关于曲面积分对称性的研究

关于曲面积分对称性的研究
关于曲面积分对称性的研究

题目:关于曲面积分对称性的研究专业:数学与应用数学

系班:数学与信息科学系

毕业年份:

姓名:

学号:

指导教师:

职称:

摘 要:在直角坐标系中定义了曲面关于坐标平面的概念,研究了在积分曲面是对称的情况下,曲面积分的若干性质。利用这些性质,可以简化曲面积分的计算,给出相应的计算公式,并利用对称性计算曲面积分,这种积分方法使曲面积分更为简捷。

关键词:曲面积分;对称性;奇函数;偶函数

1 预备知识

大学课本上,我们学习了第一型曲面积分和第二型曲面积分,并且学习了他们的一些性质,但是这些性质在一些问题中应用麻烦, 比如一些关于曲面积分计算的问题,我们常会因符号处理不当而导致的积分错误。在这里,我们研究了曲面积分的另外一些性质及定理,为我们在以后的计算提供了方便

以下所讨论的各种情况均假设被积函数在积分区域上连续,积分曲面是分片光滑的

]

2[。

定义]5[1:设函数),,(),,(z y x f z y x f -=,则称),,(z y x f 关于x 为偶函数;若定义),,(),,(z y x f z y x f --=,则称),,(z y x f 关于x 为奇函数;类似可以定义函数),,(z y x f 关于z y ,变量的奇函数,偶函数。

定义]7[2:设空间曲面11:(,)z z x y ∑=与22:(,)z z x y ∑=,若1∑与2∑在xoy 面具有相同的投影区域D ,且D y x ∈?),(有),(),(21y x z y x z -=,1∑与2∑异侧,则称曲面1∑与2∑关于xoy 面对称。类似可以定义曲面1∑与2∑关于yoz 面对称;曲面1∑与2∑关于zox 面对称。

命题]6][4[1: 若曲面1∑与2∑关于xoy 面对称,则:

1

2

(,,)(,,)f x y z ds f x y z ds ∑∑=-???? (1)

1

2

(,,)(,,)f x y z dxdy f x y z dxdy ∑∑=--???? (2)

1

2

(,,)(,,)f x y z dydz f x y z dydz ∑∑=-???? (3)

1

2

(,,)(,,)f x y z dzdx f x y z dzdx ∑∑=-???? (4)

证明:因曲面1∑与2∑关于xoy 面对称,所以1∑与2∑在xoy 面具有相同的投影区域D ,

设11:(,)z z x y ∑=与22:(,)z z x y ∑=,则),(1y x z =),(2y x z -; 所以

12z z x x ??=-?? 12z z y y

??=-?? 先证明(1

)式2

2(,,)(,,(,D

f x y z ds f x y z x y ∑-=-???? =????+??+D

dxdy y

z

x z y x z y x f 21211)()(

1)),(,,( =1

(,,)f x y z ds ∑??

在证明(2)式:因为1∑与2∑异侧,不妨令1∑取上侧,2∑取下侧,则

1

(,,)f x y z d x d y ∑??=??D

dxdy y x z y x f )),(,,(1

2

2

1

(,,)(,,(,))(,,(,))D

D

f x y z dxdy f x y z x y dxdy f x y z x y dxdy ∑-=--=-??????

所以1

2

(,,)(,,)f x y z dxdy f x y z dxdy ∑∑=--????

下面证明(3)式:

1

1

1

11(,,)(,,)()(,,)()z z

f x y z dydz f x y z dxdy f x y z dxdy x x ∑∑∑??=--

=-????

???? 2

2

2

21(,,)(,,)()(,,)()z z

f x y z dydz f x y z dxdy f x y z dxdy x x ∑∑∑??-=---

=--????

???? 根据(2)式1

2

11(,,)()(,,)()z z

f x y z dxdy f x y z dxdy x x ∑∑??-

=--?????? 故1

2

(,,)(,,)f x y z dydz f x y z dydz ∑∑=-????

同理可证明(4)式。

仿照命题1,可得下列命题。

命题2:若曲面1∑与2∑关于yoz 面对称,则:

1

2

(,,)(,,)f x y z ds f x y z ds ∑∑=-???? 1

2

(,,)(,,)f x y z dxdy f x y z dxdy ∑∑=-????

