输油管道减阻剂

输油管道减阻剂
输油管道减阻剂

输油管道减阻剂

减阻剂是一种能减少流体在输送时所受阻力的试剂。多为水溶性或油溶性的高分子聚合物。

简介

例如水溶性的聚环氧乙烷,只用25毫克/千克就能使水在管道中所受阻力下降75%,出水速率增加好几倍,用于灭火或其他紧急用水的场合;油溶性的聚异丁烯用量为60毫克/千克时,即可使原油在管道中的输送能力大大提高,起到增输节能的作用。

用于降低流体流动阻力的化学剂称为减阻剂(drag reducing agent),简称DRA。减阻剂广泛应用于原油和成品油管道输送,它是在特定地段提高管道流通能力和降低能耗的重要手段。流体的摩擦阻力限制了流体在管道中的流动,造成管道输量降低和能量消耗增加,而高聚物减阻法是在流体中注入少量的高分子聚合物,使之在紊流状态下降低流动的阻力。

发展历史

20世纪60年代末,美国Conoco公司研制成CDR-101型减阻剂,1972年取得专利,1977~1979年间首次商业化应用于横贯阿À­斯加的原­油管道的越站输送及提高输量方面,并取得巨大成功。1981年又研制成功CDR-102型减阻剂,比CDR-101型的性能成数倍地提高。20世纪80年代初,开展了成品油管道的减阻试验,用于汽油、煤油、柴油和NGL、LPG的减阻,到1984年正式在成品油管道上应用。70年代中期,美国Shellco公司和加拿大Shell Inc公司提出申请减阻剂专利。1983年,美国Atlantic Richfield co公司研制出Arcoflo减阻剂产品,加入5ppm即可达到20%的减阻效果。

减阻聚合物的生产条件很难控制,国际上只有极少数公司垄断了这项技术,其代表是美国的Conoco公司和Baker Hughes公司,他们的产品基本上代表了目前世界上减阻剂生产工艺的最高水平和发展方向。

1982年,我国浙½­大学开始国产减阻剂的开发和试验工作,1985年进行了EDR 型减阻剂的试生产,并在国内原­油管道上进行了中型试验,产品性能已达到国外70年代初期水平。1984年,成都科技大学也发表了PDR型减阻剂的研制成果,以上两校的试验,都曾采用过柴油和煤油等成品油。近年来,中国石油管道公司管道科技研究中心开展了减阻剂的研究工作,并取得了成功,其EP系列减阻剂产品的性能已经­达到国际同类产品的

水平。

减阻机理

油相减阻剂从其结构看,多数是流状链或长直链少侧链的高分子聚合物,如CDR102是高分子聚-σ烯烃,分子量为10~10。这种高分子聚合物纯剂为橡胶状固体,作为商品,一般是溶在烃类(煤油)的溶液中。10%的减阻剂溶液呈非常粘稠的粘弹性体,较难流动,可拔成很长的丝。高聚物减阻剂能溶于原­油或油品中,但不溶于水,遇水发生分子长链卷曲。减阻剂溶液呈强牛顿特性,低剪切率下粘度高达3000Pa·S,120℃以下不会分解,比较稳定。

减阻作用是一种特殊的湍流现象,减阻效应是减阻影响湍流场的宏观表现,它是一个纯物理作用。减阻剂分子与油品的分子不发生作用,也不影响油品的化学性质,只是与其流动特性密切相关。在湍流中,流体质点的运动速度随机变化着,形成大大小小的旋涡,大尺度旋涡从流体中吸收能量发生变形、破碎,向小尺度旋涡转化。小尺度旋涡又称耗散性旋涡,在粘滞力作用下被减弱、平息。它所携带的部分能量转化为热能而耗散。在近管壁边层内,由于管壁剪切应力和粘滞力的作用,这种转化更为严重。

在减阻剂加入到管道以后,减阻剂呈连续相分散在流体中,靠本身特有的粘弹性,分子长链顺流向自然伸呈流状,其微元直接影响流体微元的运动。来自流体微元的径向作用力作用在减阻剂微元上,使其发生扭曲,旋转变形。减阻剂分子间的引力抵抗上述作用力反作用于流体微元,改变流体微元的作用方向和大小,使一部分径向力被转化为顺流向的轴向力,从而减少了无用功的消耗,宏观上得到了减少摩擦阻力损失的效果。

在层流中,流体受粘滞力作用,没有像湍流那样的旋涡耗散,因此,加入减阻剂也是徒劳的。随着雷诺数增大进入湍流,减阻剂就显露出减阻作用。雷诺数越大减阻效果越明显。当雷诺数相当大,流体剪切应力足以破坏减阻剂分子链结构时,减阻剂降解,减阻效果反而下降,甚至完全失去减阻作用。减阻剂的添加浓度影响它在管道内形成弹性底层的厚度,浓度越大,弹性底层越厚,减阻效果越好。理论上,当弹性底层达到管轴心时,减阻达到极限,即最大减阻。减阻效果还与油品粘度、管道直径、含水、清管等因素有关。

生产工艺

减阻剂生产的技术关键主要包括两个方面,一是超高分子量、非结晶性、烃类溶剂可溶的减阻聚合物的合成;二是减阻聚合物的后处理。

聚合物的合成

大量文献资料表明,目前最有效的减阻聚合物是聚α-烯烃。早期聚α-烯烃的生产采用溶液聚合的方法进行,并将聚合产物直接用于输油管道,由于溶液聚合产物本身粘度大,聚合物含量低,因此给运输和使用带来极大的困难。直到20世纪90年代中期,才发展了本体聚合的方法,从而大大提高了单体转化率和减阻剂性能。实施本体聚合需要解决的关键技术是及时带走聚合过程中产生的大量反应热,方法之一是使用一种由高分子材料制成的反应容器,并将其设计成能将反应热迅速释放出来的形状。实施聚合时,先用氮气吹扫反应容器,然后按比例加入单体和催化剂,密封后放入低温介质中,使其在低温下反应3~6天的时间。一般情况下,本体聚合产物纯度高,分子量也比溶液聚合产物高得多。

另外,采取溶液聚合α-烯烃减阻聚合物也有了新突破,通过在α-烯烃聚合过程中加入粘度降低剂,可以改进成品的总体流动性能和处理特性,同时可以获得更高的聚合物分子量和更均匀的分子量分布,改进聚α-烯烃类减阻剂的溶解性。

聚合物的后处理

实际应用表明,直接将溶液聚合产物作为减阻剂使用,会给输油生产带来诸多不便,因而该方法现已被淘汰,为了改善减阻剂的使用性能,通常将聚合物和分散剂一起在低于其玻璃化温度的环境中磨成粉末,并加入适当的添加剂以制成不同外观形态的减阻剂产品。目前,在原油管道上广泛使用的是水基乳胶状减阻剂,它是利用稳定剂、表面活性剂等添加剂,将聚合物粉末悬浮在水或水与醇的混合物中。这种产品具有聚合物浓度高、注入方便、在原油中溶解性好等优点,但也存在储存时间短、稳定性较差等缺点。在成品油管道中主要使用低粘度胶状减阻剂,它是将聚合物粉末溶解在成品油或成品油和某些溶剂的混合物中。这种产品具有粘度低、注入方便等优点,但存在聚合物浓度低、运输工作量大等缺陷。为了克服上述两种产品的缺陷,最近研制开发了一种非水基悬浮减阻剂,它是借助悬浮剂将聚合物粉末悬浮在醇类流体中。这种减阻剂的生产无需使用表面活性剂、杀菌剂和复杂的稳定剂体系,简化了生产过程,具有防冻性好、聚合物浓度高、稳定性好、能防止水等杂质进入输油管道等优点,并可同时用于原油和成品油的输送。

