专题07 三角形及四边形的计算与证明(解析版)

专题07 三角形及四边形的计算与证明(解析版)
专题07 三角形及四边形的计算与证明(解析版)

专题07 三角形及四边形的计算与证明

一、三角形

1.三角形的概念及性质

概念:(1)由三条线段首尾顺次相接组成的图形,叫做三角形.(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形.

性质:(1)三角形的内角和是180°;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角.(2)三角形的任意两边之和大于第三边;三角形任意两边之差小于第三边.

2.三角形中的重要线段

(1)三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这点叫做三角形的内心.

(2)三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高线相交于一点.

(3)三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角形的三条中线交于一点.

3.全等三角形的性质与判定

概念:能够完全重合的两个三角形叫做全等三角形.

性质:全等三角形的对应边、对应角分别相等.

判定:(1)有三边对应相等的两个三角形全等,简记为(SSS);

(2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS);

(3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA);

(4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS);

(5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).

4.等腰三角形

等腰三角形的有关概念及分类:有两边相等的三角形叫等腰三角形,三边相等的三角形叫做等边三角形,也叫正三角形;等腰三角形分为腰和底不相等的等腰三角形和腰和底相等的等腰三角形.

等腰三角形的性质:

(1)等腰三角形的两个底角相等(简称为“等边对等角”);

(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”);

(3)等腰三角形是轴对称图形.

等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”).

5.等边三角形的性质与判定

等边三角形的性质:

(1)等边三角形的内角相等,且都等于60°;

(2)等边三角形的三条边都相等.

等边三角形的判定:

(1)三条边相等的三角形是等边三角形;

(2)三个角相等的三角形是等边三角形;

(3)有一个角为60°的等腰三角形是等边三角形.

6.直角三角形的性质与判定

(1)直角三角形的两锐角互余.

(2)直角三角形中,30°角所对的边等于斜边的一半.

(3)直角三角形斜边上的中线等于斜边的一半.

(4)勾股定理:直角三角形两直角边的平方和等于斜边的平方.

(5)有一个角等于90°的三角形是直角三角形.

(6)有两角互余的三角形是直角三角形.

(7)如果三角形一边上的中线等于这边的一半,则该三角形是直角三角形.

(8)勾股定理的逆定理:如果三角形一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.

二、多边形

1.多边形概念

定义:在平面内,由一些不在同一直线上的线段首尾顺次相接组成的图形叫做多边形.

对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.

正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.

2.性质

n边形的内角和为(n-2)·180°,外角和为360°.

三、平行四边形

1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.

2.平行四边形的性质:

(1)平行四边形的对边相等且平行.

(2)平行四边形的对角相等.

(3)平行四边形的对角线互相平分.

(4)平行四边形是中心对称图形.

3.平行四边形的判定

(1)两组对边分别相等的四边形是平行四边形.

(2)两组对边分别平行的四边形是平行四边形.

(3)一组对边平行且相等的四边形是平行四边形.

(4)对角线相互平分的四边形是平行四边形.

(5)两组对角分别相等的四边形是平行四边形.

四、矩形

1.矩形的定义:有一个角是直角的平行四边形是矩形.

2.矩形的性质:

(1)矩形的四个角都是直角.

(2)矩形的对角线相等.

(3)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴;它的对称中心是对角线的交点.3.矩形的判定:

(1)有三个角是直角的四边形是矩形.

(2)对角线相等的平行四边形是矩形.

五、菱形

1.菱形的定义:一组邻边相等的平行四边形叫做菱形.

2.菱形的性质:

(1)菱形的四条边都相等.

(2)菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角.

3.菱形的判定:

(1)对角线互相垂直的平行四边形是菱形.

(2)四条边都相等的四边形是菱形.

六、正方形

1.正方形的定义:一组邻边相等的矩形叫做正方形.

2.正方形的性质:

(1)正方形的四条边都相等,四个角都是直角.

(2)正方形的对角线相等,且互相垂直平分;每条对角线平分一组对角.

(3)正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.

3.正方形的判定:

(1)一组邻边相等并且有一个角是直角的平行四边形是正方形.

(2)一组邻边相等的矩形是正方形.

(3)对角线互相垂直的矩形是正方形.

(4)有一个角是直角的菱形是正方形.

(5)对角线相等的菱形是正方形.

方法技巧

1.判断给定的三条线段能否组成三角形,只需判断两条较短线段的和是否大于最长线段即可.

2.“截长法”和“补短法”是证明和差关系的重要方法,无论用哪一种方法都是要将线段的和差关系转化为证明线段相等的问题,因此添加辅助线构造全等三角形是通向结论的桥梁.

3.根据多边形的一个内角和一个相邻外角的互补关系,灵活选择公式求内角或外角.

4.牢记平行四边形的性质和判定方法,注意它们的区别与联系,可以提高解决平行四边形问题的速度和准确性.

5.牢固掌握矩形、菱形、正方形的定义、性质和判定定理,它们大多是从边、角、对角线三个方面来描述的,分类记忆,便于灵活应用.

6.适当进行动手操作训练,从实践中认识特殊平行四边形的轴对称性和中心对称性,再进行相应的证明和计算,也是正确解答综合性问题的有效途径.

核心考点三角形、四边形中的相关证明及计算

纵观近近年中考题,三角形常与旋转、折叠、平移等知识点结合起来考查;四边形中要特别关注平行四边形、矩形、菱形和正方形的性质和判定,以及运用其性质解决有关计算的问题.

【经典示例】如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.

下面是两位学生有代表性的证明思路:

思路1:不需作辅助线,直接证三角形全等;

思路2:不证三角形全等,连接BD交AF于点H.

请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);

(2)如图2,在(1)的前提下,当∠ABE =135°时,延长AD 、EF 交于点N ,求

AM

NE

的值;

(3)在(2)的条件下,若AF AB =k (k 的常数),直接用含k 的代数式表示AM

MF

的值.