1

2

(,,)(,,)f x y z dydz f x y z dydz ∑∑=--???? 1

2

(,,)(,,)f x y z dzdx f x y z dzdx ∑∑=-????

命题3:若曲面1∑与2∑关于zox 面对称,则:

1

2

(,,) (,,)f x y z ds f x y z ds ∑∑=-???? 1

2

(,,) (,,)f x y z dxdy f x y z dxdy ∑∑=-????

1

2

(,,)(,,)f x y z dydz f x y z dydz ∑∑=-???? 1

2

(,,) (,,)f x y z dzdx f x y z dzdx ∑∑=--????

以上命题的证明可仿命题1 。

2 重要结论

考虑到函数),,(z y x f 的奇偶性,可得下列结论:

推论1:设空间曲面12 ∑=∑+∑,12∑∑与关于xoy 面对称,若函数),,(z y x f 关于z 为奇函数,则

(,,)f x y z ds ∑

??=0 ; (,,)0f x y z dxdy ∑

=??

1

(,,) 2(,,)f x y z dydz f x y z dydz ∑

∑=????;1

(,,) 2 (,,)f x y z dzdx f x y z dzdx ∑

∑=????;

证明: 先证明函数),,(z y x f 关于z 为奇函数的情形,此时有:

),,(z y x f =),,(z y x f --,

(,,)f x y z ds ∑

??=ds z y x f ds z y x f ????∑∑+2

1),,(),,(

=ds z y x f ds z y x f ????∑∑-+2

1

)],,([),,(

=1

2

(,,)(,,)f x y z ds f x y z ds ∑∑--=????0

1

2

(,,)(,,)(,,)f x y z dxdy f x y z dxdy f x y z dxdy ∑

∑∑=+??????

= dxdy z y x f dxdy z y x f ]),,([),,(2

1

????∑∑-+

= 1

2(,,)f x y z dxdy ∑??

dydz z y x f dydz z y x f dydz z y x f ??????∑∑∑

+=2

1

),,(),,(),,(

=1

2

(,,)[(,,)]0f x y z dydz f x y z dydz ∑∑+--=????

1

2

(,,)(,,)(,,)f x y z dzdx f x y z dzdx f x y z dzdx ∑

∑∑=+??????

=1

2

(,,)[(,,)]0f x y z dzdx f x y z dzdx ∑∑+--=????

接下来证明函数关于),,(z y x f 关于z 为偶函数的情形,此时有:

),,(z y x f =),,(z y x f -,

ds z y x f ds z y x f ds z y x f ??????∑∑∑

+=2

1

),,(),,(),,(

=ds z y x f ds z y x f ds z y x f ??????∑∑∑

+=1

2

),,(),,(),,(

=

dxdy z y x f dxdy z y x f dxdy z y x f ??????∑∑∑

+=2

1

),,(),,(),,(

=1

2

(,,)(,,)0f x y z dxdy f x y z dxdy ∑∑+-=????

1

2

(,,)(,,)(,,)f x y z dydz f x y z dydz f x y z dydz ∑

∑∑=+??????

1

2

(,,)(,,)f x y z dydz f x y z dydz ∑∑+-????=1

2(,,)f x y z dydz ∑??

dzdx z y x f dzdx z y x f dzdx z y x f ??????∑∑∑

+=2

1

),,(),,(),,(

=

1

2

3

(,,)(,,)2(,,)f x y z dzdx f x y z dzdx f x y z dzdx ∑∑∑+-=??????

同理可得下面推论2,推论3.

推论2:设空间曲面12 ∑=∑+∑,12∑∑与关于yoz 面对称,若函数),,(z y x f 关于x 为奇函数,则

(,,)f x y z ds ∑

??=0 ; (,,)0f x y z dxdy ∑

=??;

1

(,,)2(,,)f x y z dydz f x y z dydz ∑

∑=????;(,,)0f x y z dzdx ∑

=??;

若函数),,(z y x f 关于x 为偶函数,则

1

(,,)2(,,);f x y z ds f x y z ds ∑

∑=???? 1

(,,)2(,,)f x y z dxdy f x y z dxdy ∑

∑=????

