从键盘输入数据并显示实验

从键盘输入数据并显示实验
从键盘输入数据并显示实验

实验四从键盘输入数据并显示实验

【实验目的】

1.掌握键盘输入字符的方法和十六进制数字字符的ASCII码转换为二进制数的原理。

2.掌握子程序定义和调用的方法。

3.掌握循环移位指令的用法和无符号数比较大小的方法。

【实验性质】

验证性实验(学时数:2H)

【实验内容】

从键盘上输入4位十六进制数,将其转换为16位二进制数并在显示器上显示出来。要求输入的数字字符串以回车键结束。如果输入的数字超过4个,则以最后输入的4个为准。若按下的键不是十六进制数字字符,则显示出错信息。

参考程序:

【实验提示】

从键盘上输入的十六进制数字字符进入计算机后并不是相应的十六进制数或二进制数,而是与字符对应的ASCII码,现要找出ASCII码与该数字对应的二进制数之间的关系。关系如下:

十六进制数字字符字符对应的ASCII码数字对应的二进制数

0 ~930H ~39H ASCII码- 30H

A ~F41H ~46H ASCII码- 37H

a ~f61H ~66H ASCII码- 57H

【报告要求】

1.给出该问题的程序设计流程图。

2.给出该程序的全部代码,并加上注释。

3.总结实验体会。

CRLF MACRO

MOV AH,02H

MOV DL,0DH

INT 21H

MOV AH,02H

MOV DL,0AH

INT 21H

ENDM

DATA SEGMENT

MARK DB

MESS DB '输入四位十六进制数,按回车键转化为二进制数,空格键结束!',0DH,0AH,'输入:$' ERROR DB 0DH,0AH, '输入错误!',0DH,0AH,'$'

DATA ENDS

STACK SEGMENT

STA DW 32 DUP()

TOP DW

STACK ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA,ES:DATA,SS:STACK

START: MOV AX,DATA

MOV DS,AX

MOV ES,AX

MOV SP,TOP

HEAD: CRLF

MOV MARK,0

MOV AH,09H

LEA DX,MESS

INT 21H ;显示提示输入的信息

CALL GETNUM ;接收键入数值送DX

CMP MARK,01H

JE HEAD

MOV CX,0010H ;16位

MOV BX,DX

TTT: ROL BX,1 ;循环左移1位

MOV DL,BL

AND DL,01H ;屏蔽掉高7位

ADD DL,30H

MOV AH,02H

INT 21H ;显示二进制位对应的ASCII字符

LOOP TTT

JMP HEAD

FINI: MOV AX,4C00H

INT 21H ;返回DOS

GETNUM PROC NEAR ;子程序,接收键入数值送DX

PUSH CX

XOR DX,DX

GGG: MOV AH,01H

INT 21H

CMP AL,0DH ;输入为回车,则进行转换

JE PPP

CMP AL,20H ;输入为空格,则退回DOS

JE FINI

CMP AL,30H

JB KKK

SUB AL,30H

CMP AL,0AH

JB GETS

CMP AL,11H

JB KKK

SUB AL,07H

CMP AL,0FH

JBE GETS

CMP AL,2AH

JB KKK

CMP AL,2FH

JA KKK

SUB AL,20H

GETS: MOV CL,04

SHL DX,CL

XOR AH,AH

ADD DX,AX

JMP GGG

KKK: MOV AH,09H

MOV DX,OFFSET ERROR

INT 21H

MOV MARK,01H PPP: PUSH DX

CRLF

POP DX

POP CX

RET

GETNUM ENDP

CODE ENDS

END START

C语言程序设计中键盘输入数据的方法分析

Computer Science and Application 计算机科学与应用, 2019, 9(2), 323-327 Published Online February 2019 in Hans. https://www.360docs.net/doc/2b2865347.html,/journal/csa https://https://www.360docs.net/doc/2b2865347.html,/10.12677/csa.2019.92037 Method Analysis of Keyboard Input Data in C Language Programming Kui Gao, Xiaocui Fu, Weiyan Li Information Science and Engineering, Shandong Agricultural University, Tai’an Shandong Received: Jan. 28th, 2019; accepted: Feb. 6th, 2019; published: Feb. 13th, 2019 Abstract In C language programming, it is often necessary to input the required data from the keyboard, which can be achieved by different input functions. In this paper, some examples and analysis are given for the use of these input functions; through comparison, usage and considerations of each function have been analyzed, to achieve the purpose of correct use. Keywords Scanf, Getchar, Gets, Separator, Keyboard C语言程序设计中键盘输入数据的方法分析 高葵,付晓翠,李蔚妍 山东农业大学信息科学与工程学院,山东泰安 收稿日期:2019年1月28日;录用日期:2019年2月6日;发布日期:2019年2月13日 摘要 在C语言程序设计中经常需要从键盘输入所需要的数据,可以通过不同的输入函数来实现。本文对这几个输入函数的使用举例并进行分析说明,通过比较,分析出每种函数的使用方法和注意事项,达到正确使用的目的。 关键词 Scanf,Getchar,Gets,分隔符,键盘

