南开大学生物医用材料-纳米生物医学材料2

纳米生物医学材料

纳米材料

?纳米材料: 在纳米量级(1~100nm)内调控物质结构制成的具有特异性能的新

材料

?: 尺寸小、比表面积大、表面能高、表面原子比例大

?: 小尺寸效应、量子尺寸效

应、宏观量子隧道效应、表面效应

?纳米材料特性取决于指由尺寸小于100nm 的超细颗粒构成的具有小尺寸效应

的零维、一维、二维材料或以它们作为基本单元构成的

三维材料的总称

生物体与纳米结构

牙齿、骨骼等生物体中最坚硬的部分,其主要组成为各

种无机矿物质,如碳酸钙、二氧化硅、羟基磷灰石等。

这种常见的化合物,在我们的建筑上随处可见,其本身

的强度和硬度是有限的,原不足以抵抗外界很大压力。

然而,生物体却创造性的使用了有机、无机杂化的方

法,并通过微观尺度上的组装,增强了其机械性能,使

得这种矿物质能够满足生物体保护自身的作用。

骨结构示意图

软体动物贝壳,尤其是珍珠质部分,主要为碳酸钙的最稳定晶型(方解石或文石)的纳米级有序堆叠结构。这种结构与建筑上常用的砖泥结构类似,以碳酸钙晶体单元为砖,以有机体如蛋白质

等为泥,使用层层堆砌的方式构筑。研究发现,

其所以比普通碳酸钙矿物有着更高的强度和硬度,更好地分散外界压力,保护和支撑生物体均

与其纳米结构密切相关。

生物体的纳米级有序结构不仅有利于提升机械性能,在光学性能的提高上也显示了强大的攻效。一种被称为结构色的生物体显色方式被发现是纳米层次上的有序和无序结构相

互作用的结果。

生物体还用特殊组装形式来完成对外界光线的感应,如复眼结构——由表面具有无数纳米结构整齐排列的微米级小眼构成,具有优异的超疏水性,很好的防雾能力;

由于生物系统的复杂性,搞清某种生物系统的机制需要相当长的研究周期,而且解决实际问题需要多学科长时间地密切协作,这是限制仿生学发展速度的主要原因。

甲壳虫能将糖及蛋白质转化为质轻而强度很高的坚硬外壳?

蜘蛛吐出的水溶性蛋白质在常温常压下竟变成不溶的丝,而丝的强度比防弹背心还要坚韧?

长颈鹿

萤火虫

乌龟

蝴蝶

甲虫

蝙蝠冷光二元化武器雷达宇航员的失重现象薄壳建筑物迷彩服

仿生——模仿生物的某些结构和功能来

发明创造各种仪器设备,这就是仿生。

纳米技术制造仿生生物材料

——纳米生物材料

将有可能满足临床对高性能组织修

复、器官替换的迫切需求,提高疾病的现有诊疗方法的效率,开创新的诊疗途径,

在人类康复工程中发挥重要作用。

预期在未来30年内,与医学和健康领域相关的纳米技术的研究将影响产值达4800亿美元的生物医药制造业。纳米生物医学材料的研究既能满足现实的迫切需求,又有着广阔的应用前景和巨大的社会效益。

纳米生物材料科学研究内容

研究生物物质的纳米结构与功

能,并以某种生物微观结构的特点进行材料设计与制造的学科

无机纳米

生物材料有机纳米

生物材料

复合纳米

生物材料纳米金:快速免疫诊断细胞染色DNA 检测药物载体

纳米银:抗菌材料

金属纳米颗粒材料磁性纳米材料磁性铁氧化体——Fe 3O 4超顺磁性——物理导向性

用于细胞分离、探针检测靶分

子及病原体、靶向药物载体

纳米膜材料

生物传感器、微孔过滤器、晶体样细菌表层两亲高分子形成类脂质体、树枝状聚合物,用作基因或药物载体常用作组织工程材料

纳米生物医学材料研究热点

?纳米生物传感器

?纳米器官(骨)

?纳米技术与疾病诊治

生物传感器的结构识别器换能器信号数据处理

固定或靠近固体载体且对被测物质(底物)具有高度选择性的生物分子膜

识别分子膜上进行的生化反

应并转变成光电信号

将电信号放大、处理、显

示或记录下来SAMs (自组装单分子膜):制备识别器的重要方法

纳米技术和生物传感技术的结合

?表面效应、微尺寸效应、量子效应和宏观量子隧道效应;

?灵敏度大幅提高;

?缩短检测时间;

?实时分析。

按照纳米材料结构

1.纳米粒子;

2.纳米线;

3.纳米微管和多孔纳米结构;

4.光纤纳米生物传感器;

5.纳米级微加工

纳米颗粒在生物传感器中的应用

将功能性纳米颗粒(电学性、光学性和磁性)固定在生物大分子(多肽、蛋白和核酸)上,可制成用于生物信号检测、信号转换和放大的传感器,其可分为声波、光学、磁性和电化学传感器等

将功能性纳米颗粒(电学性、光学性和磁性)