(,,)0f x y z dxdy ∑

=??; 1

(,,)2(,,)f x y z dzdx f x y z dzdx ∑

∑=????;

推论3:设空间曲面12 ∑=∑+∑,12∑∑与关于zox 面对称,若函数),,(z y x f 关于y 为奇函数,则(,,)0f x y z ds ∑

=??;(,,)0f x y z dxdy ∑

=??

(,,)0f x y z dydz ∑

=?? 1

(,,)2(,,)f x y z dzdx f x y z dzdx ∑

∑=????

若空间),,(z y x f 关于y 为偶函数,则

1

(,,)2(,,)f x y z ds f x y z ds ∑

∑=???? 1

(,,)2(,,)f x y z dxdy f x y z dxdy ∑

∑=????

1

(,,)2(,,)f x y z dydz f x y z dydz ∑

∑=????;(,,)0f x y z dzdx ∑

=??

3 应用

利用上面推论可以简化一些曲面积分的计算。 例1:计算222

y

ds x y z

++??

其中∑;曲面0,z z H ==之间的圆柱面222x y R +=, 解:因为积分曲面对称于zox 坐标面,且被积函数222

(,,)y

f x y z x y z

=

++是关于y 的奇函数,所以222

0y

ds x y z ∑

=++??

例2 计算

()f xy yz zx ds ∑

++??

,其中∑为锥面22y x z +=

被圆柱面

ax y

x 22

2

=+

所截下的部分]

1[。

解:如图1,12 ∑=∑+∑,12∑∑与关于zox 面对称,被积函数xy 和yz 都是y 的奇函数,zx 关于y 是偶函数,根据推论3,有0xyds ∑

=??;0yzds ∑

=??;

2zxds zxds ∑

=????,在x o y 平面上的投影区域为:

0;2:2

2

≥≤+y ax D y x xy ,用极坐标表示为

2

0,cos a 2r 0π≤θ≤θ≤≤;

故有22xy

D zxds zxds ∑

===??????

==+?

?

??dr cos r d 22dxdy y x x 22cos a 20

32

D 2

2xy

θ

π

θθ

420

54

a 215

64

d cos a

28=

?

π

θθ 所以4

64()15

xy yz zx ds a ∑

++=

??

4 结束语

由于课本上对曲面积分对称性问题没有做研究,以至于我们在这方面了解比较少.本文针对的曲面积分对称的问题给出其定义和性质,以及它们在关于曲面积分对称问题上的简单应用.从而使我们对于对称的曲面的积分问题有了更加深入的了解.给我们在以后的解题提供了方便,为我们对曲面积分的深层研究打下了基础.

参考文献:

[1] 华东师范大学数学系,数学分析(下)第三版.高等教育出版社.

[2] 丁家泰,微积分解题方法(续)[M]北京:北京师范大学出版社 1985.

[3] 刘三阳,数学分析选讲 [M]北京:科学出版社.

[4] 张志宏.高等数学教与学参考下. [M]西安:西北工业大学出版社,2003.

[5] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993.

[6] 高等学校工科数学课委会.高等数学释疑解难[M].高等教育出版社,1992.

[7] 张从军甲数学分析概要二十讲伽].安徽大学出版社,20006.

Research in the Symmetry of surface Integral Abstract: The Cartesian coordinate system definition of a flat surface on the concept of coordinates, on the surface is symmetrical points in the circumstances, the surface of the integral nature of some. Use of these properties, you can simplify the calculation of surface points, and gives the appropriate formula, the calculation of surface and use symmetry points, this integral approach to surface integral more simple,

Key words:Surface integral; symmetry; singular function; dual function

二重积分对称性定理的证明及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1.预备知识 (1) 2.二重积分对称性定理在不同条件下的证明及其应用 (2) 2.1 积分区域D关于坐标轴对称 (2) 2.2 积分区域D关于坐标区域内任意直线对称 (5) 2.3 积分区域D关于坐标原点对称 (9) 2.4 积分区域D关于坐标区域内任意一点对称 (11) 2.5 积分区域D同时关于坐标轴和坐标原点对称 (12) 结束语 (12) 参考文献 (13) 二重积分对称性定理的证明及应用