2016磁滞回线的测量(实验报告材料)

实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I1、I2、….I n,则相应的磁场强度为H1、H2、….H3,在每一磁化电流下反复交换电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生几次变化(如H1→- H1→H1→- H1….),这样操作的结果,是在每一个电流下都将得到一条磁滞回线,最后,可得一组逐渐增大的磁滞回线。我们把原点O和各个磁滞回线的顶点a1、a2、….所连成的曲线称为铁磁材料的基本磁化曲线,如图3所示。 图3基本磁化曲线 (二)利用示波器观测铁磁材料动态磁滞回线测量原理 1、示波器显示B—H曲线原理线路 由上述磁滞现象可知,要观测磁介质磁滞现象及相应的物理量,需要根据磁化过程测定材料部的磁场强度和磁感应强度。因此,测量装置必须具备三个功能: ①提供使样品磁化的可调强度的磁场(磁化场) ②可跟踪测量与磁化场有一一对应关系的样品的磁感应强度 ③可定量显示样品的磁化过程 图4 磁滞回线的测量原理图 图4是利用示波器观测铁磁材料动态磁滞回线测量装置原理图:首先将待测的铁磁物质制成一个环形样品,在样品上绕有原线圈即励磁线圈N1匝,由它提供磁化场;在样品上再绕副线圈即测量线圈N2匝,由它来跟踪测量与磁化场有一一对应关系的样品的磁感应强度;由示波器

51单片机数码管显示矩阵键盘键入值

51单片机实现数码管显示矩阵键盘键入值 #include #define uchar unsigned char uchar code decode[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1 ,0x86,0x8e}; void delay(uchar); uchar temp,b,c,d,num; void display(uchar); void main() { while(1) { P0=0xfe; temp=P0; temp=temp&0xf0; if(temp!=0xf0) { delay(100); if(temp!=0xf0) { switch(temp)

case 0xe0:num=0;break; case 0xd0:num=1;break; case 0xb0:num=2;break; case 0x70:num=3;break; } } } P0=0xfd; temp=P0; temp=temp&0xf0; if(temp!=0xf0) { delay(100); if(temp!=0xf0) { switch(temp) { case 0xe0:num=4;break; case 0xd0:num=5;break; case 0xb0:num=6;break; case 0x70:num=7;break;

} } P0=0xfb; temp=P0; temp=temp&0xf0; if(temp!=0xf0) { delay(100); if(temp!=0xf0) { switch(temp) { case 0xe0:num=8;break; case 0xd0:num=9;break; case 0xb0:num=10;break; case 0x70:num=11;break; } } } P0=0xf7; temp=P0;

通过键盘输入一组数字

一、通过键盘输入一组数字,并用单链表形式存储,输入完成后分别按顺序和逆序输出所输 入的数字。(作者:缪海涛) 解: #include #include #include typedef struct node { int c; struct node *link; }Node; Node *head; Node *first() { Node *h2; h2=(Node *)malloc(sizeof(Node)); h2->c='\0'; h2->link=NULL; return h2; } Node *create(Node *h2) { Node *p,*h,*s,*r; int x; char y; h=(Node *)malloc(sizeof(Node)); h->link=NULL; p=h; printf("请输入一组数字,以空格间隔:\n"); scanf("%d",&x); for(;;) { if(y!='\n') { s=(Node *)malloc(sizeof(Node)); p->link=s; s->c=x; s->link=NULL; p=s; r=(Node *)malloc(sizeof(Node)); r->c=x; r->link=h2->link; h2->link=r; scanf("%d",&x);

scanf("%c",&y); } else { s=(Node *)malloc(sizeof(Node)); p->link=s; s->c=x; s->link=NULL; p=s; r=(Node *)malloc(sizeof(Node)); r->c=x; r->link=h2->link; h2->link=r; break; } } return h; } void main() { Node *h=NULL,*h2; h2=first(); head=create(h2); h=head; printf("您输入的数字组正序为:\n"); while(h->link!=NULL) { printf("%d",h->link->c); h=h->link; if(h->link!=NULL) { printf("->"); } } printf("\n\n"); printf("您输入数字组的倒序为:\n"); while(h2->link!=NULL) { printf("%d",h2->link->c); h2=h2->link; if(h2->link!=NULL) { printf("->"); }