答题模板

【满分答案】 (1)如题图1,

∵四边形ABCD 为菱形,∴AB =CD ,AB ∥CD , ∵四边形ABEF 为平行四边形, ∴AB =EF ,AB ∥EF , ∴CD =EF ,CD ∥EF , ∴∠CD M =∠FEM ,

在△CDM 和△FEM 中,∠CMD =∠FME ,∠CDM =∠FEM ,CD =EF , ∴△CDM ≌△FEM , ∴DM =EM ,

即点M 是DE 的中点;

(2)∵△CDM ≌△FEM ,∴CM =FM , 设AD =a ,CM =b ,

∵∠ABE =135°,∴∠BAF =45°, ∵四边形ABCD 为菱形,∴∠NAF =45°,

∴四边形ABCD 为正方形,∴AC AD a , ∵AB ∥EF ,∴∠AFN =∠BAF =45°, ∴△ANF 为等腰直角三角形,

∴NF =

2AF =2

a +

b +b )=a b ,

∴NE =NF +EF =a b +a =2a b ,

AM NE =

(3)∵

AM AB b a =k ,

∴b

a =k ,∴a

b ,

AM

FM =b

b

+a b .

【解题技巧】本题主要考查了三角形与四边形的综合题,解题关键是要灵活运用平行四边形和菱形的性质;全等三角形的知识解决线段相等的问题;会利用代数法表示线段之间的关系,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

模拟训练

如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =1

4

AB . (1)求证:EF ⊥AG ;

(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由).

(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OAB S S ??=,求△PAB 周长的最小值.

【答案】(1)证明见解析;(2)成立;(34+. 【解析】(1)证明:∵四边形ABCD 是正方形, ∴AD =AB ,∠EAF =∠ABG =90°,

∵点E 、G 分别是边AD 、BC 的中点,AF =

1

4

AB , ∴

AF AE =12,BG BA =1

2, ∴AF BG

AE BA

=, ∴△AEF ∽△BAG ,∴∠AEF =∠BAG , ∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°, ∴∠AOE =90°, ∴EF ⊥AG ;

(2)成立;理由如下: 根据题意得:AF BG =1

2

, ∵

AE AB =1

2, ∴AF BG =AE

AB

, 又∵∠EAF =∠ABG ,∴△AEF ∽△BAG , ∴∠AEF =∠BAG , ∵∠BAG +∠EAO =90°, ∴∠AEF +∠EAO =90°, ∴∠AOE =90°, ∴EF ⊥AG ;

(3)过O 作MN ∥AB ,交AD 于M ,BC 于N ,

如图所示:

则MN ⊥AD ,MN =AB =4,∵P 是正方形ABCD 内一点,当S △PAB =S △OAB ,∴点P 在线段MN 上, 当P 为MN 的中点时,△PAB 的周长最小,此时PA =PB ,PM =1

2

MN =2, 连接EG 、PA 、PB ,则EG ∥AB ,EG =AB =4,

∴△AOF ∽△GOE ,∴

OF AF OE EG =

=1

4, ∵MN ∥AB ,∴

AM OF EM OE ==1

4

, ∴AM =15AE =15×

2=2

5

, 由勾股定理得:PA

, ∴△PAB 周长的最小值=2PA +AB

4+.

1.(2018?广州)如图,AB 与CD 相交于点E ,AE =CE ,DE =BE .求证:∠A =∠C .

【答案】证明详见解析. 【解析】在△AED 和△CEB 中,

AE CE AED CEB DE BE =??

∠=∠??=?

∴△AED ≌△CEB (SAS ),

∴∠A =∠C (全等三角形对应角相等).

2.(2018?广东)如图,矩形ABCD 中,AB >AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE . (1)求证:△ADE ≌△CED ; (2)求证:△DEF 是等腰三角形.

【答案】(1)证明详见解析;(2)证明详见解析. 【解析】(1)∵四边形ABCD 是矩形, ∴AD =BC ,AB =C D .

由折叠的性质可得:BC =CE ,AB =AE , ∴AD =CE ,AE =CD .

在△ADE 和△CED 中,AD CE AE CD DE ED =??

=??=?

∴△ADE ≌△CED (SSS ). (2)由(1)得△ADE ≌△CED , ∴∠DEA =∠EDC ,即∠DEF =∠EDF , ∴EF =DF ,

∴△DEF 是等腰三角形.

3.(2018?广东)已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC . (1)填空:∠OBC =_________°;

(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度;

(3)如图2,点M ,N 同时从点O 出发,在△OCB 边上运动,M 沿O →C →B 路径匀速运动,N 沿O →B →C 路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N

的运动速度为

1单位/秒,设运动时间为x 秒,△OMN 的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?

【答案】(1)60;(2)

7;(3)当x 8

3

=时,y . 【解析】(1)由旋转性质可知:OB =OC ,∠BOC =60°, ∴△OBC 是等边三角形,∴∠OBC =60°.故答案为60. (2)在图1中,

∵OB =4,∠ABO =30°,

∴OA 1

2

=

OB =2,AB ==

∴S △AOC 1

2

=?OA ?AB 12=?2×=

∵△BOC 是等边三角形,

∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°,

∴AC ==,

∴OP 2AOC S AC =

==

△. (3)①当0

3

时,M 在OC 上运动,N 在OB 上运动,此时在图2中,过点N 作NE ⊥OC 且交OC

于点E ,则NE =ON ?sin60°=

∴S △OMN 1

2

=

?OM ?NE 12=?1.5x 2?x ,

∴y =

x 2

∴x 8

3

=时,y .

②当

8

3

作MH ⊥OB 于H (如图3).则BM =8–1.5x ,MH =BM ?sin60°=

8–1.5x ),

∴y 1

2

=

?ON ×MH =2.

当x 8

3

=

时,y 取最大值,y 3<,

③当4

MN =12–2.5x ,OG =AB =,

∴y 1

2

=

?MN ?OG =2x ,

当x =4时,y 有最大值,

∵x >4,∴y 最大值

综上所述,当x 8

3

=

时,y .

4.(2018?宜昌)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .

(1)求∠CBE的度数;

(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.

【答案】(1)65°;(2)25°.

【解析】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,

∴∠ABC=90°–∠A=50°,

∴∠CBD=130°.

∵BE是∠CBD的平分线,

∴∠CBE

1

2

∠CBD=65°;

(2)∵∠ACB=90°,∠CBE=65°,

∴∠CEB=90°–65°=25°.

