高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例
高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例

一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式;

2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的

计算和证明问题.

二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形

中的三角函数问题.

三、教学过程:

(一)主要知识: 掌握三角形有关的定理:

正余弦定理:a 2

=b 2

+c 2

-2bccos θ, bc a c b 2cos 222-+=θ;R C

c

B b A a 2sin sin sin ===

内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,

cos

2C =sin 2B A +, sin 2

C

=cos 2B A +

面积公式:S=21absinC=21bcsinA=2

1

casinB

S= pr =))()((c p b p a p p --- (其中p=2

c

b a ++, r 为内切圆半径)

射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析:

例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .

解:由正弦定理得:sinA=23

2

45sin 3sin =

?= b B a ,因为B=45°<90°且b

(1)当A=60°时,C=180°-(A+B)=75°, c=

22

645sin 75sin 2sin sin +=

?=

B C

b , (2)当A=120°时,C=180°-(A+B)=15 °,c=

2

2

645

sin 15sin 2sin sin -=?=

B

C

b 思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

例2. △ABC 中,若

22

tan tan b

a B A =,判断△ABC 的形状。

解一:由正弦定理:B A B

A

A A A

B B A 2sin 2sin sin sin cosA cosB sin sin cos sin cos sin 22=∴==即:

∴2A = 2B 或 2A = 180? - 2B 即:A = B 或 A + B = 90?∴△ABC 为等腰或直角三角形

解二: 由题设:222222

22222222sin cos cos sin b

a R

b b

c a c b ac b c a R a b a B A B A =?

-+-+?

?= 化简:b 2(a 2 + c 2 - b 2) = a 2(b 2 + c 2 - a 2) ∴(a 2 -b 2)(a 2 + b 2 - c 2)=0 ∴a = b 或 a 2 + b 2 = c 2 ∴△ABC 为等腰或直角三角形. 思维点拨:判断三角形的形状从角或边入手.

例3.在ΔABC 中,已知A,B,C成等差数列,b=1, 求证:1

C c B b A a sin sin sin =

=,得a+c=B

b sin (sinA+sinC)= 232(sinA+sinC)= 332 [sinA+sin(120°-A)]=2sin(A+30°),因为0°

法二.∵B=60°,b=1,∴a 2

+c 2

-b 2

=2accos60°, ∴a 2

+c 2

-1=ac, ∴a 2

+c 2

-ac=1,

∴(a+c) 2

+3(a-c) 2

=4, ∴(a+c) 2

=4-3(a-c) 2

. ∵0≤a-c<1 ∴0≤3(a-c)2

<3, ∴4-3(a-c) 2

≤4, 即(a+c) 2

≤4, a+c ≤2a+c>1, 1

例4.已知⊙O 的半径为R ,,在它的内接三角形ABC 中,有

(

)(

)

B b a

C A R sin 2sin sin 222-=

-成立,求△ABC 面积S 的最大值.

解:由已知条件得

()()

(

)

b a B

R B A R -=-2sin 2sin sin

222

2

.即有 2222b ab c a -=-,

又 222cos 222=

-+=ab c b a C ∴ 4

π

=c . ∴ B A R ab C ab S sin sin 442

42sin 212?===

()()[]B A B A R --+-

=cos cos 2

22

()???

?

????-+=

B A R cos 2

2222 .

所以当A = B 时,2

max 2

12R S +=

. 思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

例5:在某海滨城市附近海面有一台风,据检测,当前台 风中心位于城市O(如图)的东偏南)10

2

arccos

(=θθ方向 300 km 的海面P 处,并以20 km / h 的速度向西偏北

45的 方向移动,台风侵袭的范围为圆形区域,当前半径为60 km , 并以10 km / h 的速度不断增加,问几小时后该城市开始受到 台风的侵袭。

解(一) 如图建立坐标系:以O 为原点,正东方向为x 轴正向. 在时刻:t (h )台风中心),(y x P 的坐标为

???

???

??+?-=?-?=.22201027300,2

220102300t y t x 此时台风侵袭的区域是2

22)]([)()(t r y y x x ≤-+-,

其中10)(=t r t+60,

若在t 时,该城市O 受到台风的侵袭,则有

,)6010()0()0(222+≤-+-t y x

即,)6010()2

2201027300()2220102300(222+≤?+?-+?-?

t t t 即0288362

≤+-t t , 解得2412≤≤t .