摘 要:本文归纳利用对称性来计算二重积分的方法,给出了二重积分对称性定理的证明并举出了相应例题. 关键词:对称性;积分区城;被积函数 The Application of Symmetry in Double Integral Calculating Abstract :It is introduced in the thesis some ways of how to calculate double integral with the application of symmetry. It is also put forward in it how to simplify the calculating methods with symmetry. Keywords :Symmetry; Integral region; Integrated function 前言 利用对称性计算二重积分,不但可以使计算简化,有时还可以避免错误.在一般情况下,必须是积分区域D 具有对称性,而且被积函数对于区域D 也具有对称性,才能利用对称性来计算.在特殊情况下,虽然积分区域D 没有对称性,或者关于对称区域D 被积函数没有对称性,但经过技巧性的处理,化为能用对称性来简化计算的积分.这些都是很值得我们探讨的问题. 1 预备知识 对于二重积分(,)D f x y dxdy ??的计算,我们总是将其化为二次定积分来完成的,而在 定积分的计算中,若遇到对称区间,则有下面非常简洁的结论: 当()f x 在区间上为连续的奇函数时,()0a a f x dx -=?. 当()f x 在区间上为连续的偶函数时,0 ()2()a a a f x dx f x dx -=??. 这个结论,常可简化计算奇、偶函数在对称于原点的区间上的定积分. 在计算二重积分时,若积分区域具有某种对称性,是否也有相应的结论呢?回答是肯定的.下面,我们将此结论类似地推广到二重积分. 2 二重积分对称性定理在不同条件下的证明及其应用 定理1[]1 若二重积分(,)D f x y dxdy ??满足

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

对称性在积分中应用

对称性在积分中的应用 摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系,小到分子原子.根据对称性,我们就可以把复杂的东西简单化,把整体的东西部分化.本文介绍运用数学中的对称性来解决积分中的计算问题,主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性,从而简化定积分、重积分、曲线积分、曲面积分的计算方法.另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算.积分的计算是高等数学教学的难点,在积分计算时,许多问题用“正规”的方法解决,反而把计算复杂化,而善于运用积分中的对称性,往往能使计算简捷,达到事半功倍的效果. 关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称

目录 一、引言 二、相关对称的定义 (一)区域对称的定义 (二)函数对称性定义 (三)轮换对称的定义 三、重积分的对称性 (一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性 (一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性 (一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结 参考文献 谢词

一、 引言 积分的对称性包括重积分、曲线积分、曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨.本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义. 二、相关的定义 定义1: 设平面区域为D ,若点),(y x ),2(y x a D -?∈,则D 关于直线a x =对 称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ?)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然 当0=a ,0=b 对D 关于y ,x 轴对称). 定义2: 设平面区域为D ,若点),(y x D ∈?),(a x a y --,则D a x y +=对称, 称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈?),(x a y a -- D ∈,则D 关于直线z y ±=对称. 注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线 对称;平面曲面以平行于坐标面对称,也有以上类似的定义. 空间对称区域. 定义3:(1)若对Ω∈?),,(z y x ,?点Ω∈-),,(z y x ,则称空间区域Ω关于xoy 面对 称;利用相同的方法,可以定义关于另外两个坐标面的对称性. (2)若对Ω∈?),,(z y x ,?点Ω∈-),,(z y x ,则称空间区域Ω关于z 轴对称;利用相同 的方法,可以定义关于另外两个坐标轴的对称性. (3)若对Ω∈?),,(z y x ,?点Ω∈---),,(z y x , 则称空间区域Ω关于坐标原点对称. (4)若对Ω∈?),,(z y x ,?点Ω∈),,(),,,(y x z x z y ,则称空间区域Ω关于z y x ,,具有 轮换对称性. 定义4:若函数)(x f 在区间()a a ,-上连续且有)()(a x f a x f +=-,则)(x f 关于 a x =对称当且仅当0=a 时)()(x f x f =-,则)(x f 为偶函数.若)()(x a f x a f +-=-,

积分对称性定理

关于积分对称性定理 1、 定积分: 设)(x f 在[],a a -上连续,则 ()()()()-0 0,d 2d ,a a a f x x f x x f x x f x x ?? =???? ?为的奇函数,为的偶函数. 2、 二重积分: 若函数),(y x f 在平面闭区域D 上连续,则 (1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分 ()()()()1 0,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。 (2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分