∵DF∥BE,

∴∠F=∠CEB=25°.

5.(2018?淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.

【答案】证明详见解析.

【解析】过点A作EF∥BC,

∵EF∥BC,

∴∠1=∠B,∠2=∠C,

∵∠1+∠2+∠BAC =180°, ∴∠BAC +∠B +∠C =180°, 即∠A +∠B +∠C =180°.

6.(2018?乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC =BD .

【答案】证明详见解析.

【解析】∵∠ABD +∠3=180°∠ABC +∠4=180°,且∠3=∠4, ∴∠ABD =∠ABC ,

在△ADB 和△ACB 中,12

AB AB ABD ABC ∠=∠??

=??∠=∠?

∴△ADB ≌△ACB (ASA ), ∴BD =BC .

7.(2018?昆明)如图,在△ABC 和△ADE 中,AB =AD ,∠B =∠D ,∠1=∠2.求证:BC =DE .

【答案】证明详见解析. 【解析】∵∠1=∠2, ∵∠DAC +∠1=∠2+∠DAC ∴∠BAC =∠DAE ,

在△ABC 和△ADE 中,B D AB AD BAC DAE ∠=∠??

=??∠=∠?

∴△ADE ≌△ABC (ASA ), ∴BC =DE .

8.(2018?铜仁市)已知:如图,点A 、D 、C 、B 在同一条直线上,AD =BC ,AE =BF ,CE =DF ,

求证:AE ∥FB .

【答案】证明详见解析.

【解析】∵AD =BC ,∴AC =BD ,

在△ACE 和△BDF 中,AC BD AE BF CE DF =??

=??=?

∴△ACE ≌△BDF (SSS ), ∴∠A =∠B , ∴AE ∥BF .

9.(2018?柳州)如图,AE 和BD 相交于点C ,∠A =∠E ,AC =EC .求证:△ABC ≌△EDC .

【答案】证明详见解析.

【解析】∵在△ABC 和△EDC 中,A E AC EC ACB ECD ∠=∠??

=??∠=∠?

∴△ABC ≌△EDC (ASA ).

10.(2018?通辽)如图,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的

延长线于F ,且AF =CD ,连接CF . (1)求证:△AEF ≌△DEB ;

(2)若AB =AC ,试判断四边形ADCF 的形状,并证明你的结论.

【答案】(1)证明详见解析;(2)四边形ADCF是矩形,证明详见解析.

【解析】(1)∵E是AD的中点,∴AE=DE,

∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,

∴△AEF≌△DEB(AAS);

(2)连接DF,

∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,

∵△AEF≌△DEB,∴BE=FE,

∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,

∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.

11.(2018?鄂州)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E、F分别为DB、BC的中点,连接AE、EF、AF.

(1)求证:AE=EF;

(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系式.

【答案】(1)证明详见解析;(2)2α+β=60°.

【解析】(1)点E、F分别为DB、BC的中点,∴EF

1

2

=CD,

∵∠DAB=90°,∴AE

1

2

=BD,

∵DB=DC,∴AE=EF;

(2)∵AF=AE,AE=EF,∴△AEF是等边三角形,∴∠AEF=60°,∵∠DAB=90°,点E、F分别为DB、BC的中点,

∴AE=DE,EF∥CD,

∴∠ADE=∠DAE,∠BEF=∠BDC=β,

∴∠AEB=2∠ADE=2α,

∴∠AEF=∠AEB+∠FEB=2α+β=60°,

∴α,β之间的数量关系式为2α+β=60°.

12.(2018?鞍山)如图,在矩形ABCD中,分别取AB,BC,CD,DA的中点E,F,G,H,连接EF,FG,GH,HE,求证:四边形EFGH是菱形.

【答案】证明详见解析.

【解析】连接AC,BD,如图所示.

∵E为AB的中点,F为BC的中点,

∴EF为△ABC的中位线,∴EF

1

2

=AC,

同理HG

1

2

=AC,EH=FG

1

2

=BD,

∵矩形ABCD,∴AC=BD,

∴EF=FG=GH=HE,∴四边形EFGH是菱形.

13.(2018?本溪)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;

(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.

【答案】(1)证明详见解析;(2)26.

【解析】(1)∵AD∥BC,∴∠ADB=∠CBD,

∵BD平分∠ABC,∴∠ABD=∠CBD,

∴∠ADB=∠ABD,∴AD=AB,

∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;

(2)∵DE⊥BD,∴∠BDE=90°,

∴∠DBC+∠E=∠BDC+∠CDE=90°,

∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,

∴CD=CE=BC,∴BE=2BC=10,

∵BD=8,∴DE==6,

∵四边形ABCD是菱形,∴AD=AB=BC=5,

∴四边形ABED的周长为:AD+AB+BE+DE=26.

沪科版数学八年级上册专题:三角形的有关计算与证明

专题:三角形的有关计算与证明 三角形的有关计算和证明是中考的必考内容之一,这类试题解法比较灵活,通常以全等三角形、等腰三角形、等边三角形和直角三角形的性质和判定为考查重点,以计算题、证明题的形式出现,解答这类问题时,不仅要熟练掌握有关的公式定理,更要注意它们之间的相互联系. 例如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB 交BE的延长线于点D.CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG. 求证:(1)AF=CG;(2)CF=2DE. 【思路点拨】(1)要证明AF=CG,可以利用“ASA”证明△ACF≌△CBG来得到; (2)要证明CF=2DE,由(1)得CF=BG,则只要证明BG=2DE,又利用△AED≌△CEG可得DG=2DE,故证明DG=BG即可. 【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC. ∴∠BCG=∠CAB=45°. 又∵∠ACF=∠CBG,AC=BC, ∴△ACF≌△CBG(ASA), ∴CF=BG,AF=CG. (2)延长CG交AB于点H. ∵AC=BC,CG平分∠ACB, ∴CH⊥AB,H为AB中点. 又∵AD⊥AB,∴CH∥AD, ∴G为BD中点,∠D=∠EGC. ∵E为AC中点,∴AE=EC. 又∵∠AED=∠CEG, ∴△AED≌△CEG(AAS), ∴DE=EG,∴DG=2DE,∴BG=DG=2DE. 由(1)得CF=BG,∴CF=2DE. 方法归纳:解答与线段或角相等的有关问题时,通常将它转化为全等三角形问题来求解. 1.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.