答:12小时后该城市开始受到台风气侵袭

解(二)设在时刻t(h)台风中心为Q,此时台风侵袭的圆形区域半径为10t+60(km)

若在时刻t 城市O 受到台风的侵袭,则6010+≤t OQ 由余弦定理知OPQ PO PQ PO PQ OQ ∠?-+=cos 22

2

2

由于PO=300,PQ=20t

()

5

445cos cos =

-=∠ θOPQ

故2

22222300960020cos 2t t t OPQ PO PQ PO PQ OQ +-=∠?-+=

因此()2

2

226010300960020+≤+-t t t t

解得2412≤≤t

(三)巩固练习:

1.已知(,),n a b =向量n m ⊥,且n m =,则m 的坐标是 ( ) A.(,)(,)b a b a --或 B. (,)a b - C. (,)(,)a b a b --或 D. (,)b a - 2.已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4

π

,则k 等于 ( ) A. 1 B. 2 C.

1

2

D.-1 3.已知2,5,3a b a b ===-,则a b +等于 ( )

A. 23

B. 35

C.

D.

4.等腰Rt △ABC 中,2,AB AC AB BC ==则=

5.若向量3a b +与75a b -垂直,4a b -与72a b -垂直,则非零向量a 与b 的夹角是 ___________。

答案:1、A 2、A 3、C 4、-4 5、60

四、小结:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的

三角函数问题.

五、作业:

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

高三数学《解三角形》题型归纳

高三数学《解三角形》题型归纳(含解析) 题型一:求某边的值 (1)ABC △的内角A B C ,,的对边分别为,,a b c .已知2 5,2,cos 3 a c A === ,则b =_______. (2)如图,在四边形ABCD 中,已知AD ⊥CD , AD =10, AB =14, ∠BDA =60?, ∠BCD =135? ,则BC = . (3)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,若a 2 -c 2 =3b ,且sin B =8cos A sin C ,则边b = . (4)钝角△ABC 的面积是1 2 ,AB =1,BC = 2 ,则AC = . (5)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b - c =2,cos A =-1 4,则a 的值为________. (6)在ABC △中,已知3,120AB A ==o ,且ABC △的面积为153 4 ,则BC 边长为______. (7)在ABC △中,已知5,3,2AB BC B A ===,则边AC 的长为________. 答案:(1)3 (2)8 2 (3)4 (4) 5 (5)8 (6)7 (7)26 题型二:三角形的角 (1)在△ABC 中,B =π4,BC 边上的高等于1 3 BC ,则cos A =________. (2)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,已知85,2b c C B ==,则cos C = (3)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A c B b += .则A =________. (4)设△ABC 的三个内角A ,B ,C 所对的边依次为a ,b ,c ,且 cos sin a c A C =,则A =________. (5)在△ABC 中,若tan :tan :tan 1:2:3A B C =,则A =________. (6)设△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A B C >>, 320cos b a A =,则sin :sin :sin A B C =________. 答案:(1)-10 10 (2) 725

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

解三角形应用举例

第三章 三角函数、三角恒等变换及解三角形第8课时 解三角 形应用举例 1. (必修5P 11习题4改编)若海上有A 、B 、C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B 、C 间的距离是________海里. 答案:5 6 解析:由正弦定理, 知 BC sin60°=AB sin (180°-60°-75°) , 解得BC =56(海里). 2. (必修5P 20练习第4题改编)江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案:10 3 解析:如图,OA 为炮台,M 、N 为两条船的位置,∠AMO =45°,∠ANO =60°,OM =AOtan45°=30,ON =AOtan30°= 3 3 ×30=103,由余弦定理,得 MN = 900+300-2×30×103× 3 2 =300=103(m). 3. (必修5P 18例1改编)如图,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40 m 的C 、D 两点,测得∠ACB=60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,则AB 的距离是__________ m. 答案:20 6 解析:由已知知△BDC 为等腰直角三角形,故DB =40;由∠ACB=60°和∠ADB=60°知A 、B 、C 、D 四点共圆, 所以∠BAD=∠BCD=45°;