固定在生物大分子(多肽、蛋白和核酸)上

?声波生物传感器

纳米胶体修饰检测分子引起石英晶体微天平的频率改变的检测原理示意图

光共振

固定纳米金属颗粒引起反射光的共振加强

荧光标记定位肿瘤

金纳米颗粒用于通用的荧光湮灭物的示意图

Maxwell D., Taylor M .J.,Nie.S.,J.Am.Chem.Soc.,2002,124:9606-9612

纳米材料在医学领域的应用研究进展

纳米材料在医学领域的应用研究进展 【摘要】在最近几年,纳米材料和纳米技术迅速发展,得到了科学界的重视。由于纳米材料的特殊的尺寸效应,纳米颗粒、纳米管以及各种纳米技术在医学方面的应用正蓬勃发展,势头十足。但在医学领域发展的同时,人们也逐渐认识到其中的一些问题,如纳米材料的生物毒性等。本文主要综述纳米科技在基医学、药学、临床医学和预防医学中的应用研究进展、问题及改进。 【关键词】纳米材料纳米科学纳米技术药物载体医学生物毒性毒理学 1 引言 纳米仅是一个长度单位,1 nm = 10-9m,当物质进入纳米尺度时,会展现出特有的理化性质,如: 小尺寸效应、表面效应、量子尺寸效应以及宏观量子隧道效应等[1]。随着纳米技术的不断发展,各种纳米材料逐渐进入了我们的视野。碳纳米材料主要包括碳纳米管、富勒烯[2]、石墨烯和纳米钻石及其衍生物,是目前应用非常广泛的一类纳米材料,现有的研究结果表明,碳纳米材料在组织工程、药物/基因载体、生物成像、肿瘤治疗、抗病毒/抗菌以及生物传感等生物医学领域中具有潜在的应用前景。 2 纳米材料在医学领域的应用 2. 1 纳米材料在生物医学领域的应用 应用于生物体内应用的纳米材料,它本身既可以是具有生物活性,也可以不具有生物活性,但它在满足使用需要时还必须易于被生物体接受,而不引起不良反应。目前纳米微粒在这方面的应用十分的广泛,如生物芯片、纳米生物探针、核磁共振成像技术、细胞分离和染色技术、作为药物或基因载体、生物替代纳米 材料、生物传感器等很多领域[3]。 纳米探针一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA 损伤。一些高选择性和高灵敏度的纳米传感器可以用于探测很多细胞化学物质,可以监控活细胞的蛋白质和感兴趣的其他生物化学物质。随着纳米技术的进步,最终实现评定单个细胞的健康状况。使用纳米生物荧光探针可以快速准确的选择性标记目标生物分子,灵敏测试细胞内的失踪剂,标记细胞,也可以用于细胞表面的标记研究。

纳米生物医学材料的应用

纳米生物医学材料的应用 摘要:纳米材料和纳米技术是八十年代以来兴起的一个崭新的领域,随着研究的深入和技术的发展,纳米材料开始与许多学科相互交叉、渗透,显示出巨大的潜在应用价值,并且已经在一些领域获得了初步的应用。本文论述了纳米陶瓷材料、纳米碳材料、纳米高分子材料、微乳液以及纳米复合材料等在生物医学领域中的研究进展和应用。 关键字:纳米材料;生物医学;进展;应用 1. 前言 纳米材料是结构单元尺寸小于100nm的晶体或非晶体。所有的纳米材料都具有三个共同的结构特点:(1)纳米尺度的结构单元或特征维度尺寸在纳米数量级(1~100nm),(2)有大量的界面或自由表面,(3)各纳米单元之间存在着或强或弱的相互作用。由于这种结构上的特殊性,使纳米材料具有一些独特的效应,包括小尺寸效应和表面或界面效应等,因而在性能上与具有相同组成的传统概念上的微米材料有非常显著的差异,表现出许多优异的性能和全新的功能,已在许多领域展示出广阔的应用前景,引起了世界各国科技界和产业界的广泛关注。 “纳米材料”的概念是80年代初形成的。1984年Gleiter首次用惰性气体蒸发原位加热法制备成功具有清洁表面的纳米块材料并对其各种物性进行了系统研究。1987年美国和西德同时报道,成功制备了具有清洁界面的陶瓷二氧化钛。从那时以来,用各种方法所制备的人工纳米材料已多达数百种。人们正广泛地探索新型纳米材料,系统研究纳米材料的性能、微观结构、谱学特征及应用前景,取得了大量具有理论意义和重要应用价值的结果。纳米材料已成为材料科学和凝聚态物理领域中的热点,是当前国际上的前沿研究课题之一[1]。 2. 纳米陶瓷材料 纳米陶瓷是八十年代中期发展起来的先进材料,是由纳米级水平显微结构组成的新型陶瓷材料,它的晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都只限于100nm量级的水平[2]。纳米微粒所具有的小尺寸效应、表面与界面效应使纳米陶瓷呈现出与传统陶瓷显著不同的独特性能。纳米陶瓷已成为当前材料科学、凝聚态物理研究的前沿热点领域,是纳米科学技术的重要组成部分[3]。 陶瓷是一种多晶材料,它是由晶粒和晶界所组成的烧结体。由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷性能的主要因素是组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响,使材料的强度、韧性和超塑性大大