四边形的证明和计算

四边形的证明和计算 教学目标:1、使学生牢固掌握平行四边形、矩形、菱形、正方形、等腰梯 形的定义、性质定理和判定定理,掌握它们之间的内在联系, 并能应用这些知识去分析和解决问题。 2、通过复习提高学生逻辑推理论证的能力,发展学生数学思维 的技能,进一步激励学生自我提高的动机。关注中考中不断出 现的以特殊四边形为背景设计与三角形、相似形、圆、方程、 函数等相结合的综合题 3、如何挖掘隐含条件,合理添加辅助线,转化矛盾解决问题。 教学重点:平行四边形、矩形、菱形、正方形、等腰梯形的定义、性质定理、 判定定理的综合应用和综合思维、分析思维以及逻辑表达能力的 培养。 教学难点:要善于多角度寻求解决问题的途经,筛选简捷的解法、积累解决 问题的策略. 教学过程: 学生整理有关平行四边形、矩形、菱形、正方形、等腰梯形的定义、性 质定理和判定定理,掌握它们之间的内在联系,初步形成这些知识的网络结 构。为下面的复习做好准备。 一、 几何证明题: 例1:如图,在梯形ABCD 中,AD //BC ,AB =DC ,过点D 作DE ⊥BC ,垂 足为E ,并延长DE 至F ,使EF =DE .联结BF 、CD 、AC . (1)求证:四边形ABFC 是平行四边形; (2)如果DE 2=BE ·CE ,求证四边形ABFC 是矩形. (3)只添加一个条件,使四边形EDFA 是正方形.请你至少写出两种不同 图形改为:

的添加方法. 展示2011年中考23题,体现四边形在中考中的重要作用,学生独立完 成,教师巡视指导,学生交流方法,师生共同归纳考点,教师给予方法点析 (2)只添加一个条件,使四边形EDFA 是正方形.请你至少写出两种不同 的添加方法.(不另外添加辅助线,无需证明) 本题较为简单,意在顾及绝大多数学生,减 少对几何的畏惧心理,口答完成,提高积极 性,复习判定方法 巩固训练: 1. 如图,平行四边形ABCD 的对角线AC 的垂直平分线与AD 、 BC 分别交于E 、F , 求证:四边形AFCE 是菱形 分析: 由于四边形AFCE 的对角线互相垂直,那么只需证明对角线互相平 分即可,故只需证OE=OF ,而这可由证明△AOE ≌△COF 得到。 证:(略) 说明:解决此题的关键是要准确理解题意,EF 是线段AC 的垂直平分线。另 一种方法证完后还可问学生,还有其他方法吗?注重一题多解,激活学生的 思维。 学生独立完成,学生板书 分层提高题:2. 已知:如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G . (1) 证:GD CG GF EG ?=?; 例2.如图,在△ABC 中,AB=AC ,D 是BC 的中点,DE⊥AB,DF⊥AC,垂足分 别为E 、F . (1)求证:DE=DF .

中考数学四边形经典证明题含答案

1.如图,正方形ABCD 和正方形A ′OB ′C ′是全等图形,则当正方形A?′OB ′C ′绕正方形 ABCD 的中心O 顺时针旋转的过程中. (1)四边形OECF 的面积如何变化. (2)若正方形ABCD 的面积是4,求四边形OECF 的面积. 解:在梯形ABCD 中由题设易得到: △ABD 是等腰三角形,且∠ABD=∠CBD=∠ADB=30°. 过点D 作DE ⊥BC ,则DE=1 2BD=23,BE=6 .过点A 作AF ⊥BD 于F ,则AB=AD=4. 故S 梯形ABCD =12+43. 2.如图,ABCD 中,O 是对角线AC 的中点,EF ⊥AC 交CD 于E ,交AB 于F ,问四边形AFCE 是菱形吗?请说明理由. 解:四边形AFCE 是菱形. ∵四边形ABCD 是平行四边形. ∴OA=OC ,CE ∥AF . ∴∠ECO=∠FAO ,∠AFO=∠CEO . ∴△EOC ≌△FOA ,∴CE=AF . 而CE ∥AF ,∴四边形AFCE 是平行四边形. 又∵EF 是垂直平分线,∴ AE=CE .∴四边形AFCE 是菱形. 3.如图,在△ABC 中,∠B=∠C ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,?垂足分别为E 、F .求证:(1)△BDE ≌CDF .(2)△ABC 是直角三角形时,四边形AEDF 是正方形.

19.证明:(1),90D BC BD CD DE AB DF AC BED CFD B C 是的中点 △BDE ≌△CDF . (2)由∠A=90°,DE ⊥AB ,DF ⊥AC 知: AEDF BED CFE DE DF 四边形是矩形 矩形AEDF 是正方形.4.如图,ABCD 中,E 、F 为对角线AC 上两点,且AE=CF ,问:四边形EBFD 是平行四边形吗?为什么? 解:四边形EBFD 是平行四边形.在 ABCD 中,连结BD 交AC 于点O , 则OB=OD ,OA=OC .又∵AE=CF ,∴OE=OF . ∴四边形EBFD 是平行四边形.5.如图,矩形纸片ABCD 中,AB =3 cm ,BC =4 cm .现将A ,C 重合,使纸片 折叠压平,设折痕为EF ,试求AF 的长和重叠部分△AEF 的面积. 【提示】把AF 取作△AEF 的底,AF 边上的高等于AB =3. 由折叠过程知,EF 经过矩形的对称中心,FD =BE ,AE =CE =AF .由此可以在△ABE 中使用勾股定理求AE ,即求得AF 的长. 【答案】如图,连结AC ,交EF 于点O , 由折叠过程可知,OA =OC , ∴O 点为矩形的对称中心.E 、F 关于O 点对称,B 、D 也关于O 点对称. ∴BE =FD ,EC =AF ,

2020年全国各地中考数学压轴题按题型(几何综合)汇编(一)三角形中的计算和证明综合(原卷版)