在△BDA 中,运用正弦定理可得AB =20 6. 4. (必修5P 21习题2改编)某人在C 点测得塔顶A 在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为________m. 答案:10 解析:如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h. 在Rt △AOD 中,∠ADO =30°,则OD =3h. 在△OCD 中,∠OCD =120°,CD =10. 由余弦定理得OD 2=OC 2+CD 2 -2OC·CD cos ∠OCD , 即(3h)2 =h 2 +102 -2h×10×cos120°, ∴ h 2 -5h -50=0,解得h =10或h =-5(舍). 5. 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进mkm 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围nkm 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险. 答案:mcos αcos β>nsin(α-β) 解析:∠MAB=90°-α,∠MBC =90°-β=∠MAB+∠AMB=90°-α+∠AMB,∴ ∠AMB =α-β.由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β), 解得BM = mcos αsin (α-β).要使船没有触礁危险,需要BMsin(90°-β)=mcos αcos β sin (α-β) >n , 所以α与β满足mcos αcos β>nsin(α-β)时船没有触礁危险. 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (1) 仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2) 方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等.

解三角形应用举例

第7节 解三角形应用举例 最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题. 知 识 梳 理 1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1). 2.方向角 相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角 指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 4.坡度:坡面与水平面所成的二面角的正切值. [常用结论与微点提醒] 1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为? ?????0,π2.( ) (4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )

解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10° 解析 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案 B 3.(教材习题改编)如图所示,设A ,B 两点在河的两岸,一测量 者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m , ∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的 距离为( ) A.50 2 m B.50 3 m C.25 2 m D.2522 m 解析 由正弦定理得AB sin ∠ACB =AC sin B , 又∵B =30°,∴AB =AC sin ∠ACB sin B =50×2212 =502(m). 答案 A 4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是______n mile. 解析 设两船之间的距离为d , 则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.

2014届高三数学(理)二轮复习练习:(九)解三角形

2014届高三数学(理)二轮复习练习:(九)解三角形

小题精练(九)解三角形 (限时:60分钟) 1.在△ABC中,角A,B,C所对的边分别为a,b,c.若a cos A=b sin B,则sin A cos A+ cos2B=( ) A.-1 2 B. 1 2 C.-1 D.1 2.在△ABC中,a,b,c分别是角A,B,C的对 边,若A=π 3 ,b=1,△ABC的面积为 3 2 , 则a的值为( ) A.1 B.2 C. 3 2 D. 3 3.在△ABC中,cos2A 2 = b+c 2c (a,b,c分别为角 A,B,C的对边),则△ABC的形状为( )

A.正三角形 B.直角三角形 C.等腰三角形或直角三角形D.等腰直角三角形 4.(2013·高考天津卷)在△ABC中,∠ABC=π4 , AB=2,BC=3,则sin∠BAC=( ) A. 10 10 B. 10 5 C.310 10 D. 5 5 5.在△ABC中,角A、B、C所对的边的长分别为a,b,c.若a2+b2=2c2,则cos C的最小值为( ) A. 3 2 B. 2 2 C.1 2 D.- 1 2 6.(2014·长春市调研测试)直线l1与l2相交于

a,b.若2a sin B=3b,则角A等于( ) A.π 12 B. π 6 C.π 4 D. π 3 10.(2014·湖南省五市十校联考)在斜三角形ABC中,sin A=-2cos B·cos C,且tan B·tan C=1-2,则角A的值为( ) A.π 4 B. π 3 C.π 2 D. 3π 4 11.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图所示),则旗杆的高度为( )

高中数学必修解三角形教案

高中数学必修解三角形 教案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

第2章 解三角形 正弦定理 教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 教学重点:正弦定理的探索和证明及其基本应用. 教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程: 一、复习准备: 1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办? 2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课: 1. 教学正弦定理的推导: ①特殊情况:直角三角形中的正弦定理: sin A =c a sin B =c b sin C =1 即c = sin sin sin a b c A B C == . ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形) 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =. 同理,sin sin a c A C = (思考如何作高?),从而 sin sin sin a b c A B C == . ③*其它证法:证明一:(等积法)在任意斜△ABC 当中S △ ABC = 111 sin sin sin 222 ab C ac B bc A ==.