从键盘输入一串字符,分别统计其中的字母(不区分大小写)、数字字符和其他

; 题目名称:分类统计字符 ; 题目来源:https://www.360docs.net/doc/2b2865347.html,/question/131013276.html ; 本程序在MASMPlus 1.2集成环境下通过编译,经过调试,运行正确。 Code Segment Assume CS:Code,DS:Code ; -------------------------------------; 功能:显示指定地址(Str_Addr)的字符串 ; 入口: ; Str_Addr=字符串地址(要求在数据段) ; 用法: Output Str_Addr ; 用法举例:Output PromptStr Output MACRO Str_Addr lea dx,Str_Addr mov ah,9 int 21h EndM ; -------------------------------------; 功能:在当前光标位置显示一个字符 ; 入口:dl=要显示的字符 Output_Chr proc Near push ax mov ah,02h int 21h pop ax ret Output_Chr Endp ; -------------------------------------; 功能:显示、输出一个回车、换行 Output_CTLF proc Near push ax push dx mov ah,02h mov dl,0dh int 21h mov dl,0ah int 21h pop dx pop ax ret Output_CTLF Endp ; -------------------------------------; 功能:把AX中的二进制无符号数转换成显式的十进制ASCII码,并送显示屏显示

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S S RD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

雷诺实验(二)

雷诺实验(二) 一. 实验的目的和要求: 1. 观察层流,湍流的流态及其转换过程; 2. 测定临界雷诺数,掌握圆管流态判别方法; 3. 学习应用量纲分析法进行实验研究的方法,确定非圆管流态判别准数。 二. 实验装置说明与操作方法 供水流量由无极调速器调控,使恒压水箱始终保持微溢流的状态,以提高进口前水体的稳定度。本恒压水箱设有多道稳水隔板,可使稳水时间缩短到3到5分钟。有色水注入到实验管道,可根据有色水散开与否判别流态。为防止自循环水污染,有色水采用自行消色的专用色水。实验流量可由尾阀调节。 三. 实验原理 1883年,雷诺(Osborne Reynolds )采用类似于本实验的实验装置,观察到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊的呈现层状有序的直线运动,流层间没有质点掺混,这种流态称为层流;当流速增大时,流体质点做杂乱无章的无序的直线运动,流层间质点掺混,这种流态称为湍流。雷诺实验还发现存在着湍流转变为层流的临界流速v 。v 。与流体的粘性,圆管的直径d 有关。若要判别流态,就要确定各种情况下的v 。值,需要对这些相关因素的不同量值作出排列组合再分别进行实验研究,工作量巨大。雷诺实验的贡献不仅在于发现了两种流态,还在于运用量纲分析的原理,得出了量纲为一的判据-----雷诺数Re,使问题得以简化。量纲分析如下: 因 根据量纲分析法有: 其中c k 是量纲为一的数,写成量纲关系为: 由量纲和谐原理,得11,21αα==-。 即 c c v k d β= 或 c c v d k β= 雷诺实验完成了管流的流态从湍流过度到层流是的临界值c k 值的测定,以及是否为常数的验证,结果表明c k 值为常数。于是,量纲为一的数 vd β 便成了适合于任何管径,任何牛顿流体的流态由湍流转变为层流的判据。由于雷诺的贡献, vd β 定名为雷诺数Re 。于是 有 式中,v ----- 流体速度; β---- 流体的运动粘度;(书中用ν表示,很近似于流体速度,故用此表示)