2020全国各地中考数学压轴题按题型(几何综合)汇编 一、三角形中的计算和证明综合题 1.(2020贵州黔东南州)如图1,△ABC和△DCE都是等边三角形. 探究发现 (1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用 (2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长. (3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长. 2.(2020黑龙江牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC, 交射线CA于点F.请解答下列问题:

(1)当点E 在线段AB 上,CD 是△ACB 的角平分线时,如图①,求证:AE +BC =CF ;(提示:延长CD ,FE 交于点M .) (2)当点E 在线段BA 的延长线上,CD 是△ACB 的角平分线时,如图②;当点E 在线段BA 的延长线上,CD 是△ACB 的外角平分线时,如图③,请直接写出线段AE ,BC ,CF 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若DE =2AE =6,则CF = . 3.(2020武汉)问题背景:如图(1),已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ; 尝试应用:如图(2),在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F ,点D 在BC 边上, AD BD = √3,求 DF CF 的值; 拓展创新 如图(3),D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =2√3,直接写出AD 的长. 4.(2020湖南常德)已知D 是Rt △ABC 斜边AB 的中点,∠ACB =90°,∠ABC =30°,过点D 作Rt △DEF 使∠DEF =90°,∠DFE =30°,连接CE 并延长CE 到P ,使EP =CE ,连接BE ,FP ,BP ,设BC 与DE 交于M ,PB 与EF 交于N . (1)如图1,当D ,B ,F 共线时,求证: ①EB =EP ; ②∠EFP =30°; (2)如图2,当D ,B ,F 不共线时,连接BF ,求证:∠BFD +∠EFP =30°.

四边形的证明与计算

热点 四边形的证明与计算 (时间:100分钟 总分:100分) 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.下列命题正确的是( ) A .对角线互相平分的四边形是菱形; B .对角线互相平分且相等的四边形是菱形 C .对角线互相垂直且相等的四边形是菱形; D .对角线互相垂直且平分的四边形是菱形. 2.平行四边形ABCD 中,∠A 、∠B 、∠C 、∠D 四个角的度数比可能是( ) A .1:2:3:4 B .2:3:2:3 C .2:2:3:3 D .1:2:2:3 3.如果菱形的边长是a ,一个内角是60°,那么菱形较短的对角线长等于( ) A . 12a B a C .a D 4.用形状、大小完全相同的图形不能进行密铺的是( ) A .任意三角形 B .任意四边形 C .正五边形 D .正四边形 5.已知一个等腰梯形的下底与上底之差等于一腰长,?则这个等腰梯形中的较小的角的度数为( ) A .30° B .60° C .45° D .75° 6.已知四边形ABCD 中,在①AB ∥CD ;②AD=BC ;③AB=CD ;④∠A=∠C 四个条件中,不能推出四边形ABCD 是平行四边形的条件是( ). A .①② B .①③ C .①④ D .②③ 7.如图1,ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12,BD=10,则AB 的长m?取值范围是( ) A .1

平行四边形专项练习题样本

平行四边形专项练习题 一.选择题( 共12小题) 1.在下列条件中, 能够判定一个四边形是平行四边形的是( ) A.一组对边平行, 另一组对边相等 B.一组对边相等, 一组对角相等 C.一组对边平行, 一条对角线平分另一条对角线 D.一组对边相等, 一条对角线平分另一条对角线 2.设四边形的内角和等于a, 五边形的外角和等于b, 则a与b的关系是( ) A.a>b B.a=b C.a<b D.b=a+180°3.如图是一个由5张纸片拼成的平行四边形, 相邻纸片之间互不重叠也无缝隙, 其中两张等腰直角三角形纸片的面积都为S1, 另两张直角三角形纸片的面积都为S2, 中间一张正方形纸片的面积为S3, 则这个平行四边形的面积一定能够表示为( ) A.4S1 B.4S2 C.4S2+S3 D.3S1+4S3 4.在?ABCD中, AB=3, BC=4, 当?ABCD的面积最大时, 下列结论正确的有( ) ①AC=5; ②∠A+∠C=180°; ③AC⊥BD; ④AC=BD. A.①②③B.①②④C.②③④ D.①③④ 5.如图, 在?ABCD中, AB=6, BC=8, ∠C的平分线交AD于E, 交BA的延

长线于F, 则AE+AF的值等于( ) A.2 B.3 C.4 D.6 6.如图, 在?ABCD中, BF平分∠ABC, 交AD于点F, CE平分∠BCD, 交AD于点E, AB=6, EF=2, 则BC长为( ) A.8 B.10 C.12 D.14 7.如图, 在?ABCD中, AB=12, AD=8, ∠ABC的平分线交CD于点F, 交AD 的延长线于点E, CG⊥BE, 垂足为G, 若EF=2, 则线段CG的长为( ) A. B.4 C.2 D. 8.如图, 在?ABCD中, AB>AD, 按以下步骤作图: 以点A为圆心, 小于AD的长为半径画弧, 分别交AB、 AD于点E、 F; 再分别以点E、 F为圆心, 大于EF的长为半径画弧, 两弧交于点G; 作射线AG交CD于点H, 则下列结论中不能由条件推理得出的是( ) A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH

2014年中考数学四边形专题复习:四边形的证明与计算 (2)

第一讲:矩形、菱形训练学习(1)—2014年中考数学四边形专题 一、矩形的学习 例题1(2013浙江省绍兴,15,5分)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE 折叠,使点B落在AC上的点B`处,又将△CEF沿EF折叠, 使点C落在直线EB`与AD的交点C`处.则BC∶AB的值为. 例题2.(2013安徽,14,5分)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: ①S1+S2=S3+S4②S2+S4= S1+ S3 ③若S3=2 S1,则S4=2 S2④若S1= S2,则P点在矩形的对角线上 其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上). 相应练习一 1.(2013年吉林省,第22题、7分.)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC. (1)求证:△ADC △ECD; (2)若BD=CD,求证四边形ADCE是矩形.