纳米技术在医学上的应用

纳米技术在医学上的应用 随着科学技术的进步和发展,纳米材料学和生物医学的结合越来越紧密,纳米材料在生物医学领域的应用已取得了很大进展,并展现出良好的发展势头和巨大的发展潜力。纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。纳米材料在生物医药领域的应用主要有纳米药物、抗菌材料、生物传感器等。 纳米药物 纳米药物与传统的分子药物的根本区别在于它是颗粒药物,而广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等;第二类是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料 抗菌材料 抗菌材料是指具有抗菌或杀菌功能的材料,其主要机理为:干扰细胞壁的合成、损伤细胞膜、抑制蛋白质的合成和干扰核酸的合成等4点。目前,抗菌材料使用的方法主要是通过添加抗菌剂或化学改性的方法使材料具有抗菌的效果。 通过表面化学改性方法将抗菌剂接枝到电纺纳米纤维表面,控制接枝反应在纳米纤维的表面进行,不影响纤维膜的本体力学性能。此外,纳米纤维巨大的比表面被具有高密度抗菌基团的聚合物链覆盖,并稳定、牢固地以共价键结合,这不仅大大提高了抗菌效率,小剂量即可产生强的抗菌作用,而且还具有长效及重复使用的优势,可以有效避免抗菌剂污染等问题。 生物传感器 生物传感器是信息科学、生物技术和生物控制论等多学科交叉融合而形成的新兴高科技领域。随着微电子机械系统技术、纳米技术不断整合入传感器技术领域,生物传感器越来越趋向于微型化。在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器又是纳米器件研究中的一个最重要的方向。 由中国科学院理化技术研究所唐芳琼研究员带领的纳米材料可控制备与应用研究组,在纳米增强的酶生物传感器研究方面取得了重要进展。此研究成果是采用四氧化三铁纳米颗粒构建高灵敏度葡萄糖生物传感器。研究表明,该生物传感器具有良好的抗干扰性,在实际血清的检测中表现出很好的检测效果,与现有临床方法检测结果相比,标准偏差均在3%以内,具有很强的实用性。 纳米技术医学应用的展望 虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪

无机纳米材料在生物医学的应用

无机纳米材料在生物医学的应用 班级:材料科学与工程(1)班 姓名:何丽莉 学号:201473030107

摘要:主要介绍了几种介绍了介孔二氧化硅、纳米碳等非金属类纳米材料,以及磁性铁、氧化铈、银纳米粒子、金纳米粒子、镍等金属类纳米材料,比较了不同来源无机纳米材料的发展、特点、优势,明确了无机纳米材料具有环境友好、成本低、生物相容性好及低毒性等特点,综述了无机纳米材料在生物医药、临床诊断、疾病预防等生物医学方面的研究与应用。 关键词:无机纳米材料生物医学 Abstract: This paper mainly introduces several kinds of the mesoporous silica, nano carbon and other non metal nano materials, and magnetic iron, cerium oxide, silver nanoparticles, gold nanoparticles, nickel and other metal nano materials, compared the development of different sources of inorganic nano materials, features, advantages, the inorganic nano material is environmentally friendly low cost, good biocompatibility and low toxicity characteristics, the application of inorganic nano materials in the biomedical, clinical diagnosis, disease prevention research and application in biomedicine. Keywords: inorganic nano materials biomedicine

自然界(例如生物体)存在的纳米材料及其特性功能

自然界(例如生物体)存在的纳米材料及其特性功能 摘要:纳米是一个长度单位,指的是一米的十亿分之一。纳米技术技,则是在纳米尺度(1到1000纳米之间)上研究物质的特性和相互作用,以及利用这些特性的技术。在纳米技术中,纳米材料是其主要的研究对象与基础。事实上,纳米技术并不神秘,也并不是人类的专利。早在宇宙诞生之初,纳米材料和纳米技术就已经存在了,比如,那些溶洞中的石笋就是一纳米一纳米的生长起来的,所以才千奇百怪;贝壳和牙齿也是一纳米一纳米的生长的,所以才那样坚硬;植物和头发是一纳米一纳米生长的,所以才那样柔韧;荷叶上有用纳米技术生长出来的绒毛,所以才能不沾水,就连人类的身体,也是一纳米一纳米生长起来的,所以才那样复杂。在地球的漫长演化过程中,自然界的生物,从亭亭玉立的荷花、丑陋的蜘蛛,到诡异的海星,从飞舞的蜜蜂、水面的水黾,到海中的贝壳,从绚丽的蝴蝶、巴掌大的壁虎,到显微镜才能看得到细菌… 应该说,它们个个都是身怀多项纳米技术的高手。它们通过精湛的纳米技艺,或赖以糊口,或赖以御敌,一代一代,在大自然中地顽强存活着,不仅给人们留下了深刻的印象,而且给现代的纳米科技工作者带来了无数灵感和启示。 关键词 :纳米材料;生物纳米材料;仿生材料。 一,纳米材料 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。 真正有意识的研究纳米粒子可追溯到20世纪30年代的日本的为了军事需要而开展的“沉烟试验”,但受到当时试验水平和条件限制,虽用真空蒸发法制成了世界第一批超微铅粉,但光吸收性能很不稳定。 到了20世纪60年代人们开始对分立的纳米粒子进行研究。1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。