本体聚合产物可以直接置于低温环境中磨碎,溶液聚合产物则需要先将聚合物从溶剂中沉淀出来,然后粉碎。美国Conoco公司和Baker Hughes公司分别采用了将聚合物从溶液中沉淀出来的方法,用能够沉淀聚合物而与烃类溶剂不互溶的醇类作为沉淀剂,并通过特殊的

装置使沉淀出来的聚合物形成小颗粒。值得一提的是,Baker Hughes公司通过控制向溶液聚合产物中加入沉淀剂的速度,以及适当的搅拌将沉淀出来的聚合物颗粒直径控制在0.25cm以下,这种粒度的聚合物可直接与悬浮剂、液体醇一起制成非水基悬浮减阻剂。这种方法省去了聚合物的低温粉碎工序,简化了生产过程。

综上所述,通过不同的后处理工序,可以获得不同外观形态和不同性能的减阻剂产品

新动向

将高浓度减阻聚合物微粒封装在由某些惰性物质组成的外壳内,便制成了微囊减阻剂(microencapsulated drag reducing agent),又称MDRA。微囊减阻剂的研制成功是减阻剂发展的一个新动向。生产微囊减阻剂的方法有很多种,主要包括静态挤压法、离心挤压法、振动喷嘴法、旋转盘法、界面聚合、多元凝聚、悬浮聚合等。

使用这种装置生产微囊减阻剂,是将聚合反应单体、催化剂和外壳材料分别从中心孔和外环套中加入,并以一定的速度从装置下端挤出,形成微囊减阻剂颗粒。挤出速度非常重要,当挤出速度慢时,形成的微囊颗粒外观规整、尺寸均匀;相反,如果挤出速度较快,将会使微囊颗粒发生粘连,造成微囊颗粒形状异常、大小不一。在生产过程中保持一定频率的振动,将有利于控制微囊颗粒的粒度。

由于单体是在封闭的小微囊内进行本体聚合反应,对于单个微囊,反应规模极小,因此,反应条件可以得到很好地控制,特别是反应热能够被及时散发掉。如果单体是σ-烯烃,通常使用齐格勒-纳塔体系催化剂,并在微囊形成之前加入。由于齐格勒-纳塔体系催化剂遇到氧气会迅速失效,因此反应体系内不能有氧气存在。某些单体可以使用紫外线引发聚合,但紫外线必须能够穿透微囊外壳。

微囊外壳是微囊减阻剂的重要组成部分,外壳材料与微囊内芯的反应物不能相互反应或混溶。如果微囊内芯是σ-烯烃聚合反应体系,为避免催化剂失效,微囊外壳中就不能有氧气存在,但少量的羟基和羧基对聚合反应影响不大。比较合适的外壳材料有聚丁烯、聚甲基丙烯酸酯、聚乙二醇、蜡、硬脂酸等。若微囊外壳本身是聚合物,其聚合反应可以在生产微囊减阻剂的过程中进行,但是不能制约形成微囊系统的其它技术需求。另外要求微囊外壳在运输和储存过程中性能稳定,其破碎或溶解残渣对原­油或石油产品的物化性质以及油品加工过程没有影响。微囊外壳可以通过溶解在注入介质或管输流体中、机械破碎、融化、光化

学破碎、生物降解、化合等方法去除。

由于微囊减阻剂以固体颗粒的形式储存和运输,因此节省了运输溶剂、浆料或其它载体的费用。注入输油管道时,如果需要使用溶剂或其它载体(即注入介质),则可以在当地低价采购,现场配液,而不再需要复杂的后处理工序。

应用实例

先看看国外在输油管道上使用减阻剂的实例。美国横贯阿À­斯加的原­油管道,采用加减阻剂方案,将原­设计的12座泵站减为10座,日输油量由22.26×10m 增加到38.16×10m。英国北海油田某管道,原­设计方案管径为1066mm,经­过方案比选,采用高峰时加减阻剂方案,使管径改为914.4mm,大大降低了投资。美国西南部一条200mm口径的成品油管道夏季汽油输量增大时,曾有111km管道出现卡脖子问题。采用减阻剂后,迅速、经­济地解决了问题。管道摩擦阻力下降40%,输量增大28%。美国中西部一条长93km口径为200mm的输油管道,在顺序输送中,要求柴油与汽油同步输送,需使柴油流量增大20%。使用减阻剂后柴油的摩擦阻力下降了38%,达到了要求。

在国内,首先是利用美国Conoco公司生产的CDR102减阻剂在铁大线、东黄线、濮临线上进行试验并取得了成功。如铁大线继1986年现场试验成功后,在沈阳、熊岳和复县3个站段,间断投用减阻剂79天,用药97m,全线增输原­油17.667×10t,缓解了铁大线外输紧张局面,争取到较大的出口换汇,为国家创造了较高的经­济效益。1987年世界油价下跌,国家出口减少,管道又恢复正常运行,停注减阻剂,非常灵活、方便。青海油田的花土沟至格尔木输油管道,原­设计输油能力为每年

100×10t,后来油田产量上升,要求管道输送能力增加到每年150×10t。若按传统增加机械动力的方法,需将原­来4个泵站全部改建为热泵站,原­来3个热泵站也需要改造扩建。不仅时间不允许,而且资金投入大。他们与美国贝克管道化学品公司合作进行加减阻剂试验。试验结果证明,在不增加任何输油泵的情况下,使用FLOXL减阻剂,可以很容易地实现150×10t的年输量,其所需费用远低于扩建泵站的投资。

优势

随着研究的不断深入,减阻剂产品日趋成熟,已经­进入商业实用阶段。主要表现为:加入量少,减阻率高;本身具有抗剪切能力,储运和使用过程中无明显降解;对油品加工和

油品质量无不良影响;注入设备简单,注入工艺易行;国内已具备生产减阻剂的能力。无论是在新管线设计或现有管道运营中使用减阻剂均能获得可观的经­济效益和社会效益。在输油管道上应用减阻剂的优势主要体现在以下方面:

建设投资

新管线设计中一个重要的依据就是管道的年输量,但对管道年输量影响因素有许多是不确定的。如对油田储量的估测不可能做到十分精确,市场条件要求管道输量的变化及油品种类的改变等等。这一些不确定的因素,可根据相对经济的数据作为设计依据,留下一部分设计余量,用减阻剂来平衡这部分余量。减小管径、压缩泵站建设规模可大大节省新管线的建设投资。我国输油管道都是根据年输量来设计的。选择的管径和壁厚、泵站及设备一般都偏大和较保守,对输量变化的适应性差。这不仅造成投资高,而且运行也不经济。

增加输量

特别是在卡脖子段,加减阻剂后就可以提高输量,使整个管道输量增加,达到多输快输的要求。并可灵活地调整输油计划,满足市场需求,最大限度地创造经­济、社会效益。我国油田产量变化幅度比较大,为增加管道输送弹性,适应油田产量的变化,应用加减阻剂技术具有重大的现实意义。随着油田产量的上升,管道需分阶段应急扩建,有时,仓促上马可能造成很大的浪费。以东营-黄岛管线扩建为例,1985年油田计划产量大幅度增加,要求该管线超输30%,为此增建4座加压站,工程投资2000万元,工期半年。可是工程完成后,油田产量未能如愿,4座泵站闲置。如果选用减阻剂增输技术过渡,显然投资可大大节省。濮临线也同样先扩建增压站,然后增加副管,但实际发挥作用不大。显然在管道输油中,由于油田前景不清,产量变化幅度大的情况是经常发生的,如采用投注减阻剂短时间解决输量大幅度增加的矛盾,技术上是可行的,经济上是合理的。