2.(2013贵州六盘水,22,12分)如图11,已知E 是ABCD 中BC 边的中点,连接AE 并延长AE 交DC 的延长线于点F . (1)求证:△ABE ≌△FCE . (2)连接AC 、BF ,若∠AEC =2∠ABC ,求证:四边形ABFC 为矩形. 3.(2013湖南湘潭,19,6分)如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知m BC 2=, m CD 4.5=,?=∠30DCF ,请你计算车位所占的宽度EF 约为多少米? 二、菱 形 的 学 习 例题3(2013深圳市 20 ,8分)如图7,将矩形ABCD 沿直线EF 折叠,使点C 与点A 重合,折痕交AD 于点E ,交BC 于点F ,连接AF 、CE , (1)求证:四边形AFCE 为菱形; (2)设,,,AE a ED b DC c ===请写出一个a 、b 、c 三者之间的数量关系式 'A

三角形中的五种常见证明类型

专训一:三角形中的五种常见证明类型名师点金:学习了全等三角形及等腰三角形的性质和判定后,与此相关的几何证明题的类型非常丰富,常见的类型有:证明数量关系、位置关系,线段的和差关系、倍分关系、不等关系等. 证明数量关系 题型1证明线段相等 1.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC 上的点,且AE=AF,求证:DE=DF. (第1题) 题型2证明角相等 2.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD 于F交BC于E. 求证:∠ADB=∠CDE. (第2题) 证明位置关系 3.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE=CD,点G是EF的中点,求证:DG⊥EF.

(第3题) 证明倍分关系 4.如图,在△ABC中,AB=AC,AD,BE是△ABC的高,AD,BE相交于点H,且AE=BE,求证:AH=2BD. (第4题) 证明和、差关系 5.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC.求证:AB+BD=AC. (第5题) 证明不等关系 6.如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB >AC,求证:AB-AC>PB-PC.

(第6题) 专训二:构造全等三角形的六种常用方法 名师点金:在进行几何题的证明或计算时,需要在图形中添加一些辅助线,辅助线能使题目中的条件比较集中,能比较容易找到一些量之间的关系,使数学问题得以较轻松地解决.常见的辅助线作法有:构造法、平移法、旋转法、翻折法、加倍折半法和截长补短法,目的都是构造全等三角形. 构造基本图形法 1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF. 求证:∠ADC=∠BDF. (第1题) 翻折法

四边形与证明(经典难题)

第八部分图形与证明 知识点的把握 新的课程标准对图形与证明提出了如下要求: 1.了解证明的含义. (1)理解证明的必要性;(2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论;(3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立;(4)通过具体的例子理解反例的作用,知道利用反例可以证明一个命题是错误的;(5)通过实例,体会反证法的含义;(6)掌握用综合法证明的格式,体会证明的过程要步步有据. 2.掌握以下基本事实,作为证明的依据.(1)一条直线截两条平行直线所得的同位角相等;(2)两条直线被第三条直线所截,若同位角相等,那么这两条直线平行; (3)若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等;(4)全等三角形的对应边、对应角分别相等. 3.利用2中的基本事实证明下列命题. (1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行);(2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角);(3)直角三角形全等的判定定理;(4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心);(5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交于一点(外心);(6)三角形中位线定理;(7)等腰三角形、等边三角形、直角三角形的性质和判定定理;(8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理. 4.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值. 命题方向 经过对近几年各地的中考试题来看,直接考查本章知识的试题约占10%,普遍由圆结合其他的知识点进行考查.在主客观题中均有出现,往往是综合运用方程、函数、三角形、相似形等知识解决与圆有关的中考压轴题.除了考查几何图形的性质和应用外,还常常与应用问题、实际问题结合,对学生的探究能力和创新思维能力进行综合考查. 纵观近三年的中考命题,可以预见:用几何图形的性质、判定考查学生的逻辑推理的能力、分析和解决问题的能力、以及创新意识和实际能力.因此,考查分类讨论思想、数形结合思想以及运用观察、想象、综合、比较、演绎、归纳、抽象、概括、类比等数学方法. 考试重点 一、几何图形的性质定理、判定定理的应用 本考点为基本图形的性质定理和判定定理的应用,我们要明确的基础知识有:平行线的性质定理和判定定理、三角形的内角和定理及推论、直角三角形全等的判定定理、角平分线性质定理及逆定理、垂直平分线性质定理及逆定理、三角形中位线定理、等腰三角形、等边三角形、直角三角形的性质和判定定理、平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理. 中考过程中,几何证明是必考的范围.其中是以基本图形的性质和判定定理为主.结合各方面的知识点,考虑辅助线的做法,运用综合分析法来找出条件和结论之间的关系,提高学生的解题能力、分析能力、研究探索能力.对于几何证明的题目应首先从基本知识入手,关注辅助线的做法,总结方法,积累经验,在看图和识图方面不断创新,不断提高. 【例1】已知:如图8-1,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

平行四边形综合性质及经典例题

一对一个性化辅导教案

平行四边形的性质与判定 平行四边形及其性质(一) 一、 教学目标: 1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、 重点、难点 1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、 课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗 你能总结出平行四边形的定义吗 (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“ ”来表示. 如图,在四边形ABCD 中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB ?50?360?360?180行 四边形的面积计算 六、随堂练习 1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长 ③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 2.如图,ABCD 中,AE⊥BD,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .

3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm . 七、课后练习 1.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的范围是_ ____ __. 3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积. (一) 平行四边形的判定 一、教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 重点:平行四边形的判定方法及应用. 难点:平行四边形的判定定理与性质定理的灵活应用. 四、课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形你是怎样判断的 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗

培优专题四 三角形中角度的证明与计算

三角形中角度的证明与计算 类型一:三角形中两个角的角平分线的夹角 1、两个内角平分线的夹角 如图,在△ABC 中,O 点是∠ABC 和∠ACB 的角平分线的交点,求∠O 与∠A 之间的关系。 2、一个内角平分线与一个外角平分线的夹角 如图,在?ABC 中,D 点是∠ABC 和∠ACE 的角平分线的交点,求∠D 与∠A 之间的关系。 3、两个外角平分线的夹角 如图,在?ABC 中,E 点是∠ABC 和∠ACD 的角平分线的交点,求∠E 与∠A 之间的关系。 练习1、如图,在?ABC 的三条内角平分线交于点I ,AI 的延长线与BC 交于点D ,BC IH ⊥于H ,试比较∠CIH 和∠BID 的大小 练习2、如图,在?ABC 中,∠A=n o ,∠ABC 和∠ACD 的平分线交 于点A 1,得∠A 1,∠A 1BC 和∠A 1CD 的平分线交于点A 2, 得2A ∠, BC A 2014∠和CD A 2014∠的平分线交于点2015A , 求2015A ∠ = 。 类型二:三角形中两条边的高线的夹角 如图,在?ABC 中,O 点是BC 和AC 边上高的交点,求∠AOB 与∠ D C