()()()()2 0,,,d d 2,d d , ,D D f x y x f x y x y f x y x y f x y x ?? =????? ??为的奇函数,为的偶函数. 其中:2D 为D 满足0x ≥的右半平面区域。 (3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即 ),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分 ()()()()2 0,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 在0≥y 上半平面的部分区域。 (4)如果积分区域D 关于直线x y =对称,则二重积分 ()()y x x y f y x y x f D D d d ,d d ,????=.(二重积分的轮换对称 性) (5)如果积分区域D 关于直线y x =-对称,则有 1 0,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-?? =?--=??????当时当时 利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林 张纬纬 摘要 利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词 第二类曲面积分 定义法 参数法 投影法 高斯公式 Stokes 公式 向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++ , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 cos .S v S v n θΦ==?? 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

关于曲面积分对称性的研究

题目:关于曲面积分对称性的研究专业:数学与应用数学 系班:数学与信息科学系 毕业年份: 姓名: 学号: 指导教师: 职称:

关 摘 要:在直角坐标系中定义了曲面关于坐标平面的概念,研究了在积分曲面是对称的情况下,曲面积分的若干性质。利用这些性质,可以简化曲面积分的计算,给出相应的计算公式,并利用对称性计算曲面积分,这种积分方法使曲面积分更为简捷。 关键词:曲面积分;对称性;奇函数;偶函数 1 预备知识 大学课本上,我们学习了第一型曲面积分和第二型曲面积分,并且学习了他们的一些性质,但是这些性质在一些问题中应用麻烦, 比如一些关于曲面积分计算的问题,我们常会因符号处理不当而导致的积分错误。在这里,我们研究了曲面积分的另外一些性质及定理,为我们在以后的计算提供了方便 以下所讨论的各种情况均假设被积函数在积分区域上连续,积分曲面是分片光滑的 ] 2[。 定义]5[1:设函数),,(),,(z y x f z y x f -=,则称),,(z y x f 关于x 为偶函数;若定义),,(),,(z y x f z y x f --=,则称),,(z y x f 关于x 为奇函数;类似可以定义函数),,(z y x f 关于z y ,变量的奇函数,偶函数。 定义]7[2:设空间曲面11:(,)z z x y ∑=与22:(,)z z x y ∑=,若1∑与2∑在xoy 面具有相同的投影区域D ,且D y x ∈?),(有),(),(21y x z y x z -=,1∑与2∑异侧,则称曲面1∑与2∑关于xoy 面对称。类似可以定义曲面1∑与2∑关于yoz 面对称;曲面1∑与2∑关于zox 面对称。 命题]6][4[1: 若曲面1∑与2∑关于xoy 面对称,则: 1 2 (,,)(,,)f x y z ds f x y z ds ∑∑=-???? (1) 1 2 (,,)(,,)f x y z dxdy f x y z dxdy ∑∑=--???? (2)

积分中的对称性

积分中的对称性 作者:刘建康 【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。【关键词】积分;轮换对称性;奇对称;偶对称 在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi+1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。 在一元函数积分学中,我们有下面所熟悉结论: 若f(x)在闭区间[-a,a]上连续,则有 ∫a-af(x)dx= 0, f(-x)=-f(x) 2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x) 利用这一性质,可以简化较复杂的定积分的计算。对重积分、曲线积分及曲面积分也有类似的结论。下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。 1 对称性在重积分计算中的应用 对称性在计算二重积分Df(x,y)dσ方面的应用。 结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有 ①Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数 ②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。 其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。 结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有: ①Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称; ②Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中, 必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二 型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌 握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题 型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说 明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第 一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系, 让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的 应用. 2 预备知识 2.1第二型曲面积分的概念

2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++v v v v , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++v v v v 则 若∑为曲面,流速v v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =v v 和单位法向量i n v 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 2.1.2 定义