降低成本

实现不停输状态下对泵机组或泵站进行检修维护、更新改造,降低维修改造成本。也可以用加减阻剂的办法停掉某些条件艰苦、环境恶劣的泵站,把人员减下来。如格尔木至拉萨的输油管道,途径平均海拔都在3000m以上的青藏高原­,有相当多的泵站地处海拔4700m以上,人的生存非常困难。完全可以采用加减阻剂和自动化技术,把某些中间泵站关闭,把人员减下来。这不仅可获得显著的经济效益,还将带来巨大的社会效益。

提高安全可靠性

如我国东部输油管网均已运行了30年以上,由于管道内外壁腐蚀严重,管道耐压能力大大下降,降低管道工作压力,提高系统的安全可靠性显得尤为重要。

使用减阻剂作为一种短时间应急措施具有很大的优越性。但对于需要长期增输的管道来说,由于需要大量的减阻剂,使其经济效益不明显,而且在输油系统中增加了减阻剂注入装置,使其整个系统的操作量、故障率有所提高,不利于日常操作管理。所以对减阻剂技术既要优先考虑,又不能盲从应用。可以预见,在不远的未来,投注减阻剂技术作为一种新兴的输送工艺,必将为我国管道工业创造更大的经济、社会效益。

国内

中石油天然气管道公司已申请EP系列减阻剂20余项发明专利,合成方法实现了由国外溶液聚合法到本体聚合的跨越,全部技术指标达到国际领先水平。中国石油管道公司截至目前已掌握了三个关键技术:α-烯烃原料净化技术、聚合反应热控制技术及减阻聚合物分散技术,有自主知识产权并打破了国际垄断。介绍,α-烯烃减阻剂可使新管道增加输送量60%,使老管道在保持设计输送量的情况下安全运行,已在国内多条输油管线上成功应用。此外,α-烯烃减阻剂还应用于英国、挪威、伊朗、苏丹等近10个国家的输油管线上,成为国际知名品牌。其生产成本仅为国外同类产品的1/3,生产装置投资仅为国外的1/20。

高分子减阻剂减阻效果试验研究

高分子减阻剂减阻效果试验研究 指导老师:毛根海 实验成员:薛文洪一红 班级: 土木工程0101结构班 实验日期:2003年12月7日

高分子减阻剂减阻效果试验研究 流体流动存在阻力,产生流体能量损失。在管流中有管道阻力,如长距离输水、石油、天然气等,都必须在流经一定距离之后设置升压泵,以补充损失的能量。同样,在明渠输水、水面必须有水利坡降才能产生顺坡降方向的流动,在同坡降的情况,流动阻力越大,则流速越慢,过流能力越差。 若在水体中添加减阻剂,就能大大减少沿程阻力。这是减小水流沿程阻力的另一种新途径。减阻剂种类很多,不同减阻剂及添加量不同,其减阻效果也不一样。 由于客观条件的限制,我们此次通过“同一减阻剂在不同浓度下减阻效果”的比较,对减阻剂加入水体后的减阻效果进行定性、定量的了解。 本次实验采用的减阻剂是聚丙烯酰胺(又称PAM),初配浓度为0.1%,室温(10o C左右)。采用沿程阻力试验装置进行测定(实验装置如图)。实验地点,土木系水利实验室。

聚丙烯酰胺,别名PAM ,是一种有机高分子聚合物,为玻璃状固体,溶于水,也溶于醋酸、乙二酸、甘油和胺 等有机溶剂。聚丙烯酰胺是重要的水溶性聚合物,而且兼具增稠性、絮凝性、耐剪切性、降阻性、分散性等宝贵性能。 一、试验数据及结果分析如下: 清水实验时:

加入 100ml 3

加入 700ml 0.1%PAM 溶液入水 箱: 各项常数:d=0.675cm L=85cm K=1.993 从如上的数据可以看出,PAM要起到减阻效果是有一定浓度限制的。浓度太小,减阻效果 不明显;浓度太大,反而会增阻。通过粘度计的测定,清水与各浓度溶液的粘度相差很小,(清 水时平均粘度为0.012,加入375ml溶液时平均粘度为0.013)。通过几组实验数据的对比可 得,相同沿程损失的情况下,PAM减阻效果最大的浓度出现在向水箱中加入375ml 0.1%溶液 左右,过流量增大,阻力粘制系数呈下降趋势。(加入400ml该溶液时,过流量已开始减小)。 通过各表的Re与λ关系比较可知,加入PAM后,相同Re下,λ有明显减小(曲线图待 补充),说明PAM起到了一定的减阻效果。同时该减阻剂在层流区几乎不起作用,在紊流区能 够起到一定的作用。但是需要指出的是,通过本次定量实验可以看出,PAM并不是一种十分有 效的减阻剂,虽然阻力粘制系数随PAM加入量的增加一直呈下降趋势,但是过流量的增加并 不显著。

压裂液减阻剂

FRICTION REDUCER FOR OIL AND GAS FRACTURING FLUID BENEFITS ?Highly effective OIL FREE anionic friction reducer ?Works in both oil well and (tight) gas shale applications ? A highly effective friction reducer providing increased flow rates without increasing operating pressures ?Greatly reduces friction at small concentrations ?Does not contain unfriendly hydrocarbons or mineral oils ?Minimises hydraulic horsepower usage due to lower surface treating pressures. ?Contains leading edge chemical technology for inversion in seawater and fast dissolution when injected into an energy mixing zone. ?Designed to be added as supplied ?Works in both fresh and high brine water ?Hydrates very rapidly,even in cold water Excellent Salt-Resistance performance DESCRIPTION Jinyu ‘Oil Free’ Friction Reducer is the latest polymer technology is a highly efficient, highly competitive friction reducer for oil & gas fracturing fluid and contains NO enviromentally hazardous hydrocarbons, mineral oils or surfactants.. It is a multipurpose, high molecular weight, anionic friction reducer that will instantly and effectively reduce pipe friction. It is designed to reduce friction in water based fracturing and brine applications with friction pressures being reduced by a minimum of 70-80% and even further in some applications. APPLICATION The composition of the fracturing fluid may be adjusted depending on the particular well or formation to be fractured. For example, in fracturing certain formations it may be desirable to use a high concentration of the propping agent, while in other formations, little or no propping agent may be used. In general, the polymer is added to the fracturing fluid continuously at rates between 25 ppm to about 2500 ppm. Jinyu ‘Oil Free’ Friction Reducer is preferably applied on site by a blender, metering product into the fracturing fluid. The polymer may also be added by simply pouring from the container into the fluid stream or very accurately by using a positive displacement pump tied to a feedback from the flowmeter on the blender.

输油管道减阻剂

输油管道减阻剂 减阻剂是一种能减少流体在输送时所受阻力的试剂。多为水溶性或油溶性的高分子聚合物。 简介 例如水溶性的聚环氧乙烷,只用25毫克/千克就能使水在管道中所受阻力下降75%,出水速率增加好几倍,用于灭火或其他紧急用水的场合;油溶性的聚异丁烯用量为60毫克/千克时,即可使原油在管道中的输送能力大大提高,起到增输节能的作用。 用于降低流体流动阻力的化学剂称为减阻剂(drag reducing agent),简称DRA。减阻剂广泛应用于原油和成品油管道输送,它是在特定地段提高管道流通能力和降低能耗的重要手段。流体的摩擦阻力限制了流体在管道中的流动,造成管道输量降低和能量消耗增加,而高聚物减阻法是在流体中注入少量的高分子聚合物,使之在紊流状态下降低流动的阻力。 发展历史 20世纪60年代末,美国Conoco公司研制成CDR-101型减阻剂,1972年取得专利,1977~1979年间首次商业化应用于横贯阿À­斯加的原­油管道的越站输送及提高输量方面,并取得巨大成功。1981年又研制成功CDR-102型减阻剂,比CDR-101型的性能成数倍地提高。20世纪80年代初,开展了成品油管道的减阻试验,用于汽油、煤油、柴油和NGL、LPG的减阻,到1984年正式在成品油管道上应用。70年代中期,美国Shellco公司和加拿大Shell Inc公司提出申请减阻剂专利。1983年,美国Atlantic Richfield co公司研制出Arcoflo减阻剂产品,加入5ppm即可达到20%的减阻效果。 减阻聚合物的生产条件很难控制,国际上只有极少数公司垄断了这项技术,其代表是美国的Conoco公司和Baker Hughes公司,他们的产品基本上代表了目前世界上减阻剂生产工艺的最高水平和发展方向。 1982年,我国浙½­大学开始国产减阻剂的开发和试验工作,1985年进行了EDR 型减阻剂的试生产,并在国内原­油管道上进行了中型试验,产品性能已达到国外70年代初期水平。1984年,成都科技大学也发表了PDR型减阻剂的研制成果,以上两校的试验,都曾采用过柴油和煤油等成品油。近年来,中国石油管道公司管道科技研究中心开展了减阻剂的研究工作,并取得了成功,其EP系列减阻剂产品的性能已经­达到国际同类产品的