类型三:三角形中同一顶点的高线与角平分线的夹角 如图,在 ABC 中,AD 是BC 边上高,AE 是∠BAC 的平分线,求∠DAE 与∠B 和∠C 之间的关系。 练习3、如图,在△ABC 中,AE 平分∠BAC ,∠B =40°,∠C =70°,F 为射线AE 上一点(不与E 点重合),且FD ⊥BC. (1)若点F 与点A 重合,如图1,求∠EFD 的度数; (2)若点F 在线段AE 上(不与点A 重合),如图2,求∠EFD 的度数; (3)若点F 在△ABC 外部,如图3,此时∠EFD 的度数会变化吗?是多少? 类型四:三角形中两边中垂线的交点(锐角、直角、钝角三角形分类讨论) 如图,在△ABC 中,OD 垂直平分AB 交AB 于点D ,OE 垂直平分AC 交AC 于点E ,连接OB ,OC ,求∠BOC 与∠A 之间的关系。 练习4 (1)在△ABC 中,AB=AC ,∠BAC=100°,ME 和NF 分别垂直平分AB 和AC ,求∠MAN?的度数. (2)在(1)中,若无AB=AC 的条件,你还能求出∠MAN 的度数吗?若能,请求出;?若不能,请说明理由. 类型五:“8”字形图案的两条角平分线的夹角 如图,已知线段AB 、CD 相交于点O ,连接AD ,CB ,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于点M ,N 如图2,试回答下列问题: 在图1中,直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系 在图2中,∠D 与∠B 为任意角,试探究∠P 与∠D 、∠B 之间是否存在一定的数量关系,若存在,写出它们之间的关系并证明,若不存在,说明理由。

2019年中考数学四边形有关的计算与证明专题卷(含答案)

2019年中考数学四边形有关的计算与证明专题卷(含答案) 一、解答题(共12题) 1.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解. 如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE. (1)求证:四边形EFGH为平行四边形; (2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长. 2.(已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF. 3.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE. 4.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据该图完成这个推论的证明过程. 证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(________+________).

易知,S△ADC=S△ABC,________=________,________=________. 可得S矩形NFGD=S矩形EBMF. 5.如图,在?ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF 的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(Ⅰ)根据以上尺规作图的过程,求证:四边形ABEF是菱形; (Ⅱ)若菱形ABEF的周长为16,AE=4 ,求∠C的大小. 6.如图,菱形ABCD中,DE⊥AB于E,DF⊥BC于F. (1)求证:△ADE≌△CDF; (2)若∠EDF=50°,求∠BEF的度数. 7.如图,E是?ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的 长. 8.如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证: AF=BE.

中考数学平行四边形综合练习题附答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.在四边形ABCD 中,180B D ∠+∠=?,对角线AC 平分BAD ∠. (1)如图1,若120DAB ∠=?,且90B ∠=?,试探究边AD 、AB 与对角线AC 的数量关系并说明理由. (2)如图2,若将(1)中的条件“90B ∠=?”去掉,(1)中的结论是否成立?请说明理由. (3)如图3,若90DAB ∠=?,探究边AD 、AB 与对角线AC 的数量关系并说明理由. 【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由 见解析. 【解析】 试题分析:(1)结论:AC=AD+AB ,只要证明AD= 12AC ,AB=1 2 AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题; (3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题; 试题解析:解:(1)AC=AD+AB . 理由如下:如图1中, 在四边形ABCD 中,∠D+∠B=180°,∠B=90°, ∴∠D=90°, ∵∠DAB=120°,AC 平分∠DAB , ∴∠DAC=∠BAC=60°, ∵∠B=90°,

∴AB=1 2 AC,同理AD= 1 2 AC. ∴AC=AD+AB. (2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E, ∵∠BAC=60°, ∴△AEC为等边三角形, ∴AC=AE=CE, ∵∠D+∠ABC=180°,∠DAB=120°, ∴∠DCB=60°, ∴∠DCA=∠BCE, ∵∠D+∠ABC=180°,∠ABC+∠EBC=180°, ∴∠D=∠CBE,∵CA=CE, ∴△DAC≌△BEC, ∴AD=BE, ∴AC=AD+AB. (3)结论:AD+AB=2AC.理由如下: 过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°, ∴DCB=90°, ∵∠ACE=90°, ∴∠DCA=∠BCE, 又∵AC平分∠DAB, ∴∠CAB=45°, ∴∠E=45°. ∴AC=CE. 又∵∠D+∠ABC=180°,∠D=∠CBE,

人教版八年级下册特殊四边形的证明与计算专题(无答案)

特殊四边形的证明与计算 一. 一组对边平行+一组对角相等=平行四边形 1. 四边形ABCD 中,AB//CD,D B ∠=∠,BC=6,AB=3,求四边形ABCD 的周长。 二. 平行四边形的性质与判定的贡献 2.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE∠AC (1)求证:四边形ABDE 是平行四边形; (2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长。 3.已知:如图,D,E,F 分别是∠ABC 各边上的点,且DE∠AC,DF∠AB.延长FD 至点G ,使DG=FD ,连接AG. 求证:ED 和AG 互相平分。

三.菱形四边相等为全等提供了可能 4.如图1,菱形ABCD中,点E.F分别为AB、AD的中点,连接CE、CF. (1)求证:CE=CF; (2)如图2,若H为AB上一点,连接CH,使∠CHB=2∠ECB,求证:CH=AH+AB.