积分对称性

重积分计算中对称性的应用 二重积分的对称性质 一般的本科教材中都末具体给出,但在计算积分中经常用到,现补充如下: 结论1:如果积分区域D 关于y 对称,}0,),(),{(1≥∈=x D y x y x D 则 ?? ????? ??=--=-=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 结论2:如果积分区域D 关于x 轴对称,}0,),(),{(1≥∈=y D y x y x D 则 ?? ????? ??=--=-=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 结论3:如果积分区域D 关于坐标原点O 对称,则 ?? ????? ??=---=--=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 其中}0, ),(),{(1≥∈=x D y x y x D 结论4:如果积分区域D 关于直线x y ,对称,则 ????=D D d x y f d y x f σσ),(),( 三重积分的对称性,可类似给出。 二、补充例题 例1. 利用二重积分性质,估计积分 ??++= D d y x I σ)94(22的值,其中D 是图形区域:42 2≤+y x 解法1. 首先求94),(2 2++=y x y x f 在D 上的最小值m 和最大值M 由于 x x f 2=??,y y f 8=??,令0=??x f ,0=??y f 得驻点),00(,9)0,0(=f D 的边界42 2 =+y x ,此时94494),(2 2 2 2 ++-=++=y y y x y x f

第二类曲面积分的计算方法

第二类曲面积分的计算 方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公 式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过 程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧. 由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知 识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在 求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种 方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分, 并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重 积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第 二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为

(,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++, ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 定义 .S S i i 的面积,他们的符号由的方向来确定若的法线正向与轴正向成锐角时, z .S xy i i i S xoy S z ?在平面的投影区域的面积为正反之,若法线正向与轴正向成钝角时, .S xy i i xoy S ?他在平面的投影区域的面积为负在各个小曲面上任取一点,(,) i i i ξηζ. 若 lim 1 T n i P →=∑,(,)i i i ξηζyz i S ?0 lim 1 T n i Q →=+ ∑,(,)i i i ξηζzx i S ?0 lim 1 T n i R →=+ ∑,(,)i i i ξηζxy i S ?存在, 或者

曲面积分对称性

2 对称性在曲线积分计算中的应用 2.1 对称性在第一类曲线积分计算中的应用 结论1 若积分曲线L关于x轴(或y轴)对称,记L1为曲线L被坐标轴所分割的两个对称区域之一,则有: ①∫Lf(x,y)ds=0,f(x,y)为关于y(或x)的奇函数; ②∫Lf(x,y)ds=2∫L1f(x,y)ds,f(x,y)为关于y(或x)的偶函数。 结论2 若积分曲线L关于直线y=x对称,则当点(x,y)∈L时,有(y,x)∈L,即L关于x,y具有轮换对称性,这时有: ∫Lf(x,y)ds=∫Lf(y,x)ds=12∫L[f(x,y)+f(y,x)]ds 若f(x,y)=-f(y,x),即f(x,y)关于直线y=x奇对称,则∫Lf(x,y)ds=0; 若f(x,y)=(y,x),即f(x,y)关于直线y=x偶对称,则∫Lf(x,y)ds=2∫L1f(y,x)ds。 其中L1为曲线L被直线y=x所分割的两个对称区域之一。 2.2 对称性在第二类曲线积分计算中的应用 设有曲线积分I=∫L P(x,y)dx,其中L为光滑的有向曲线弧,如果L关于某条直线(包括坐标轴)对称,这时利用对称性计算上述曲线积分时,不仅要考虑P(x,y)的大小和符号,还要考虑投影元素dx的符号。当积分方向和坐标轴正向之夹角小于π2时,投影元素为正,否则为负。一般地,我们有: 结论若积分曲线L关于某直线对称,记L1为曲线L被这条直线所分割的两个对称区域之一,则有: ①∫Lf(x,y)ds=0,P(x,y)dx在对称点上取相反的符号; ②∫Lf(x,y)ds=2∫L1f(x,y)ds,P(x,y)dx 在对称点上取相同的符号。 对于积分∫L Q(x,y)dy也有类似地结论。上述结论都可推广到空间曲线的情形。 3 对称性在曲面积分计算中的应用 3.1 对称性在第一类曲面积分计算中的应用

第二类曲线积分的计算22749

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称性, 参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割

二重积分积分区域的对称性

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy = +??,其中D 为由2 2y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴对称,且 3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有 3()0D f xy y dxdy +=?? . 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 2 2(,),(,)(,). (,)0,(,)(,).D D f x y dxdy f x y f x y f x y dxdy f x y f x y ?-=?=??-=? ???? 当当 其中2D 是由y 轴分割D 所得到的一半区域。 例 6 计算2,D I x ydxdy = ??其中D 为由22;-220y x y x y =+=+=及所围。 解:如图所示,D 关于y 轴对称,并且 2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴 的偶函数,由对称性定理结论有:

第二类曲面积分的计算方法定稿版

第二类曲面积分的计算 方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公 式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程 中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面 广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识

2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++, ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限

积分对称性定理

关于积分对称性定理 1、 定积分: 设 f ( x) 在 a,a 上连续,则 2、 二重积分: 若函数f(x,y)在平面闭区域D 上连续,则 (1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分 0, f x,y 为y 的奇函数 f x, y dxdy 2 f x, y dxdy, f x,y 为y 的偶函数 D D 1 其中:D i 为D 满足y 0上半平面区域。 (2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分 0, f x, y 为x 的奇函数, f x,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数. D D 2 其中:D 2为D 满足x 0的右半平面区域。 (3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函 a -a x dx 0, a 2 f x dx, 0 x 为X 的奇函数, X 为X 的偶

数,即卩 f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分 0, f x,y为x,y的奇函数 f x,ydx:y 2 f xydxy,f x,y 为Xy的偶函数 D D2 其中:D1为D在y 0上半平面的部分区域。 (4)如果积分区域D关于直线y x对称,则二重积分 f x, ydxdy f y,x dxdy .(二重积分的轮换对称性) D D (5)如果积分区域D关于直线y x对称,则有 0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时 D D 利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3) 中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特 性。 3、三重积分: (1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关 于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩 有

曲面积分精解

第一节 第一类曲面积分 内容要点 一、 第一类曲面积分的概念与性质 定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ?(i S ?同时也表示第i 小块曲面的面积),在i S ?上任取一点),,,(i i i ζηξ作乘积 ),,2,1(),,(n i S f i i i i =??ζηξ 并作和 ,),,(1 ∑=??n i i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在, 则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为 ∑??=→∑ ?=n i i i i i S f dS z y x f 10 ),,(lim ),,(ζηξλ (4.2) 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法 .),(),(1)],(,,[),,(22 ????++=∑xy D y x dxdy y x z y x z y x z y x f dS z y x f (4.3) 例题选讲 例 1 计算曲面积分,??∑z dS 其中∑是球面2222a z y x =++被平面)0(a h h z <<=截出的顶部. 解 ∑的方程为.222y x a z --= ∑在xOy 面上的投影区域:xy D {} .),(2222h a y x y x -≤+ 又,12 2 2 22 y x a a z z y x --= ++利用极坐标 故有 ?? ?? -=∑ xy D r a adxdy z dS 22 220 202 22 2r a rdr d a r a ardrd h a D xy -=-=? ? ?? -θ θ π 2 20 22)(212h a r a In a -??????--=π .2h a aIn π= 例2(E01)计算,)(??∑ ++dS z y x 其中∑为平面5=+z y 被柱面252 2=+y x 所截得的部分. 解 积分曲面 ∑-=,5:y z 其投影域},25),({22≤+=y x y x D xy

对称性在各种积分中的定理

对称性在积分计算中的应用 定理2.1.1[3] 设函数),(y x f 在xoy 平面上的有界区域D 上连续,且D 关于 x 轴对称.如果函数),(y x f 是关于y 的奇函数, 即),(),(y x f y x f -=-,D y x ∈),(, 则(,)0D f x y d σ=??;如果),(y x f 是关于y 的偶函数,即),(),(y x f y x f =-, D y x ∈),(,则1 (,)2(,)D D f x y d f x y d σσ=????. 其中1D 是D 在x 轴上方的平面区域. 同理可写出积分区域关于y 轴对称的情形. 则由定理2.1.1知32sin 0D y xd σ=??. 由定理2.1.1可得如下推论. 推论2 设函数),(y x f 在xoy 平面上的有界区域D 上连续,若积分区域D 既关于x 轴对称,又关于y 轴对称,则 ⑴ 若函数),(y x f 关于变量y x ,均为偶函数,则1 (,)4(,)D D f x y d f x y d σσ=????. 其中1D 是区域D 在第一象限的部分,{}1(,)|0,0D x y D x y =∈≥≥. ⑵ 若函数),(y x f 关于变量x 或变量y 为奇函数,则(,)0D f x y d σ=??. 当积分区域关于原点对称时,我们可以得到如下的定理. 定理 2.1.2[]4 设函数),(y x f 在xoy 平面上的有界区域D 上连续,且D 关于 原点对称.如果),(),(y x f y x f -=--,(,)x y D ∈,则(,)0D f x y d σ=??;如果),(),(y x f y x f =--,(,)x y D ∈,则1 2(,)2(,)2(,)D D D f x y d f x y d f x y d σσσ==??????,其中{}1(,)|0D x y D x =∈≥,{}2(,)|0D x y D y =∈≥. 为了叙述的方便,我们给出区域关于y x ,的轮换对称性的定义. 定义 2.1.1 设D 为一有界可度量平面区域(或光滑平面曲线段),如果对于任意(,)x y D ∈,存在(,)y x D ∈,则称区域D (或光滑平面曲线段)关于y x ,具

