基防雷技术有限公司对接地降阻剂应用及存在的问题分析如下: 关于天基降阻剂的降阻效果是相当好的,因为降阻剂已在实际的接地工程中得到长期的大量应用。降阻剂的降阻机理一般有以下几个方面: (a)由于降阻剂的扩散和渗透作用,降低接地体周围的土壤电阻率,关于扩散和渗透作用,一般化学降阻剂强于其他型式的降阻剂,膨润土类的降阻剂扩散和渗透作用较差,但降阻剂的稳定性和长效性与扩散和渗透作用是矛盾的。扩散和渗透好的降阻剂其稳定性和长效性都比较差,因为扩散和渗透性强的降阻剂容易随雨水的流失而流失。 (b)接地体同周围施加降阻剂后,相当于扩大了接地体的有效截面,这种机理对固体降阻剂和膨润土类降阻剂最为明显,而化学降阻剂和树指状的降阻剂随着时间的流失有效截面的增大则不太明显,会越来越小。 (c)消除接触电阻,接地体的接地电阻可以分为两部分,一是接地体与周围的大地所呈现的电阻Rd;二是接地体与周围土壤的接触电阻Rj,Rj=Rd+Rj,Rj的大小与接地极周围的土壤有关,一般土质越密实,接触电阻越小,土壤越松散,接触电阻越大;接触电阻还与电极表面状况有关,接地极表面越光滑,接触电阻越小,接地极表面越粗糙,接触电阻越大。接地极生锈后,接触电阻会逐渐增大。接地体施加降阻剂后,会减少或消除接触电阻,但只有某些物理降阻剂和膨润土类降阻剂才具有这方面的功能,而化学降阻剂和流质降阻剂则不具有这方面的功能,有些降阻剂由于腐蚀还会使接触电阻变大。 (d)降阻剂的吸水性和保水性改善并保持土壤导电性能,土壤的导电性能除了与土壤所含金属导电离子的浓度有关外,还与土壤的含水量有关。降阻剂 https://www.360docs.net/doc/273091811.html,具有较强的吸水性和保水性,如膨润土类降阻剂,具有较强

减阻剂

减阻剂 (兰州输油气公司张家川维抢修队甘肃天水 745000) 摘要:用于降低流体流动阻力的化学剂称为减阻剂(drag reducing agent),简称DRA。减阻剂广泛应用于原­油和成品油管道输送,它是在特定地段提高管道流通能力和降低能耗的重要手段。作者在《浅谈减阻剂》一文中介绍了减阻剂的发展历史、减阻机理、生产工艺、新动向及在国内外输油管道应用的实例;分析了在输油管道中应用减阻剂的优势。 关键词:流体减阻剂降耗聚合物 前言 流体的摩擦阻力限制了流体在管道中的流动,造成管道输量降低和能量消耗增加,而高聚物减阻法是在流体中注入少量的高分子聚合物,使之在紊流(速度、压强等流动要素随时间和空间作随机变化,质点轨迹曲折杂乱、互相混掺的流体运动。)状态下降低流动的阻力。 主体 一、减阻及减阻剂的发展历史 减阻的概念早在20世纪40年代就已经提出。20世纪初美国纽约的消防队员曾使用水溶性聚合物增加排水系统的流量。1948年Toms(汤姆斯)在第一届国际流变学会议上发表了第一篇有关减阻的论文,文章指出,以少量的聚甲基丙烯酸甲酯(PMMA)溶于氯苯中,摩阻可降低约50%,因此,高聚物减阻又称为Toms(汤姆斯)效应。 20世纪60年代末,美国Conoco(康诺克)公司研制成CDR-101型减阻剂,1972年取得专利,1977~1979年间首次商业化应用于横贯阿啦斯加的原油管道的越站输送及提高输量方面,并取得巨大成功。1981年又研制成功CDR-102型减阻剂,比CDR-101型的性能成数倍地提高。20世纪80年代初,开展了成品油管道的减阻试验,用于汽油、煤油、柴油和NGL(液化天然气)、LPG(液化石油气)的减阻,到1984年正式在成品油管道上应用。70年代中期,美国Shellco(壳牌)公司和加拿大Shell Inc(壳牌)公司提出申请减阻剂专利。1983年,美国Atlantic Richfield co(大西洋富田)公司研制出Arcoflo(艾少芬)减阻剂产品,加入5ppm(百万分之)即可达到20%的减阻效果。 减阻聚合物的生产条件很难控制,国际上只有极少数公司垄断了这项技术,其代表是美国的Conoco(康诺克)公司和Baker Hughes(贝克休斯)公司,他们的产品基本上代表了目前世界上减阻剂生产工艺的最高水平和发展方向。

相关文档
最新文档