键盘输入显示程序

#include #define uchar unsigned char #define uint unsigned int uchar code table[]={ 0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0x00};//0-f-最后一个空uchar j=1; sbit p37=P3^7; void delay(uint z) { uintx,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } void display(ucharshu) { P1=table[shu]; delay(5); } ucharkeyscan() {

uchartemp,num; P2=0xfe; temp=P2; temp=temp&0xf0; if(temp!=0xf0) { p37=0; delay(5); temp=P2; temp=temp&0xf0; while(temp!=0xf0) { temp=P2; switch(temp) { case 0xee:num=1;break; case 0xde:num=2;break; case 0xbe:num=3;break; default:break; } while(temp!=0xf0)//**********松手检测松手后显示{ j=0;

temp=P2; temp=temp&0xf0; } } }p37=1; P2=0xfd; temp=P2; temp=temp&0xf0; if(temp!=0xf0) { p37=0; delay(5); temp=P2; temp=temp&0xf0; while(temp!=0xf0) { temp=P2; switch(temp) { case 0xed:num=4;break; case 0xdd:num=5;break; case 0xbd:num=6;break; }

键盘输入原理

基础知识 1. 键盘的基本原理 键盘是一组按键的组合,它是最常用的输入设备,操作人员可以通过键盘输入数据或命令,实现简单的人机对话。 键盘是一种常开型的开关,通常键的两个触点处于断开状态,按下键时它们才闭合。键盘的识别有两种方案:一是采用现有的一些芯片实现键盘扫描;再就是用软件实现键盘扫描。目前有很多芯片可以用来实现键盘扫描,如有Intel8279、CH451、ICM7218、PCF8574等。但是键盘扫描的软件实现方法有助于缩减系统的重复开发成本,且只需要很少的CPU 开销。嵌入式控制器的功能很强,可以充分利用这一资源,这里就介绍一下用软件实现键盘扫描的方案。 键盘从结构上分为独立式键盘与矩阵式键盘。一般按键较少时采用独立式键盘,按键较多时采用矩阵式键盘。 (1)独立式键盘。在由单片机组成的测控系统及智能化仪器中,用的最多的是独立式键盘。这种键盘具有硬件与软件相对简单的 特点,其缺点是按键数量较多时,要占用大量口线。当按键没 按下时,CPU对应的I/O接口由于内部有上拉电阻,其输入为

高电平;当某键被按下后,对应的I/O接口变为低电平。只要 在程序中判断I/O接口的状态,即可知道哪个键处于闭合状态。 (2) 矩阵式键盘。矩阵式键盘使用于按键数量较多的场合,它由行线与列线组成,按键位于行、列的交叉点上。一个3*3的行列结构可以构成一个有9个按键的键盘。同理,一个4*4的行列可以构成一个16按键的键盘。很明显,在按键数量较多的场合,与独立式键盘相比,矩阵式键盘要节省很多I/0接口。

2、键盘按键识别方法 (1)扫描法。扫描法有行扫描和列扫描两种,无论采用哪种,其效果是一样的,只是在程序中的处理方法有所区别。下面以行扫描法为例来介绍扫描法识别按键的方法。先向键盘4根行线输出其中某一行为低电平,其它行为高电平,然后读取列值,若某一列值为低电平,则表明同时为低电平的行和列的交叉处按键被按下,如果没有某列为低电平,则继续扫描下一行。因为输入低电平的行是从第一行开始逐行遍历的,故称为行扫描法。行与列是相对的,可以将行按列对待,同时将列按行对待,所实现的扫描法效果是一样的。

雷诺实验(参考内容)

雷诺实验实验报告姓名:史亮 班级:9131011403 学号:913101140327

第4章 雷诺实验 4.1 实验目的 1) 观察层流、紊流的流态及流体由层流变紊流、紊流变层流时的水利特征。 2) 测定临界雷诺数,掌握园管流态判别准则。 3) 学习应用量纲分析法进行实验研究的方法,了解其实用意义。 4.2 实验装置 雷诺实验装置见图4.1。 图4.1 雷诺实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道、有色水及水管、实验台、流量调节阀等组成,有色水经有色水管注入实验管道中心,随管道中流动的水一起流动,观察有色水线形态判别流态。专用有色水可自行消色。 4.3 实验原理 流体流动存在层流和紊流两种不同的流态,二者的阻力性质不相同。当流量调节阀旋到一定位置后,实验管道内的水流以流速v 流动,观察有色水形态,如果有色水形态是稳定直线,则圆管内流态是层流,如果有色水完全散开,则圆管内流态是紊流。而定量判别流体的流态可依据雷诺数的大小来判定。经典雷诺实验得到的下临界值为2320,工程实际中可依据雷诺数是否小于2000来判定流动是否处于层流状态。圆管流动雷诺数: e R KQ d Q vd vd ==== ν πνμρ4 (4.1) 式中:ρ──流体密度,kg/cm 3; v ──流体在管道中的平均流速,cm/s ; d ──管道内径,cm ; μ──动力粘度,Pa ?s ;