高等数学-积分对称性

二重积分的对称性: ??=D d y x f I σ),( ⑴若D 关于y 轴)0(=x 对称, ①若),,(),(y x f y x f -=-则0=I , ②若),,(),(y x f y x f =-则??=1 ),(2D d y x f I σ,1 D :0≥x ⑵若D 关于x 轴)0(=y 对称, ①若),,(),(y x f y x f -=-则0=I , ②若),,(),(y x f y x f =-则??=2 ),(2D d y x f I σ,2 D :0≥y 三重积分的对称性: ???Ω =dv z y x f I ),,( ⑴若Ω关于xoy 面)0(=z 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则1 ,),,(21 Ω=???Ωdv z y x f I :0≥z ⑵若Ω关于yoz 面)0(=x 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则2 ,),,(22 Ω =???Ωdv z y x f I :0≥x ⑶若Ω关于xoz 面)0(=y 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则3,),,(2 3 Ω =???Ωdv z y x f I : 0≥y 轮换对称性: 设Ω关于z y x ,,具有轮换对称性(既若Ω∈),,(z y x ,则将 z y x ,,任意互换后的点也属于Ω),则被积函数中的自变量可以任意轮换 而不改变积分值: ???Ω dv z y x f ),,(???Ω =dv x z y f ),,(???Ω =dv x y z f ),,( 特别:???Ω dv x f )(???Ω =dv y f )(???Ω =dv z f )( 从而 3)]()()([=++???Ω dv z f y f x f ???Ω dv x f )(

积分中的对称性

积分中的对称性 个结论。 【关键词】积分;轮换对称性;奇对称;偶对称 在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi+1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。 在一元函数积分学中,我们有下面所熟悉结论: 若f(x)在闭区间[-a, a]上连续,则有 ∫a-af(x)dx= 0, f(-x)=-f(x) 2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x) 利用这一性质,可以简化较复杂的定积分的计算。对重积分、曲线积分及曲面积分也有类似的结论。下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。 1 对称性在重积分计算中的应用 对称性在计算二重积分Df(x, y)dσ方面的应用。 结论1: 若f(x, y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有 ① Df(x, y)dσ=0, f(x)为关于x(或y)的奇函数。 ② Df (x, y)dσ=2D1f(x, y)dσ,f(x, y)为关于x(或y)的偶函数。 其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。 结论2: 若f(x, y)在区域D内可积,且区域D关于原点成中心对称,则有: ① Df(x, y)dσ=0,f(-x,-y)=-f(x, y),即f(x, y)关于原点成奇对称; ② Df(x, y)dσ=2D1f(x, y)dσ=2 D2f(x, y)dσ,f(-x,-y)=f(x, y),即f(x, y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。 结论3 若f(x, y)在区域D内可积,且区域D关于直线L对称,则有: ① Df(x, y)dσ=0,f(x, y)关于直线L奇对称; ② Df(x, y)dσ=2 D1f(x, y)dσ,f(x, y) 关于偶对称。 其中D1为区域D被直线L所分割的两个对称区域之一。 说明:若对D内关于直线L对称的任意两点P、Q,都有f(P)=-f(Q),(f(P)=f(Q)),则称f(x, y)关于直线L奇(偶)对称。 特别地,若区域D关于直线y=x对称,则当点(x, y)∈D时,有(y, x)∈D,这时积分区域D关于x、y具有轮换对称性。这时我们有: Df(x, y)dσ=12D[f(x, y)+f(y, x)]dσ

相关文档
最新文档