纳米材料在生物医学上的应用论文

纳米材料在生物医学上的应用论文 纳米材料在癌症治疗方面的应用现状及展望 纳米材料在癌症治疗方面的应用现状及展望 前言:尽管我们现在生活在高科技时代,科技很发达,人类的平均寿命比七、八十年代高了很多,但是癌症仍然是人类健康的头号杀手。即使在发达国家,也是如此。目前癌症在临床上可以进行手术、放疗、化疗等方法,但是大多只能杀死或转移癌细胞,但不能完全清除癌细胞,随时有可能复发。归根到底,癌症还是因发现晚、治愈难而成为致死的重要原因。到目前为止,癌症的有效治疗和诊断仍然是现代医学面临的严峻考验。纳米材料的出现为癌症的及早诊断、治疗带来了希望。 一、纳米材料在癌症早期检测和诊断方面的应用 (1)纳米粒子作为一种多功能的击靶对照反差试剂的候选物作为所有的临床成像。例如,Emory大学 聂书明教授的研究小组首次用聚合物纳米颗粒层 和聚乙二醇包裹的量子点在活体内同时对肿瘤进 行定位和成像。还有,中国医科大学陈丽英教授 将超顺磁性氧化铁纳米粒子进行相应的包裹或与 靶特异性分子联结后作为造影剂使用,可以发现

直径3毫米以下的肝肿瘤,结果清晰可靠。【1】(2)哈佛大学查尔斯.利伯尔领导的研究小组阐述了采用硅纳米导线陈列装置来检测血浆中癌细胞内过 度表达的微量标记蛋白质。【2】 (3)血管栓塞术可用于晚期肝、肾恶性肿瘤的治疗。 磁性纳米微球可以做得更小,且易于进入末梢血 管,在磁场作用下具有磁控导向、靶位栓塞等优 点。例如,多柔比星纳米微粒—碘油乳剂肝动脉 栓塞治疗肝癌。【3】 (4)美国弗拉迪米尔.托洛伊林为首的研究小组,把含有纳米微粒的化疗剂和称为2c5的抗体连接,在 轰击人体癌细胞,通过这种方法可以减缓不同肿 瘤的生长速度。【4】 二、纳米材料在癌症临床上的应用 (1)加拿大多伦多大学马格瑞特公主医院的科学家们研制了一种无毒、可生物降解和具有高灵敏度的 有机纳米颗粒。可广泛适用于癌症治疗和药物传 递通过它将装载的药物导入到肿瘤中进行靶向性 治疗。【4】 (2)通过对纳米粒子的修饰,可以增加其对肿瘤组织的靶向特性,实现对恶性肿瘤的靶向治疗,避免 抗肿瘤药物对正常细胞的损伤。【3】

纳米材料在医学上的应用

纳米技术的应用对各行各业的帮助很大,其中,生物医学方面,已经取得了较为喜人的成果。生物医学方面应用较多的是纳米材料,它的种类形态多样,有的呈粉末状,也有的是纤维状,块状,不可否认的是所具备的性能十分独特。本文从诊断、治疗两大方向进行介绍。 一、在诊断方面的应用 1.遗传病诊断 纳米技术有助于诊断胎儿是否有遗传缺陷。妇女怀孕8个星期时,血液中开始出现少量胎儿细胞。利用具有纳米级大小孔洞的半透膜或特殊的合成纳米管等,可把胎儿细胞分离出来进行诊断。不需要进行羊水穿刺。 目前美国已将此项技术应用于临床诊断中。 2.病理学诊断 肿瘤诊断较为可靠的手段是建立在组织细胞水平上的病理学方法,但存在着良恶性及细胞来源判断不准确的问题。利用原子力显微镜可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常纳米级结构改变,以解决肿瘤诊断的难题。 二、在治疗方面的应用 1、纳米化增加药物吸收度

1)增大药物的表面积促进溶解。 2)药物大分子就能穿透组织间隙,也可以通过人体细小的毛细血管。而且分布面极广。 3)应用于中药制剂。药物的物理活性、靶向性比普通中药大大提高。 2、纳米医用材料 纳米银粉:银在纳米状态下的杀菌能力产生了质的飞跃。只需要用极少量的纳米银即可产生强大的杀菌作用。 智能药物:美国正在设计一种纳米“智能炸弹”,它可以识别出癌细胞的化学特征。这种“智能炸弹”很小,仅有20纳米左右,能够进入并摧毁单个的癌细胞。 纳米技术与生物医学的结合,为医学界提供了全新的思路,纳米材料在医学领域的应用取得了显著效果。 纳米材料在医学方面应用广泛,南京东纳生物科技有限公司是一家集产学研于一体的高新技术型企业,可提供相关产品,更多详情欢迎登陆官网查看!