减阻剂对血液循环的作用

减阻剂对血液循环的作用 刘强邵洪 关键词减阻聚合物 微循环 多糖类 中国图书资料分类号 1 年× 开创了对减阻现象和减阻剂的研究?摩擦压降 或摩擦阻力 限制了流体在管道中的流动 造成管道输量或能量消耗增加?在流体中注入少量的高分子聚合物 能在湍流状态下降低流动阻力 这种效应即高聚物减阻?用于降低流体流动阻力的化学制剂即为减阻剂 或减阻聚合物 ∏ 简称? ° ?目前 有关聚合物减阻现象的研究已经成为一门涉及到流体力学!流变学!高分子溶液和高分子化学的边缘学科 而减阻剂的应用也成为独特的综合性工程? 减阻剂对血液循环的作用及其机制 研究发现某些大分子物质具有一定的减阻性能和黏弹性 注入血液后 在极低用量 纳摩尔级 的情况下 即可明显改善不同动物模型的血流动力学 如 在不升高动脉血压的情况下 增加心输出量!动脉血流速度和组织微循环灌注 降低出血性休克模型动物的死亡率 增加和改善正常小鼠以及糖尿病模型动物的微循环 明显提高动物的运动能力 并且减少严重缺氧导致的死亡率?研究发现 无论是天然来源的或合成的不同化学结构的? ° 分子量在 ?以上 在实验中都具有相似的改善血液循环的作用 减阻性能 因此 在血管内发挥减阻性能!增加组织灌注的性能 极有可能由? ° 的物理性质所决定 而不依赖其化学特性≈ ? 自上世纪 年代 欧美一些国家 前苏联和美国等 的学者开始对线性大分子增加血液的流动性这一现象展开了研究 并尝试阐述其机制? 认为这些溶于血液的低浓度大分子物质能有效减少血液湍流的/阻力0 使保持一定的流速所消耗的能量少于纯溶剂流体 即/× 0?° 等发现秋葵中的多糖成分能明显改善血流动力学和血液流变学 提高心输出量 他们认为多糖降低了血液的黏滞度 从而带来此效应 然而 血液黏滞度的降低只能归咎于血细胞聚集程度的减少 没有其他物质既能减少血细胞的聚集 又能改变血流动力学 而且 血液在血管中并非呈湍流的形式流动 所以? ° 对血液循环的改善和促进作用 很难单纯地用上述机理完全解释?有实验显示 很少量的减阻聚合物可以显著减低血管阻力 同时血管张力并没有改变 能够增加外周血管的血流速度 ? 倍 这个现象很难用血管扩张的效应来解释 模拟真实血流动力学的状态下 发现? ° 明显减轻由于血管分叉和不同血管几何外形造成的血流流分离的程度 减少局部漩涡的产生和血液流动的阻尼 降低流体流动的能耗 在相同的血压下 血液流动更为顺畅 由于? ° 的作用 降低了沿动脉血管血压的压力降低值 从而前毛细血管的血压上升 促进更多功能性毛细血管网的开放 增加组织的血液灌注 改善微循环?此外 ? ° 可能对位于微血管中红细胞的流动行为有重要影响?研究发现 红细胞悬液在微管里流动时 在近管壁处会产生一个相对无细胞的区域 这种现象被称为/血浆撇清0 2 加入? ° 可以明显减少靠近管壁处的不含红细胞血浆层的厚度 使红细胞重新分布 更加贴近血管壁 使得在动脉及毛细血管中血液 气体交换更便利 另外 由于? ° 衰减了/血浆撇清0效应 造成血管局部的红细胞计数增加 相应血液的粘滞度上升 血流与管壁间的剪切力增大 可以促进微血管释放血管扩张因子 进而增加侧支循环和组织的灌流量?? ° 增加微循环的血流速度 还与其改变红细胞的变形能力有关 √ 等把聚环氧乙烷 ? °∞ )))一种减阻聚合物加入鼠红细胞悬液后 经过特别设计的滤过器 采用红细胞滤过指数 ? ≤? 评价红细胞的变形能力 结果显示? ° 显著提升了红细胞的 ≤? 1 ? 1 ?σ 1 ? 1 Π 1 在某些病理状况下 ? ° 减少了在毛细血管中红细胞的淤滞现象 增加血液流速和氧气供应 组织代谢得以部分恢复?? ° 单独使用可以明显改善机体大体血液循环和组织微循环 在临床使用的人造血液 含全氟化合物 中添加微量? ° 能明显增加氧气载体输送气体的能力 提供给组织相对正常的供氧水平?器官和组织的氧供应量 ? 可用公式? ??≤表示 ?为血液流速 ≤为每单位体积血液氧含量?加快血液循环 改善组织灌注 可以提高氧气载体的工作效率 在大大减少全氟化合物使用 ? 减至 ? 的同时 仍能使组织获得满意的氧气供给?因此 这一方法可以减少氧气载体的使用 降低生产成本 更重要的是降低了过多使用氧气载体而对人体 作者简介 刘强 医学硕士?主要从事创伤救治和药物开发研究 作者单位 成都地奥集团学术部 刘强!邵洪

压裂液减阻剂的类型

压裂液减阻剂(油包水乳液):在油田增产方法操作中,许多的压裂液通过泵在高压力及高流速条件下被运送到深度约500米至6000米或许更深的钻孔处,致使井眼周围的岩层开裂。油层中的油气在地层压力作用下渗透到井眼分裂处,通过泵又被运送到地上。压裂液在管道中被运送的过程中,因为来自泵的压力会发生湍流,湍流致使阻力的发生。阻力会消耗更多的能量。通常高分子量的线性聚合物可以用于改善流体的流变性质,然后使湍流最小化,然后尽可能的减少在运送过程中丢掉的不必要能量。 压裂液减阻剂(油包水型)在用量很小的情况下减少摩擦阻力,成本低,而且会有高剪切、及抗高温抗高压等出色的功用。尽管,传统的乳液聚合物具有适合的分子量,但是,体系中因为富含碳氢化合物及表面活性剂,会对环境发生危害,表面活性剂及有机溶剂可能在陆地泄露或许在海上途径发生火灾。此外,运用前,需要破乳,所以,传统的乳液聚合物的运用遭到约束。 固体聚合物通常在这种运用中被广泛运用,因为固体聚合物的有用浓度比液体聚合物溶液的浓度高许多。但是,固体聚合物难以溶解,需要格外的设备以及许多的动力和水来稀释产品。在悠远的钻井现场,动力和水常常供应不上,需要许多的经费投入确保。 压裂液减阻剂 产品形状:乳白色流动性液体 产品特征:溶解快,能耗小,抗剪切性好,无毒无污染,无粉尘,无损健康,流动性好易于操作,格外适宜自动加药,完结出产的自动化。 1、与粉体产品对比,溶解快,药效高,无粉尘无污染,可自动连续加药; 2、与胶体产品对比,溶解快,含量高,粘度低,流动性好,易操作,可自动连续加药; 运用范畴:首要用于页岩气压裂液减阻剂,石油工业用于钻井乳液包被抑制剂,水处理领域等!