ν──运动粘度,ρ μ ν= ,cm 2/s ; Q ──流量,cm 3/s ; K ──常数,ν πd K 4 = ,s/cm 3。 4.4 实验方法与步骤 1) 记录及计算有关常数。 管径 d = 1.37 cm, 水温 t = 14.8 ℃ 水的运动粘度 ν=2 000221.00337.0101775 .0t t ++= 0.01147 cm 2/s 常数 ν πd K 4 = = 81.03 s/cm 3 2) 观察两种流态。 滚动有色水塑料管上止水夹滚轮,使有色水流出,同时,打开水箱开关,使水箱充满水至溢流,待实验管道充满水后,反复开启流量调节阀,使管道内气泡排净后开始观察两种流态。关小流量调节阀,直到有色水成一直线 (接近直线时应微调后等待几分钟),此时,管内水流的流态是层流,之后逐渐开大调节阀,通过有色水线形态的变化观察层流转变到紊流的水力特征,当有色水完全散开时,管内水流的流态是紊流。再逐渐关小流量调节阀,观察由紊流转变为层流的水力特征。 3) 测定下临界雷诺数。 I 、 将调节阀打开,使管中水流呈紊流(有色水完全散开),之后关小调节阀,使流量减小。当有色水线摆动或略弯曲时应微调流量调节阀,且微调后应等待稳定几分钟,观察有色线是否为直线,当流量调节到使有色水在全管中刚好呈现出一条稳定的直线时,即为下临界状态;停止调节流量,用体积法或重量法测定此时的流量,测记水温,并计算下临界雷诺数。将数据填入表4.1中。 II 、 测完一组数据后重复上述步骤测定另外2组数据。测定下一组数据前一定要确保开始状态为紊流流态,且调节流量时只能逐步关小而不能回调。测定临界雷诺数必须在刚好呈现出一条稳定直线时测定。为了观察到临界状态,调节流量时幅度要小,每调节阀门一次,均须等待稳定时间几分钟。 4) 测定上临界雷诺数。 当流态是层流时,逐渐开启阀门,使管中水流由层流过度到紊流,当有色水线刚好完全散开时即为上临界状态。停止调节流量,用体积法或重量法测定此时的流量,测记水温,并计算上临界雷诺数。测定上临界雷诺数1-2次。 ★操作要领与注意事项:①、测定下临界雷诺数时,务必先增大流量,确保流态处于紊流状态。之后逐渐减小阀门开度,当有色线摆动时,应停止调节阀门开度,等待1分钟后,观察有色线形态,之后继续微调再等待1分钟,直到有色线刚好为直线时,才是紊流变到层流的下临界状态。注意等待时间要足够,微调幅度要小,否则,测不到临界值。②、只能单一方向调节阀门,不能回调,错过临界点必须重做。③、实验时,不要触碰实验台,以免流动受到外界扰动影响。 4.5 实验成果与分析 记录及计算数据至下表中: 实验次数 有色 水线 形态 体积法测流量 雷诺数R e 阀门开度 备注 水体积V (cm 3 ) 时间T (s ) 流量Q (cm 3 /s ) 1 稳定 900 45.26 19.89 1612 1547测下临界值测定下

从键盘输入数据并显示实验

实验四从键盘输入数据并显示实验 【实验目的】 1.掌握键盘输入字符的方法和十六进制数字字符的ASCII码转换为二进制数的原理。 2.掌握子程序定义和调用的方法。 3.掌握循环移位指令的用法和无符号数比较大小的方法。 【实验性质】 验证性实验(学时数:2H) 【实验内容】 从键盘上输入4位十六进制数,将其转换为16位二进制数并在显示器上显示出来。要求输入的数字字符串以回车键结束。如果输入的数字超过4个,则以最后输入的4个为准。若按下的键不是十六进制数字字符,则显示出错信息。 参考程序: 【实验提示】 从键盘上输入的十六进制数字字符进入计算机后并不是相应的十六进制数或二进制数,而是与字符对应的ASCII码,现要找出ASCII码与该数字对应的二进制数之间的关系。关系如下: 十六进制数字字符字符对应的ASCII码数字对应的二进制数 0 ~930H ~39H ASCII码- 30H A ~F41H ~46H ASCII码- 37H a ~f61H ~66H ASCII码- 57H 【报告要求】 1.给出该问题的程序设计流程图。 2.给出该程序的全部代码,并加上注释。 3.总结实验体会。 CRLF MACRO MOV AH,02H MOV DL,0DH INT 21H MOV AH,02H MOV DL,0AH INT 21H ENDM DATA SEGMENT