四. 含60?的菱形与等边三角形结合在一起 5.(1)如图,菱形ABCD 中,? =∠60C ,O 为BD 的中点,点E 在AD 上,点F 在AB 的延长线上,且?=∠120EOF ,求证:AB BF AE 21=+. (2)如图,菱形ABCD 中,? =∠60C ,O 为BD 的中点,E ,F 分别在DA ,AB 的延长线上,?=∠120EOF ,试探究AE ,BF ,AB 之间的数量关系. 五. 从对称的角度考虑菱形问题。 6. 如图,在菱形ABCD 中,对角线AC=6,BD=8,点E. F 分别是边AB 、BC 的中点,点P 在AC 上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是 。

专题07 三角形及四边形的计算与证明(解析版)

专题07 三角形及四边形的计算与证明 一、三角形 1.三角形的概念及性质 概念:(1)由三条线段首尾顺次相接组成的图形,叫做三角形.(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形. 性质:(1)三角形的内角和是180°;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角.(2)三角形的任意两边之和大于第三边;三角形任意两边之差小于第三边. 2.三角形中的重要线段 (1)三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. (2)三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高线相交于一点. (3)三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角形的三条中线交于一点. 3.全等三角形的性质与判定 概念:能够完全重合的两个三角形叫做全等三角形. 性质:全等三角形的对应边、对应角分别相等. 判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL). 4.等腰三角形 等腰三角形的有关概念及分类:有两边相等的三角形叫等腰三角形,三边相等的三角形叫做等边三角形,也叫正三角形;等腰三角形分为腰和底不相等的等腰三角形和腰和底相等的等腰三角形. 等腰三角形的性质: (1)等腰三角形的两个底角相等(简称为“等边对等角”); (2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”); (3)等腰三角形是轴对称图形.

2017年中考复习特殊四边形综合题

特殊四边形综合题 1.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; ,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y (3)在平移变换过程中,设y=S △OPB 的最大值. 2.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD) (1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G. ①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由. 3.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b. (1)如图1,当∠EAF被对角线AC平分时,求a、b的值; (2)当△AEF是直角三角形时,求a、b的值;

(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由. 4.如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变. (1)求证:=; (2)求证:AF⊥FM; (3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明. 5.如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°. (1)当E为BC中点时,求证:△BCF≌△DEC; (2)当BE=2EC时,求的值; (3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.

题型五三角形四边形的证明与计算

二、解答题重难点突破三角形、四边形的证明与计算题型四 有等腰三角形,通常作底边上的高、中线或顶角的平分线类型一 针对演练C,A交AC于点E,得△ABC,AB,BC=2,∠ABC=120°将△ABC绕点B顺时针旋转角α(0<α<120°)中,1. 在△ABCAB=11111. F两点于D、分别交AC、BC 图②图① 第1题图DA的形状,并说明理由;)如图②,当α=30°时,试判断四边形BC((1)证明:EA=FC;211. ED的长(3)在(2)的情况下,求 2的正方22的正方形ABCD与边长为连云港)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2. (2015形AEFG按图①位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上. (1)小明发现DG⊥BE,请你帮他说明理由; (2)如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你

帮他求出此时BE的长. 图①图②第2题图

3. 如图①,在△ABC中,D是AB边的中点,AE⊥BC于点E,BF⊥AC于点F,AE,BF相交于点M,连接DE,DF. 1 图①图②图③ 第3题图 (1)DE,DF的数量关系; (2)如图②,在△ABC中,CB=CA,点D是AB边的中点,点M在△ABC的内部,且∠MBC=∠MAC.过点M作ME⊥BC于点E,MF⊥AC于点F,连接DE,DF.求证:DE=DF; (3)如图③,若将上面(2)中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.

【答案】 针对演练 1.(1)证明:∵AB=BC, ∴∠A=∠C, ∵△ABC绕点B顺时针旋转角α得△ABC, 11∴∠ABE=∠CBF,∠C=∠C ,AB=BC=AB=BC, 1111∴∠A=∠C, 1在△ABE和△CBF中,12 C??A??1?BC?AB,?1?BFC?ABE???1(ASA), BF∴△ABE≌△C1, BF∴BE=, BF=BC-∴AB-BE1. FC即EA=1是菱形,理由如下::四边形BCDA(2)解1,,∠ABC=120°旋转角α=30°,+30°=150°=∠ABC+α=120°∴∠ABC1, BC,AB=∵∠ABC=120°11=30°=,(180°-120°)∴∠A=∠C2=180°,ABC+∠C=150°+30°∴∠11, =150°+30°=180°∠ABC+∠A1, AD∥BCAB∥CD, ∴11 BCDA是平行四边形,∴四边形1, AB=BC又∵1.

2019年中考数学专题4:四边形证明及计算压轴题

2019年中考数学专题4:四边形证明及计算压轴题 1.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F 两点均 在BD 上),折痕分别为BH 、DG 。 (1)求证:△BHE ≌△DGF ; (2)若AB =6cm ,BC =8cm ,求线段FG 的长。 2.以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH . (1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当 四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明); (2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°), ① 试用含α的代数式表示∠HAE ; ② 求证:HE =HG ; ③ 四边形EFGH 是什么四边形?并说明理由. A B C D H E F G (第23题图2) E B F G D H A C (第23题图3) (第23题图1) A B C D H E F G

3.如图7,在一方形ABCD 中.E 为对角线AC 上一点,连接EB 、ED , (1)求证:△BEC ≌△DEC : (2)延长BE 交AD 于点F ,若∠DEB=140°.求∠AFE 的度数. 4.直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EF CF =; (2)当tan ADE ∠= 3 1 时,求EF 的长. 5.两个大小相同且含 30角的三角板ABC 和DEC 如图①摆放,使直角顶点重合. 将图①中△DEC 绕点C 逆时针旋转 30得到图②,点F 、G 分别是CD 、DE 与AB 的交点,点H 是DE 与AC 的交点. (1)不添加辅助线,写出图②中所有与△BCF 全等的三角形; (2)将图②中的△DEC 绕点C 逆时针旋转 45得△D 1E 1C ,点F 、G 、H 的对应点分别为 F 1、 G 1、 H 1 ,如图③.探究线段D 1F 1与AH 1之间的数量关系,并写出推理过程; (3)在(2)的条件下,若D 1E 1与CE 交于点I ,求证:G 1I =CI. D B C A E 图① D A 图② D A D 1 B C E F G H B C E F G 1 H 图③ H 1 E 1 I G F 1

相关文档
最新文档