减阻剂--滑溜水压裂

减阻剂--滑溜水压裂 滑溜水压裂液是指在清水中加入少量的滑溜水压裂用减阻剂,一定量支撑剂以及表面活性剂、黏土稳定剂等添加剂的一种压裂液,又叫做减阻水压裂液。 由于滑溜水压裂施工中泵速较大,因而会产生较高摩阻。作为减阻水体系的主剂,压裂用减阻剂的作用是减少压裂液流动时的摩擦系数,从而减少施工压力。 为了达到现场大排量条件下即配即用的目的,减阻剂不仅应具有较高的减阻性能,还应具有较好的溶解分散性能。 1、分散性能:减阻剂的分散性能可以用分散时间来表征,分散时间是指减阻剂聚合物完成溶解、破乳并且聚合物分子完全展开达到最大黏度所需要的时间,新乡市京华净水材料有限公司生产的乳液减阻剂,分散快且无需破乳,分散性能好。 2、减阻性能:减阻剂的减阻性能具体表现为减阻剂溶液流速加快和摩阻压降减少:当输送压力一定时,减阻效果表现为流速的增加;当流量一定时,减阻效果则表现为摩阻压降的减少。新乡市京华净水材料有限公司生产的乳液减阻剂,价格低、用量少,且减阻效果可达60%以上。 近年来,页岩气能源的开采在中国受到越来越高的重视,作为北美地区页岩气体积改造的关键技术,滑溜水压裂液在中国具有广阔的应用前景。 滑溜水压裂的优势: 1、传统的凝胶压裂液体系使用较高浓度的凝胶,这些凝胶的残留物以及在压裂过程中产生的滤饼会堵塞地层并降低裂缝导流能力。而滑溜水压裂液中只含有少量的减阻剂等添加剂,并且易于返排,大大降低了地层及裂缝伤害,从而有利于提高产量。 2、滑溜水压裂液中的化学添加剂及支撑剂的用量较少,可节省施工成本40%~60%。由于成本的降低,许多原来不具商业开采价值的储层便可以得到开发。 3、减阻水能够产生复杂度更高体积更大的裂缝网络。这是由于减阻水具有较低的黏度以及施工时的泵入速率较高。裂缝复杂度和体积的提高增加了储层的有效增产体积,使得产量增加。 4、由于减阻水中添加剂含量少,较为清洁,因此更易于循环利用 滑溜水压裂优势总结:减阻水压裂液的优点是减阻效果好、低伤害、低成本、产生的裂缝网络复杂度高体积大、易于循环利用。

压裂常用药剂

按化学性质分类 常用的压裂液有水基压裂液、油基压裂液、泡沫压裂液、乳状压裂液、醇基压裂液以及酸基压裂液等六种类型。 1. 水基压裂液是以清水做溶剂或分散介质,向其中加入稠化剂、添加剂配制而成的。主要采用三种水溶性聚合物作为稠化剂,即植物胶及衍生物(胍尔胶、田菁胶、香豆胶等)、纤维素衍生物和合成聚合物。这几种高分子聚合物在水中溶胀成溶胶,经交联剂交联后形成黏度极高的冻胶,在施工结束后,为了使冻胶破胶还需要加入破胶剂。 2. 油基压裂液是矿场原油或炼厂粘性成品油均可作油基压裂液,但其黏度较低、热稳定性差、携砂能力不好、压裂液效率低。目前多用稠化油,基液为原油、汽油、柴油、煤油或凝析油。稠化剂为脂肪酸皂(如脂肪酸铝皂,磷酸酯铝盐等),矿场最高砂比可达30%(体积比)。稠化油压裂液遇地层水后会自动破乳,所以无需加入破胶剂。 3. 泡沫压裂液是一种新型水基压裂液,它是液体、气体及添加剂的混合物。基液多用淡水、盐水、聚合物水溶液,气相为二氧化碳、氮气、天然气,发泡剂用非离子型活性剂。其最大特点是易于返排、滤失少以及摩阻低等,它具有弱酸性,可溶解近井地带及地层中的无机垢和部分岩石中的碳酸盐矿物,抑制粘土膨胀,改善或保护了油气层。缺点是砂比不能过高、井深不能过大。适用于低渗透、易水敏、高压油层和下部受水层威胁的油井以及气井的压裂,是一种综合性能较理想的压裂液体系。 4. 乳状压裂液是指水包油型乳化液,基本上综合水基压裂液和油基压裂液的优点。由于外相为水冻胶,所以乳状液的摩阻低、黏度高、热稳定性好,其悬砂能力强,滤失低。由于乳状液所含的水比较少,进入地层的水不多,因此可以较好的防止粘土膨胀和运移。主要有聚合物乳化压裂液和植物胶冻胶原油乳化压裂液。 5. 醇基压裂液由低碳醇、稠化剂、水、PH 调节剂、粘土稳定剂、助排剂等构成醇基压裂液。醇基压裂液对砂岩储层无水敏、水锁伤害,而且还有解水锁的能力。能有效降低水相滞留伤害,补充地层能量,具有返排能力强、低伤害等特点,能有效改善裂缝导流能力,提高压裂效果。由于甲醇可以与水形成任何比例的混合物,在甲醇压裂液进入水锁地层后,可以最大限度将地层所束缚的水吸收,并随着压裂液排出地面,解除地层的水锁,有助于液体的返排。主要优点是表面张力低,对粘土防膨稳定效果好,主要缺点是成本高、易燃、黏度低,很少应用。 6. 酸基压裂液是以酸液为基液,可以用植物胶及衍生物作为稠化剂配成稠化酸。由