纳米技术在医学上的应用

纳米技术在医学上的应用 1.关键词:纳米技术医学 2.Keywords:nanotechnology medicine 3.ISI检索结果 表1-1每年出版的文献数 表1-2每年的引文柱状图 从以上两个柱状图可以看出21世纪之前关于纳米技术在医学上的应用的研究几乎为零,但是一进入21世纪国内外关于纳米技术在医学上的应用逐年增加,每年的引文数更是呈指数倍增长,在2013年更是达到了最大出版量。虽然出版 作者记录数占总记录数的百分比FERRARI M 12 1.064% SEIFALIAN AM 11 0.975% LANGER R 10 0.887% DYGAI AM 9 0.798% JAIN KK 9 0.798% MIROSHNICHENKO LA 9 0.798% SIMANINA EV 9 0.798%

表1-3主要研究成员分析 从上表的数据可以看出,就算是发表文献最多的研究者也只发表了12篇,说明专攻纳米技术在医学上应用的人很少,都是从事相关研究的,说明此项目与 表1-4主要研究机构分析 从上表可以看出,关于纳米技术在医学上的应用的研究比较分散,因为取了前17个机构的数据,而其发表的文献数只占了总记录数的21.543%,而绝大部

SPAIN 49 4.344% SWITZERLAND 39 3.457% CANADA 36 3.191% JAPAN 33 2.936% AUSTRALIA 26 2.305% FRANCE 25 2.216% 总合1002 88.838% 表1-5主要国家地区分析(选取发表数占2%以上) 从上表中可以看出,美国、中国和英国占总发表数的53.635%,其中美国就占了38.475%,说明美国研究纳米技术在医学上应用的水平站在世界的顶端,其次就是中国,说明中国在这方面的研究也比较先进。从另一方面来说,纳米技术在医学上的应用将会被广泛的应用,我们的健康水平也能相应的提高。 4.合成路线 ①With tetrabutylammomium bromide,dihydrogen peroxide,bromine in water,Time= 8h,T=65℃,92% ②With copper(l) iodide,potassium iodide,Time= 5h,T= 200℃ , Inert atmosphere,Finkelstein reaction,100%. ③With potassium fluoride,Pd(3wt)/C in N,N-dimethyl-formamide,Time=7h,T=130℃, p= 1500.15Torr, Inert atmosphere,Hiyama Coupling,92%. ④With hydrogen bromide,tri-n-butylhexadecylphosphonium bromide,Time=0.2h,T=115℃,93%.

纳米技术在生物医药中的应用

科技创业 PIONEERINGWITHSCIENCE&TECHNOLOGYMONTHLY 月刊 科技创业月刊2007年第8期 1990年在美国召开了第一届纳米技 术国际学术会议,成为纳米科技发展进步的一个重要标志。1999年,美国的RobertAFreitasJr出版了《 纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。 1纳米技术 纳米是英文nanometre的译名,像米、 厘米、毫米等一样,是一个长度单位。1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。 纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者RichardFeynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。 纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够 利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。目前,由于纳米技术具有的独特优势以及人们对健康和重大疾病防治等问题的日益关注,纳米技术开始广泛应用于生物医药领域。 2纳米技术在生物医药中的应用 方兴未艾的纳米技术把人类对微观世 界的认识带入了一个全新的境界,同时也为人类战胜疾病、提高健康水平提供了更为有力的武器。就目前而言,纳米技术在生命领域的应用前景已逐渐展现,并且许多设想已经逐渐实现,可以预见纳米技术将渗透至生物医药研究和应用的方方面面。 2.1万能的机器人 1986年,美国预见研究所的工程师埃 里克?德雷克斯勒说:“我们为什么不制造出成群的、肉眼看不见的微型机器人,让它们在地毯或书架上爬行,把灰尘分解成原子,再将这些原子组装成各种物品。这些微型机器人不仅是搬运原子的建筑工人,同时还具有绝妙的自我复制和自我修复能力。” 同时,还有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。 除此以外,不同的组合方案还可组装出其他功能的纳米机器人,例如,有的可以吞噬病菌、杀死癌细胞;有的可以作为人体 器官的修复工具,修复损伤的器官和组织等,以完成整容手术或其他器官修复手术;有的可以进行基因装配工作,除去基因中错误或有害的DNA片段,并将正常的 DNA片段装配进染色体,使机体正常运 作。 2.2灵敏的检测器 癌症是人类死亡率极高的疾病之一, 但以目前的医疗诊断水平,癌症一旦被确诊通常已发展到晚期,即已无药可救或已过最佳治疗时期。科学家设想,可制造出纳米传感器植入体内,监控早期癌变信号分子的产生,通过与外界特定的声信号或其他信号的相互作用,将内部信号转化为外部信号。 另外,近年来科学家正尝试应用纳米技术的新型检测仪器和诊断试剂,只需检测少量血液中蛋白质和DNA就可诊断出某人患各种疾病的可能性。国内外研究者正致力于脑肿瘤、肝癌、肺癌、白血病等癌症的早期纳米诊断手段的研究,并取得了一定的成绩。 2.3多彩的标记物 科学家根据CD唱机中激光二极管的 发光原理,研制出半导体纳米晶体。这种微型的无机晶体被称作量子点,可通过对其大小的控制,使其经同一光源激发后,发出红、黄、蓝等多种颜色的光。又因量子点比传统有机染色小分子更稳定,目前得到了广泛应用。例如,研究者可用量子点附着在不同基因序列组成的DNA分子上,通过比较标记的基因序列与已知序列找出哪些基因在特定细胞或组织中表达较为活跃;当用量子点标记蛋白质或其他物质时,技术人员可动态跟踪标记物在体内的过程,从而使其应用于一些疾病的诊断。 纳米技术在生物医药中的应用 夏 涛 (华中师范大学第一附属中学 湖北 武汉 430223) 摘 要 纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用 的高科技先进技术。介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。 关键词 纳米技术 纳米材料 生物医药 中图分类号 TD383:R319文献标识码 A 收稿日期:2007-04-17 86