(完整版)三角形中的几何计算、解三角形的实际应用举例

三角形中的几何计算、 解三角形的实际应用举例 1.仰角和俯角 在视线和水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角(如图①). 2.方位角 从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②). 3.方向角 相对于某一正方向的水平角(如图③) (1)北偏东α°即由指北方向顺时针旋转α°到达目标方向. (2)北偏西α°即由指北方向逆时针旋转α°到达目标方向. (3)南偏西等其他方向角类似. 【思考探究】 1.仰角、俯角、方位角有什么区别?

以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通常是转化到三角形中,利用正、余弦定理加以解决.在解决某些具体问题时,常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通常是转化到三角形中,利用正、余弦定理加以解决.在解决某些具体问题时,常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 如右图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β. (1)证明:sinα+cos 2β=0; (2)若AC=3DC,求β的值. 【变式训练】 1.如图,在四边形ABCD中,已知AD⊥CD,AD =10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为________.

求距离问题要注意: (1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解. (2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. 例题2.如图所示,甲船由A 岛出发向北偏东45°的方向作匀速直线航行,速度为152海里/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛 出发,朝北偏东θ? ?? ??tan θ=12的方向作匀速直线航行,速度为105海里/小时. (1)求出发后3小时两船相距多少海里? (2)求两船出发后多长时间距离最近?最近距离为多少海里?

高中数学解三角形练习题

解三角形卷一 一.选择题 1.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为 A .23 B .-23 C .14 D .-14 2、在ABC △中,已知4,6a b ==,60B =,则sin A 的值为 A B C D 3、在ABC △中,::1:2:3A B C =,则sin :sin :sin A B C = A 、1:2:3 B 、 C 、 D 、2 4、在ABC △中,sin :sin :sin 4:3:2A B C =,那么cos C 的值为 A 、14 B 、14- C 、78 D 、1116 5、在ABC △中,13,34,7===c b a ,则最小角为 A 、3π B 、6π C 、4 π D 、12π 6、在ABC △中,60,16,A b == 面积3220=S ,则c = A 、610 B 、75 C 、55 D 、49 7、在ABC △中,()()()a c a c b b c +-=+,则A = A 、30 B 、60 C 、120 D 、150 8、在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C === B 、60,48,60a c B === C 、7,5,80a b A === D 、14,16,45a b A === 二、填空题。 9.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =3,b =1,∠B =30°,则∠A 的值是 . 10.在△ABC 中,已知sin B sin C =cos 22 A ,则此三角形是__________三角形. 11. 在△ABC 中,∠A 最大,∠C 最小,且∠A =2∠C ,a +c =2b ,求此三角形三边之比为 .

《§3 解三角形的实际应用举例》教学案1

《§3 解三角形的实际应用举例》教学案1 教学目标 1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。 2、能够运用正弦定理、余弦定理进行三角形边与角的互化。 3、培养和提高分析、解决问题的能力。 教学重点难点 1、正弦定理与余弦定理及其综合应用。 2、利用正弦定理、余弦定理进行三角形边与角的互化。 教学过程 一、复习引入 1、正弦定理:2sin sin sin a b c R A B C === 2、余弦定理: ,cos 2222A bc c b a -+=? bc a c b A 2cos 222-+= ,cos 2222B ca a c b -+=? ca b a c B 2cos 222-+= C ab b a c cos 2222-+=,?ab c b a C 2cos 222-+= 二、例题讲解 引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。 解:060=A 075=B ∴045=C 由正弦定理知00 45sin 1060sin =BC 6 545sin 60sin 1000 ==?BC 海里 750 600 C B A

例1.如图,自动卸货汽车采用液压机构,设计时需要计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为/02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字). 分析:这个问题就是在ABC ?中,已知AB=1.95m ,AC=1.4m , 求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。 解:由余弦定理,得 答:顶杠BC 长约为1.89m. 解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。 2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。 3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。 练1.如图,一艘船以32海里/时的速度向正北航行,在A 处看灯塔S 在船的北偏东020, 30分钟后航行到B 处,在B 处看灯塔S 在船的北偏东065方向上,求灯塔S 和B 处的距离.(保留到0.1) 解:16=AB 由正弦定理知 020sin 45sin BS AB = ' 2066'20660?=?+?=∠BAC A AC AB AC AB BC cos 2222?-+=)(89.1571.3'2066cos 40.195.1240.195.122m BC ≈∴= ????-+=D C B A 1.40m 1.95m 6020/ 600 ?S B A 1150 450650200

相关文档
最新文档