脊状表面减阻特性的风洞试验研究

第23卷 第5期2008年10月 实 验 力 学 J OU RNAL OF EXPERIM EN TAL M ECHANICS Vol.23 No.5 Oct.2008 文章编号:100124888(2008)0520469206 脊状表面减阻特性的风洞试验研究 刘占一,宋保维3,胡海豹,黄桥高,黄明明 (西北工业大学航海学院,西安710072) 摘要:利用热线风速仪,对光滑表面和多个脊状表面在低速风洞中进行了表面流场测试。基于测得的边界层速度分布数据,利用对数律区速度分布公式,编程分别计算出光滑表面和脊状表面的壁面摩擦速度和虚拟原点。研究发现,脊状表面最大减阻量达13.5%;有减阻效果的脊状表面使边界层速度曲线上移、湍流强度下降;与光滑表面相比,脊状表面的位移厚度和动量损失厚度明显减小,也表明脊状表面具有减阻效果;位移厚度和动量损失厚度减少量随槽间距s+的增加呈现先变大后变小的趋势,在s+=12时达到最大。 关键词:脊状表面;热线风速仪;摩擦速度;减阻量 中图分类号:O357 文献标识码:A 0 引言 目前的各种湍流减阻方法中,脊状表面减阻技术以其减阻效果显著和易于推广使用的特点,被公认最具使用潜力。该技术起源于仿生学对鲨鱼等鱼类表皮的研究,通过在航行体外表面加工具有一定形状尺寸的脊状结构,来达到很好的减阻效果。该项技术在国外已投入了实际应用,如空中客车将A320试验机表面的约70%贴上脊状表面薄膜,获得了节油1%~2%的效果;NASA兰利中心在Learjet型飞机上开展的类似飞行试验显示,脊状表面的减阻量约为6%左右。 脊状表面减阻的物理机制在于:脊状表面与顺流向的“反向旋转涡对”作用,产生“二次涡”。“二次涡”的产生和发展削弱了“反向旋转涡对”的强度,进而抑制了湍流猝发的形成。脊状表面流场理论研究发现,脊状表面的粘性底层厚度比平板的要厚得多,表明在脊状表面近壁区存在着低速流层,使得边界层外层高速流不直接与壁面接触,而从低速流层上流过,降低了壁面法线方向的速度梯度,从而产生了减阻效果[1,2]。 近些年,为了从微观流动结构方面研究脊状结构的减阻原理,PIV、LDV和热线风速仪等设备越来越多的被应用在减阻研究中。与以前使用测力天平等设备直接测量阻力不同,这些设备测得的是脊状结构表面流场的特性参数,需要计算出壁面摩擦速度,才能间接给出定量的减阻效果。Ant hony Ken2 dall等在文献[3]中提出用Musker和Spalding公式求摩擦速度;D.Hoo shmand等在文献[6]中提到用Clauser方法求摩擦速度。这些方法都要求准确测得包括粘性底层在内的边界层内层速度分布,但是对数律公式仅需要边界层对数律区的速度分布即可。由于准确测量粘性底层比较困难,因此笔者考虑利用对数律区速度分布公式,通过拟合求摩擦速度。 本文利用热线风速仪测量了五种不同尺寸的脊状结构表面流场,不仅从速度分布、湍流度分布方面3收稿日期:2008203218;修订日期:2008210206 基金项目:国家自然科学基金面上项目(10672136);国家自然科学基金重点项目(50835009)资助 通讯作者:宋保维(1963-),男,教授,目前主要研究方向:水下航行器设计、制造,流体力学,系统工程理论及其应用,计算机辅助设计与制造,机电一体化与机器人技术等。E2mail:songbaowei@https://www.360docs.net/doc/352435944.html,

Q_HTXG 008-2019压裂液用助排剂-氟碳表面活性剂

Q/HTXG 河南天祥新材料股份有限公司企业标准 Q/HTXG008-2019 代替Q/HTXG008-2016 压裂液用助排剂氟碳表面活性剂 (TXZP-2) 2019-10-10发布2019-10-10实施河南天祥新材料股份有限公司发布

目 次 前 言 (Ⅱ) 1范围 (1) 2规范性引用文件 (1) 3技术要求 (1) 4试验方法 (1) 4.1仪器与设备 (2) 4.2试剂与材料 (2) 4.3试验程序 (2) 4.3.1外观的测定 (2) 4.3.2pH值的测定 (2) 4.3.3密度的测定 (2) 4.3.4水溶解性的测定 (2) 4.3.5表面张力、界面张力的测定 (2) 5检验规则 (2) 5.1采样 (2) 5.2抽样 (2) 5.3检验 (3) 5.4判定 (3) 6包装、标志和储运 (3) 6.1包装 (3) 6.2标志 (3) 6.3储运 (3) 7HSE要求 (3) 8安全技术说明书 (3) I

前 言 本标准严格按照GB/T1.1《标准化工作导则第1部分:标准的结构和编写规则》的要求进行编写。 本标准代替Q/HTXG008-2016《压裂液用助排剂氟碳表面活性剂(TXZP-2)》,与Q/HTXG 008-2016相比,除编辑性修改外,主要技术变化如下: 修改了技术要求的格式(见第3章) 修改了文件结构(见第3章和第4章) 修改了表界面张力性能测试(见4.3.5) 增加了HSE要求(见第7章) 增加了安全技术说明书(见第8章) 本标准由河南天祥新材料股份有限公司提出。 本标准由河南天祥新材料股份有限公司起草。 本标准主要起草人:张天成、常春丽、丁志勇、薛建国、王君霞、周文忠 Q/HTXG008-2019的历次版本发布情况为: Q/HTXG008-2016。 II

成品油管道应用减阻剂研究

第28卷第1期 油 气 储 运实验研究 成品油管道应用减阻剂研究 戴福俊3(中国石化销售有限公司华南分公司) 鲍旭晨 张志恒 李春漫 刘 兵 徐海红(中国石油管道研究中心) 戴福俊 鲍旭晨等:成品油管道应用减阻剂研究,油气储运,2009,28(1)19~23。 摘 要 依据减阻剂减阻机理、室内试验及现场应用情况,确定了减阻剂应用效果、管道流态和减阻剂结构必须具备的三个条件,给出了提高减阻率或增输率的方法。分析了减阻剂对成品油品质的影响,提出了实现减阻增输和水力越站时应注意的事项。 主题词 成品油 管道 减阻剂 减阻 效果 分析 应用 一、前 言 近年来,我国的成品油管道建设取得了飞速发展,已建成的长距离成品油管道约7000km ,计有兰成渝管道(长为1247km )、乌兰管道(长为1842km )、珠三角(总长为2890km )以及西南管道等。“十一五”期间,我国预计新建成品油管道约10000km ,新增输油能力约8400×104t/a ,将逐渐形成成品油管道运输网络。因此,保障成品油管道安全、高效运行非常重要。减阻剂是一种超高分子量(>106)的单长链聚合物,在湍流液体管道中只需注入微量减阻剂,便可获得明显的减阻增输效果,经济效益可观。减阻剂减阻技术具有简便、安全、灵活和成本低的特点。油品管道应用减阻剂已有近30年的历史。1979年美国CONOCO 公司首次成功地在横贯阿拉斯加的原油管道上应用了减阻剂。1986年我国第一次在铁大线上进行了减阻剂应用现场试验,此后在多条管道上应用,减阻增输效果明显。但是,减阻剂在成品油管道上应用较少,至今仅在西南和兰成渝等管道上进行了现场试验。二、减阻剂应用效果分析 (1)降低新建管道的固定投资。由于减阻剂可在保持输量不变的条件下明显降低沿程摩擦阻力,因此在保证设计输量的前提下可以降低输油泵规 模,减小管径或壁厚。 (2)提高在役管道的输油量。在管段两端压差 不变的情况下,注入减阻剂可以提高输量。对于单 泵站输油管道,只需在出站口注入减阻剂;对于多泵 站输油管道,由于各站段的最大可行输量不同(由各 站段的最高出站压力和最低进站压力所决定),因此 存在最大可行输量最低的站段,称为“瓶颈段”,“瓶 颈段”的最大可行输量就是全线的最大可行输量。 若在“瓶颈段”注入减阻剂提高输量,则全线最大可 行输量也将得到提高。但此时又存在新的“瓶颈 段”,若想继续提高输量,则应在新的“瓶颈段”处注 入减阻剂。 (3)确保已腐蚀管道的安全运行。埋地管道受 周围土壤和管内油品中腐蚀性物质的影响,管壁内 外表面都会受到腐蚀,使管壁变薄,耐压能力下降。 注入减阻剂后,既可以维持原输量,又可使出站压力 明显降低,从而保障管道运行安全。 (4)避免在自然条件恶劣地区建泵站。长输管 道沿途会经过沙漠、沼泽、高山、严寒等自然条件恶 劣的地区。从交通、生产、安全和生活等方面考虑, 在这些地区应尽量不建或少建输油泵站。应用减阻 剂可以明显降低沿程摩阻,因而在输量和出站压力 不变的情况下能够延长站间距,并合理调整管道参 数,可以达到在某一区域不建或少建泵站的目的。 (5)满足油泵轮换维修和连续输油的需要。一 个输油站通常为多台油泵同时运行,应用减阻剂可 以减少运行泵的数量,增加备用泵数量,避免出现因 泵故障而停输的危险。 3511455,广东省广州市南沙区黄阁镇小虎大道小虎油库;电话:(020)39916188。 ?91?