纳米技术在生物医学中的应用(一)

纳米技术在生物医学中的应用(一) 摘要纳米技术与生物化学、分子生物学整合将对21世纪的生物医学产生深刻的影响。它将利用生物大分子进行物质的组装、分析与检测技术的优化、并将药物靶向性与基因治疗等研究引入微型、微观领域,用纳米生物技术检测是否患有癌症只用几个细胞。 关键词纳米技术;纳米生物学;DNA纳米技术 20世纪80年代才开始研究的纳米技术在90年代获得了突破性进展。最近美国《商业周刊》列出了21世纪可能取得重大突破的三个领域:一是生命科学和生物技术;二是从外星球获取能源;三是纳米技术。所谓纳米技术(Nanotechnology)是指在小于100nm的量度范围内对物质和结构进行制造的技术,其实就是一种用单个原子、分子制造物质的科学技术〔1〕。纳米技术在新世纪将推动信息技术、生物医学、环境科学、自动化技术及能源科学的发展,将极大的影响人类的生活,衣、食、住、行、医疗等方面。本文将围绕纳米技术给21世纪的生物医学可能带来影响作一概述。 1纳米生物学的研究对象 有人把在纳米尺度(水平)上研究生命现象的生物学叫做纳米生物学。纳米结构通常指尺寸在1nm~100nm范围的微小结构。1纳米等于10-9m,即1m的十亿分之一。我们知道,细胞具有微米(10-6m)量级的空间尺度,生物大分子具有纳米量级的空间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米微粒制成特殊药物或新型抗体进行局部定向治疗等。2纳米技术在生物医学方面的应用 2.1测量和控制生物大分子 纳米技术与扫描探针显微镜(Scanningprobemicroscopes,SPMs)相结合,便具有了观察、制造原子水平物质结构的能力,为生物医学工作者提供了直接在亚细胞水平或分子水平研究生命现象的应用前景〔2,3〕。扫描探针显微镜是指利用扫描探针的显微技术,常用的有扫描隧道显微镜(STM,它是ScanningTunnelingMicroscope的简称)和原子力显微镜(AFM,它是AtomicForceMicroscope的简称)。STM的原理是利用电子隧道效应测量探针和样品间微小的距离,又将探针沿样品表面逐点扫描,从而得到样品表面各点高低起伏的形貌。当探针和样品表面间的距离非常近达到一个纳米时,同时在它们之间施加适当电压,在它们之间会形成隧道电流,这就是电子隧道效应。这时探针尖端便吸引材料的一个原子过来,然后将探针移至预定位置,去除电压,使原子从探针上脱落。如此反复进行,最后便按设计要求“堆砌”出各种微型构件。 Hafner(1999)等〔4〕报道了碳纳米管的制备方法,整个过程如同用砖头盖房子一样。隧道电流的大小和探针与表面间的距离有关,因此通过隧道电流的测量可以确定这距离的值。STM 观测的样品要有导电性,用AFM就没有这种要求。AFM的原理是用探针的针尖去“触摸”样品表面,将探针沿表面逐点扫描,针尖随着样品表面的高低起伏作上下运动。用光学方法精确测量针尖这种上下运动,就可以得到样品表面高低起伏的图像。用AFM还可以测量分子间作用力的大小以及不同环境中分子间作用力大小的变化。扫描探针显微镜又是操作生物大分子的工具。用它们可以扭转或拉伸生物大分子,从而研究单个生物大分子的运动学特性。STM和AFM在平行于样品表面的方向上的空间分辨率达到0.1nm。已知样品中原子间距离的量级是0.1nm,所以STM和AFM的空间分辨率达到了分辨单个原子的水平。它的时间分辨率取决于要扫描的样品范围和像素点数目,用它们测量固定观测点时,时间分辨率达到ns甚至ps,扫描一幅面积是10nm×10nm的样品时,中等象素密度的时间分辨率约是1秒〔5〕。显而易见,利用STM、AFM等技术,好象使用“纳米笔”一样,可以操纵原子分子,在纳米石