多功能滑溜水减阻剂的制备及性能评价

第36卷第1期2019年3月25日 油田化学 Oilfield Chemistry Vol.36No.125Mar,2019 文章编号:1000-4092(2019)01-048-05 多功能滑溜水减阻剂的制备及性能评价 * 何 静1,王满学2,吴金桥1,王 敏1 (1.陕西延长石油(集团)有限责任公司研究院,陕西西安710075;2.西安石油大学化学化工学院,陕西西安710065) 摘要:为获得滑溜水压裂液优良的减阻性,以柴油为分散介质、失水山梨醇单油酸酯和聚氧化乙烯失水山梨醇单硬脂酸酯为复配乳化剂、过硫酸钾和偶氮二异丁腈为引发剂,以丙烯酰胺(AM )、2-丙烯酰胺-2-甲基丙磺酸(AMPS )和α-十二烯(EA )为反应单体,采用反相乳液聚合的方法制备了滑溜水减阻剂DGSA-1。用红外光谱仪对合成产物的结构进行了表征。通过测定减阻剂水溶液的特性黏数,对减阻剂制备条件进行了优选,研究了减阻剂的抗盐性、表面活性和减阻性。结果表明,在AM 、AMPS 、EA 3种物质摩尔比为1.1∶1∶0.1、引发剂用量占单体总质量的0.048%、复配乳化剂的HLB 值(表面活性剂的亲水亲油平衡值)为5.5、反应温度55℃、反应时间6h 的条件下制备的滑溜水减阻剂DGSA-1的减阻效果最佳。DGSA-1减阻剂具有分散溶解性好、抗盐、高效减阻和低表界面张力的特性。0.15%DGSA-1水溶液的黏度在2min 内达到最大,减阻率为73.2%,减阻性能优于国内外同类产品。图3表2参16 关键词:压裂液;滑溜水;减阻剂;反相乳液聚合中图分类号:TE357.1+2 文献标识码:A DOI:10.19346/https://www.360docs.net/doc/352435944.html,ki.1000-4092.2019.01.010 * 收稿日期:2018-04-04;修回日期:2018-09-03。 基金项目:陕西省重点实验室建设课题“陕西省陆相页岩气成藏与开发重点实验减阻剂研究”(项目编号2016SZS-06)。 作者简介:何静(1988-),女,工程师,西安石油大学石油与天然气工程专业硕士(2015),从事油田压裂工作液优化和添加剂评价研发工 作,通讯地址:710075西安市雁塔区科技二路75号陕西延长石油(集团)有限责任公司研究院分析实验中心,E-mail :Hejing88950095@https://www.360docs.net/doc/352435944.html, 。 滑溜水压裂是开发页岩等非常规油气资源的一种有效增产措施。减阻剂是滑溜水的主要成分,其性质直接影响滑溜水压裂液的质量[1-2]。乳液型聚丙烯酰胺类高聚物是滑溜水压裂液中使用最为广泛的减阻剂之一,具有减阻效果好和加量低等优点[3-4]。魏娟明等[5-8]以丙烯酸、丙烯酰胺、丙烯酰氧乙基三甲基氯化铵为原料,采用反相乳液聚合法制备的减阻剂的减阻率达到65%以上。王娟娟等[9]以过硫酸铵为引发剂,用丙烯酰铵、丙烯酸与自制单体制得三元共聚白色胶乳状减阻剂,减阻剂加量为0.2%时的减阻率为70%。笔者利用反相乳液聚合方法,通过引入2-丙烯酰胺基-2-甲基丙磺酸和非离子型复合乳化剂制得滑溜水减阻剂。通过测定减阻剂水溶液的特性黏数,对减阻剂制备条件进行了优选;研究了减阻剂的抗盐性、表面活性和减阻性。 1 实验部分 1.1 材料与仪器 丙烯酰胺(AM )、氢氧化钠(NaOH )、乙二胺四 乙酸(EDTA )、失水山梨醇单油酸酯(Span80)、聚氧化乙烯失水山梨醇单硬脂酸酯(Tween60)、偶氮二异丁氰(AIBN )、过硫酸钾,均为化学纯,西安化学试剂厂;2-丙烯酰胺基-2-甲基丙磺酸(AMPS )、α-十二烯(EA ),工业级,山东宇田化工有限责任公司;助排剂YCZP-1(两性离子表面活性剂),延长丰源公司;柴油,延长石油炼化公司;国外减阻剂:聚丙烯酰胺类共聚物,固含量≥30%,相对分子质量895×104,乳液聚合物黏度(25℃)为732mPa ·s ;国内减阻剂:固含量≥30%,相对分子质量721×104,乳液聚合物黏度为920mPa ·s ,西安卡里油田技术有限公司。流

压裂助排剂MSDS

格式Ⅳ-9-8化学品安全技术说明书(MSDS)格式 第一部分:化学品名称 化学品中文名称:压裂用助排剂 化学品英文名称:fracturingandacidizingcleanupadditive? 中文名称2:压裂酸化用助排剂 分子式: 分子量: 第二部分:成分/组成信息 主要成分:十二烷基硫酸钠、?烷基酚聚氧乙烯醚 含量:34%、11% 、9016-45-9 第三部分:危险性概述 危险性类别:无 侵入途径:食入、经皮肤吸收 健康危害:对粘膜和上呼吸道有刺激作用,对眼和皮肤有刺激作用。可引起呼吸系统过敏性反应。 第四部分:急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:脱离现场至空气新鲜处。如呼吸困难,给输氧。就医。 食入:饮足量温水,催吐。就医。 第五部分:消防措施 危险特性:受高热分解放出有毒的气体。 有害燃烧产物:一氧化碳、二氧化碳、硫化物、氧化钠。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿防毒服。避免扬尘,小心扫起,置于袋中转移至安全场所。若大量泄漏,用塑料布、帆布覆盖。收集回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。避免产生粉尘。避免与氧化剂接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有合适的材料收容泄漏物。 第八部分:接触控制/个体防护 职业接触限值:未制定标准 监测方法:未制定标准 工程控制:生产过程密闭,加强通风。 呼吸系统防护:空气中粉尘浓度超标时,必须佩戴自吸过滤式防尘口罩。紧急事态抢救或撤离时,应该佩戴空气呼吸器。