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21 世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标。结合纳米靶向药物定向治疗技术的发展,人类彻底战胜癌症已为时不远! 目前,纳米材料在生物医学领域已得到了广泛应用,其在检测诊断、药物治疗以及抗菌等方面都取得到了很好的发展,发挥着都不容忽视的作用。 一:生物医学起源于诊断, 没有准确的诊断就不可能有对症的预防和治疗。目前随着科技的发展, 生物医学诊断得到了前所未有的发展, 各种检验诊断手段、仪器五花八门, 在其迅猛发展的过程中纳米材料起到了关键作用。

生物医学中纳米材料的作用

生物医学中纳米材料的作用 1用于生物医学的纳米材料 1·1细胞分离用纳米材料 病毒尺寸一般约80~100nm,细菌为数百纳米,而细胞则更大,所以利用 纳米复合粒子性能稳定、不与胶体溶液反应且易实现与细胞分离等特点,可将纳米粒子应用于诊疗中实行细胞分离。该方法同传统方法相比,具有操作简便、费用低、快速、安全等特点。美国科学家用纳米粒子 已成功地将孕妇血样中微量的胎儿细胞分离出来,从而简便、准确地判 断出胎儿细胞中是否带有遗传缺陷。 1·2纳米材料用于细胞内部染色 利用不同抗体对细胞内各种器官和骨骼组织的敏感水准和亲和力的显 著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体 混合,制备成多种纳米金/抗体复合物。借助复合粒子分别与细胞内各 种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下表现某 种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组 合“贴上”了不同颜色的标签,因而为提升细胞内组织的分辨率提供了 一种急需的染色技术。 1·3纳米药物控释材料 纳米粒子不但具有能穿过组织间隙并被细胞吸收、可通过人体最小的 毛细血管、甚至可通过血脑屏障等特性,而且还具有靶向、缓释、高效、低毒且可实现口服、静脉注射及敷贴等多种给药途径等很多优点,因而 使其在药物输送方面具有广阔的应用前景。德国科学家将铁氧体纳米 粒子用葡萄糖分子包覆,在水中溶解后注入肿瘤部位,使癌细胞和磁性 纳米粒子浓缩在一起,通电加热至47℃,可有效杀死肿瘤细胞而周围正 常组织不受影响;挪威工科大学的研究人员,利用纳米磁性粒子成功地 实行了人体骨骼液中肿瘤细胞的分离,由此来实行冶疗;SharmaP等1用聚乙烯吡咯烷酮包覆紫松醇制得的纳米粒子抗癌新药,体内实验以荷瘤

973项目申报书——2009CB930100-纳米生物材料的合成、组装及在生物医学领域的应用

项目名称:纳米生物材料的合成、组装及在生物医 学领域的应用 首席科学家:李峻柏国家纳米科学中心 起止年限:2009.1至2013.8 依托部门:中国科学院

一、研究内容 拟解决的关键科学问题 本项目研究的主要关键科学问题是:通过模拟生物膜的结构与功能,利用分子组装技术制备具有纳米孔隙的生物材料,研究它们在生物体中的兼容性,作为药物支架如何担载和释放药物及在体外的稳定性,确定其作用机理和影响因素;探索组装的生物材料在生物体中的状态与排除功能,建立合成体系与生物体之间的联系与作用机制,研究其代谢过程,具体地: 1.通过模拟生物膜(生物相容的磷脂/蛋白质复合双层囊泡)研究和揭示细胞膜 和其它生物膜的精细结构、生物功能及其相互关系; 2.分子组装,纳米模板合成和气/液界面相分离等组装单元的结构特征、组装过 程、驱动力、影响因素和调控技术; 3.处于这些组装体中的生物活性物质的状态和功能评价,它们与组装体之间的 相互作用和影响,寻求保持其生物活性的措施; 4.这些具有生物功能的组装体进入人体后的有益效果、作用机制、代谢过程和 可能危害。 考虑到各课题研究的具体对象、问题和目标不同,除上述共同的关键科学问题外,还各有其特殊的科学和技术问题要解决: 1.纳米孔隙的药物载体:构造生物兼容、生物降解的多功能化胶囊,包裹不同 类型药物的最佳方法及药物的缓释;生物界面化胶囊及包裹药物胶囊的靶向释放,不同的类型中空胶囊作为药物和基因载体;智能化微胶囊的构造以及可控性研究;负载药物微胶囊的体外细胞试验及动物试验;多功能微胶囊用于药物载体的包裹和释放机理研究。 2.红血球替代物 聚合物/血红蛋白纳米胶束(胶囊):官能化乳酸共聚物的 设计与合成,保证在水环境中实现自组装形成纳米胶束或胶囊;引入含有易与血红蛋白反应的官能团,保证反应不影响血红蛋白中的血红素活性中心; 反应基团有足够数量,保证组装体中有足够的血红蛋白浓度;构筑聚合物/

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米材料在生物医学领域的应用

纳米材料在生物医学领域的应用 摘要目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米 高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。 关键词纳米材料生物医学应用 1 应用于生物医学中的纳米材料的主要类型及其特性 1.1 纳米碳材料 纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。 碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873K~1473K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C)C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。 1.2 纳米高分子材料 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 1.3 纳米复合材料 目前,研究和开发无机-无机、有机-无机、有机-有机及生物活性-非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修

纳米材料在医药方面的应用

纳米材料在医药方面的应用

纳米材料在医药方面的应用 摘要:本文介绍了什么是纳米材料,纳米材料在生物医学领域的最新应用及研究状况,简要列举了纳米生物材料在医药学应用的最新实例,并对其前景进行了展望。 关键词:纳米材料生物医药最新应用展望 正文:纳米是一个微小的尺度单位,纳米是十亿分之一米(109-),大约是单个原子直径的4倍,通过对在纳米尺度上新现象、新过程的观察,纳米技术为人们提供了许多性能独特的工具、材料、器件和系统]1[。当前纳米技术的研究正快速地从观察和发 现向设计和制造复杂的纳米尺度集合体转变纳米技术研究将是系统的、基于多学科的纳米技术具有巨大的潜能,可望取代现有大多数技术,创造新的工业,并在能源、环境、通信、计算、医药、空间探索、国家安全和基于材料的任何领域中改变基础的科学模型。 我们知道,细胞具有微米(106-m)量级的空间尺度,生物大分子具有纳米量级的空 间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米 微粒制成特殊药物或新型抗体进行局部定向治疗等]2[。 1、纳米材料在医药、医学领域的应用 目前纳米材料在生物医学领域已经得到广泛的应用,在基础医学、药物学、临床医学和预防医学方面,纳米材料作用的发挥都已不容忽视]3[。纳米材料在生物医学中检测、诊断。药物治疗以及健康预防等方面都取得了很好的发展。 1.1纳米材料在医学检验诊断技术方面的应用 生物医学起源于诊断,没有很好的诊断手段就没有很好的治疗和预防,目前随着科学技术的发展,诊断手段越来越高明、先进,得到了前所未有的发展。纳米材料在检验诊断中主要应用于三个方面:[1]利用纳米材料跟踪生物体内活动,对生物体内元素的积累和排除作出判断。[2]利用纳米颗粒极高的传感灵敏效应对疾病进行早期诊断]4[。利用纳米材料的特性去化验检测试样从而辅助治疗。 在具体应用方面的典型有量子点的荧光效应、磁性纳米材料的磁效应、纳米材料的吸附作用等等。 1.2纳米材料在药物治疗方面的应用 纳米生物材料,具有生物兼容性、可生物降解、药物缓释和药物靶向传递等良好特性已在药物治疗方面取得了很大成功。 药物纳米载体具有高度靶向、药物控制释放、提高难溶药物的溶解率和吸收率优

自组装DNA纳米材料在生物医学的应用

高等生物化学分析和生物物理学课程论文 自组装DNA纳米结构材料在生物医学中的应用 DNA纳米材料概述1. 自组装作为自然存在的聚合物大分子,不但是生物遗传信息的载体,更可以DNA克里克定律碱基配-DNA作为有序可控的纳米结构单元。双链杂交严格遵循沃森的链接方式又DNA对原则,因此,通过控制碱基的排列顺序,我们既能够决定的纳米技术,不仅仅影响了大自然的生物进DNA可以设计它的整体结构。这种纳米技术中,研究者们可以通过合化,更为DNA的应用拓展了空间。在DNA 理地设计碱基序列,DNA序列能够按照设计组装成我们想要的结构。使得单独的[1,2,3]纳米。首先,DNA在纳米尺寸上构造DNA自组装结构有着独特的优势链按照碱基互补结构的构建是按照自上而下的顺序进行的,研究者可以使DNA这种特性是其他纳米配对原则杂交出预设的结果,从而设计出大量的核酸结构,双螺旋结构的DNA型材料(例如纳米颗粒和蛋白质等)所不具备的;其次,B,这种明确的特征使模,螺旋重复单元为3.4nm(约10.5个碱基对)2nm直径为并且能够修DNA合成仪可制备,第三,型构建变得相对简单;使用市售的DNA,双链DNADNA饰任意的序列;第四,DNA的结构兼具刚柔特性,相比单链最后,DNA的刚性较强。我们可以通过单链与双链的链接组装特定的几何结构。材料可与其他生物材料共同构建多组分的纳良好的生物相容性,利用DNADNA 米结构。碱基互补配对,研究人员采用链置换的策略,开发了一系此外,利用DNA逻辑门设计构造了模拟人类例如DNAWinfree 等人用纳米技术,列的动态DNA[37,38]大脑的神经网络和一个复杂的DNA计算机。 纳米材料组装的应用DNA基于2. 生物传感检测2.1

相关文档
最新文档