减阻剂在原油管道运行中的应用 戴超

减阻剂在原油管道运行中的应用戴超 摘要:在输油生产过程中,使用减阻剂可以有效的提升管道输送能力,是一种 常用的输送工艺。文章对原油管道添加减阻剂进行了现场实验分析,研究了减阻 剂添加后对管道运行的影响。通过对实验进行分析可以,减阻剂的使用可以有效 的提升管道输送能力,满足了炼化企业原油加工需求,提升了企业生产运行调节 和管理水平。 关键词:原油管道;减阻剂;增输 一、HG减阻剂现场试验 以A、B、C三处为试验对象,在原油管道进行了添加减阻剂运行的现场试验,并获得了完满成功。 ①确定减阻剂注入点。为确保减阻效果,减阻剂注入点应尽可能避开弯头、 阀门等节流设备,注入点后不应有可对减阻剂产生严重剪切的设备。因此,注入 点选择在输油泵后出站直管段。注入管线为DN57mm至DN15mm的变径管线。 ②对管线进行停输密闭开孔作业,安装高压阀门。 ③在添加HG减阻剂输送现场试验期间,分三个阶段实施,第一阶段是在仪征、和县、无为、怀宁四站满负荷运行,最大限度的提高输送能力,使进站压力 尽可能低,出站压力尽可能高,稳定后采集未加剂情况下的空白基础数据;第二 阶段,考察四站同时添加浓度为10mg/L情况下的减阻和增输效果;第三阶段, 考察四站同时添加浓度为15mg/L情况下的减阻和增输效果。 第一阶段:输送鲁宁油和进口油的比例为1:1.5,混油密为886kg/m3 当仪征--黄梅管段不加减阻剂时,全线最大输量稳定运行时,管线平均流量为3699m3/h。仪征干线的输量为7.86万吨/天,安庆支线的输量为1.36万吨/天, 九江支线的输量为1.35万吨/天,武汉支线的输量为1.98万吨/天,洪湖支线的输量为0.93万吨/天,长岭的输量为2.24万吨/天。仪长线全线外管道的总压降为43.91 MPa,其中仪征---黄梅外管道的总压降为21.06MPa。 第二阶段:加入H(}减阻剂浓度为10mg/L运行后,全线最大输量稳定运行时, 管线平均流量为3954m3/h ,管线的实际增输率为6.89%。仪征干线的输量为8.41 万吨/天,安庆支线的输量为1.35万吨/天,九江支线的输量为1.31万吨/天,武 汉支线的输量为2.17万吨/天,洪湖支线的输量为0.97万吨/天,长岭的输量为 2.61万吨/天。仪长线全线外管道的总压降为4 3.14MPa,其中加剂段仪征---黄梅 外管道的总压降为18.70MPa。 第三阶段:加入HG减阻剂浓度为15mg/L运行后,全线最大输量稳定运行时,管线平均流量为4033m3/h,管线的实际增输率为9.03%。仪征干线的输量为8.57 万吨/天,安庆支线的输量为1.34万吨/天,九江支线的输量为1.41万吨/天,武 汉支线的输量为2.20万吨/天,洪湖支线的输量为0.9 3万吨/天,长岭支线的输 量为2.69万吨/天。仪长线全线外管道的总压降为42.96MPa,其中加剂段仪征-- 黄梅外管道的总压降为18.87MPa。 二、管道运行数据分析 2.1增输效果分析 增输率计算公式: 对于添加减阻剂的同一管道而言,λ可以认为基本不变,L和d是一定的,这样沿程摩阻 损失h之和输量Q有关系,即h与Q的平力成正比。而对于在水力光滑区正常运行的管道,

减阻剂

减阻剂 (兰州输油气公司张家川维抢修队甘肃天水 745000) 摘要:用于降低流体流动阻力的化学剂称为减阻剂(drag reducing agent),简称DRA。减阻剂广泛应用于原­油和成品油管道输送,它是在特定地段提高管道流通能力和降低能耗的重要手段。作者在《浅谈减阻剂》一文中介绍了减阻剂的发展历史、减阻机理、生产工艺、新动向及在国内外输油管道应用的实例;分析了在输油管道中应用减阻剂的优势。 关键词:流体减阻剂降耗聚合物 前言 流体的摩擦阻力限制了流体在管道中的流动,造成管道输量降低和能量消耗增加,而高聚物减阻法是在流体中注入少量的高分子聚合物,使之在紊流(速度、压强等流动要素随时间和空间作随机变化,质点轨迹曲折杂乱、互相混掺的流体运动。)状态下降低流动的阻力。 主体 一、减阻及减阻剂的发展历史 减阻的概念早在20世纪40年代就已经提出。20世纪初美国纽约的消防队员曾使用水溶性聚合物增加排水系统的流量。1948年Toms(汤姆斯)在第一届国际流变学会议上发表了第一篇有关减阻的论文,文章指出,以少量的聚甲基丙烯酸甲酯(PMMA)溶于氯苯中,摩阻可降低约50%,因此,高聚物减阻又称为Toms(汤姆斯)效应。 20世纪60年代末,美国Conoco(康诺克)公司研制成CDR-101型减阻剂,1972年取得专利,1977~1979年间首次商业化应用于横贯阿啦斯加的原油管道的越站输送及提高输量方面,并取得巨大成功。1981年又研制成功CDR-102型减阻剂,比CDR-101型的性能成数倍地提高。20世纪80年代初,开展了成品油管道的减阻试验,用于汽油、煤油、柴油和NGL(液化天然气)、LPG(液化石油气)的减阻,到1984年正式在成品油管道上应用。70年代中期,美国Shellco(壳牌)公司和加拿大Shell Inc(壳牌)公司提出申请减阻剂专利。1983年,美国Atlantic Richfield co(大西洋富田)公司研制出Arcoflo(艾少芬)减阻剂产品,加入5ppm(百万分之)即可达到20%的减阻效果。 减阻聚合物的生产条件很难控制,国际上只有极少数公司垄断了这项技术,其代表是美国的Conoco(康诺克)公司和Baker Hughes(贝克休斯)公司,他们的产品基本上代表了目前世界上减阻剂生产工艺的最高水平和发展方向。

天然气管道的减阻与天然气减阻剂

天然气管道的减阻与天然气减阻剂 为了进一步提升天然气管道减阻效能,提升天然气运输的安全性与有高效性,文章以管道减阻作为研究对象,在分析天然气管道减阻方法的同时,对天然气减阻剂的使用进行探讨,以期构建起完备的管道减阻体系。 标签:天然气管道;减阻;减阻剂;应用策略 前言 随着我国天然气管道长度的增加,如何避免天然气运输损耗,确保充足稳定供应,就成为油气企业面临的一个技术难题。基于这种实际,文章将天然气管道减阻作为切入点,通过对减阻方法、减阻剂的探讨,有效提升管道运输的质量,减少损耗的出现。 1.天然气管道减阻方法 为了切实增强天然气管道减阻效果,技术人员可从抑制天然气脉动及降低管道粗糙度入手,逐步梳理天然气管道减阻的新方式,以期为后续相关减阻工作的开展提供方向性引导。 天然气管道在减阻过程中,应当根据流体管道的流动规律及减阻增输原理,对天然气管道在运转过程中产生的气体脉动进行有效抑制,通过这种方式,有效增强减阻效果,为天然气运输提供了极大的便利。从过往情况来看,部分油气企业在天然气管道运输环节,采取了降粘的方法,尽管降粘能够有效提升减阻效果,但是由于主要通过降温的方式来达到这一目的,因此能耗较大,成本控制难度较高,从成本与能耗方面考量,目前多数企业偏向于采取抑制天然气脉动的方式,来达到减阻的目的。从天然气脉动产生的原因来看,其主要由气体流动的不稳定性以及管道内壁粗糙造成,对于天然气流动的不稳定性控制,可采取减少雷诺数的方式,但从实际情况来看,在天然气管道投入使用之后,由于管道的直径与天然气的流体粘度基本保持不便,因此雷诺数的可控范围较为有限,难以通过调整雷诺数的方式,完成对天然气脉动的抑制。基于这是实际,技术人员可从降低天然气管道壁面粗糙度入手,开展相应的技术工作,天然气在管道运输的过程中,受到管道壁粗糙凸起结构的阻挡,在管道内出现反射、散射等情况,产生脉动,通过控制天然气管道内壁的粗糙程度,在很大程度有助于减少气体脉动的产生,实现减阻的目的。在实际操作环节,可采取增加管道内涂层、涂覆薄液膜的方式,来有效降低管道粗糙程度,内涂层作为现阶段应用最为广泛的天然气管道减阻技术,通过在天然气管道内壁中增加涂料,提升管道的光滑度,达到降低天然气管道粗糙度的目的。对于涂料可使用环氧树脂型涂料,这种涂料不仅成本较低,且环境适应力较强,操作简单,充分满足天然气管道减阻技术对于材料的性能要求。在管道涂层施工环节,通过工厂预制法及现场涂覆法两种方式进行,工厂预制法适用于新建天然气管道,油气企业在管道规划设计环节,结合多方面因素,对新施工天然气管道的涂层厚度进行准确要求,以确保涂层符合减阻要求。现场涂覆

相关文档
最新文档