MARK DB MESS DB '输入四位十六进制数,按回车键转化为二进制数,空格键结束!',0DH,0AH,'输入:$' ERROR DB 0DH,0AH, '输入错误!',0DH,0AH,'$' DATA ENDS STACK SEGMENT STA DW 32 DUP() TOP DW STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,ES:DATA,SS:STACK START: MOV AX,DATA MOV DS,AX MOV ES,AX MOV SP,TOP HEAD: CRLF MOV MARK,0 MOV AH,09H LEA DX,MESS INT 21H ;显示提示输入的信息 CALL GETNUM ;接收键入数值送DX CMP MARK,01H JE HEAD MOV CX,0010H ;16位 MOV BX,DX TTT: ROL BX,1 ;循环左移1位 MOV DL,BL AND DL,01H ;屏蔽掉高7位 ADD DL,30H MOV AH,02H INT 21H ;显示二进制位对应的ASCII字符 LOOP TTT JMP HEAD FINI: MOV AX,4C00H INT 21H ;返回DOS GETNUM PROC NEAR ;子程序,接收键入数值送DX PUSH CX XOR DX,DX GGG: MOV AH,01H INT 21H CMP AL,0DH ;输入为回车,则进行转换 JE PPP CMP AL,20H ;输入为空格,则退回DOS JE FINI CMP AL,30H JB KKK SUB AL,30H

键盘输入

4.2 键盘 4.2.1键盘概念 键盘是最常用也是最主要的输入设备,通过键盘,可以将英文字母、数字、标点符号等输入到计算机中,从而向计算机发出命令、输入数据等。 4.2.2键盘的分类 按照键盘的工作原理和按键方式的不同,可以划分为四种: (1)机械式键盘(Mechanical) 采用类似金属接触式开关,工作原理是使触点导通或断开,具有工艺简单、噪音大、易维护的特点。 (2)塑料薄膜式键盘(Membrane)键盘内部共分四层,实现了无机械磨损。其特点是低价格、低噪音和低成本,已占领市场绝大部分份额。 (3)导电橡胶式键盘(Conductive Rubber)触点的结构是通过导电橡胶相连。键盘内部有一层凸起带电的导电橡胶,每个按键都对应一个凸起,按下时把下面的触点接通。这种类型键盘是市场由机械键盘向薄膜键盘的过渡产品。(4)无接点静电电容式键盘(Capacitives)使用类似电容式开关的原理,通过按键时改变电极间的距离引起电容容量改变从而驱动编码器。特点是无磨损且密封性较好。 按其结构形式可分为以下两种: (1)编码键盘 编码键盘采用硬件方法产生键码。每按下一个键,键盘能自动生成键盘代码,键数较多,且具有去抖动功能。这种键盘使用方便,但硬件较复杂,PC机所用键盘即为编码键盘。 (2)非编码键盘 非编码键盘仅提供按键开关工作状态,其键码由软件确定,这种键盘键数较少,硬件简单,广泛应用于各种单片机应用系统,本次设计使用非编码键盘。 按照键盘与单片机的连接方式可分为一下两种: (1)独立式键盘 独立式键盘,顾名思义,即各按键相互独立,每个按键占用一根I/O口线,每根I/O口线上的按键工作状态不会影响其他按键的工作状态。这种按键软件程序简单,但占用I/O口线较多(一根口线只能接一个键),适用于键盘应用数量较少的系统中。 (2)矩阵式键盘 矩阵式键盘又称行列式键盘,在其行、列交汇点接有若干个按键。当需要较多按键时,与独立式键盘相比,单片机口线资源利用率大幅提高了。但若需要更多的键盘,需采用接口扩展技术,如8155等。 综上所述,结合实际情况,本次设计选用非编码矩阵式键盘。 4.2.3非编码矩阵式键盘工作原理 非编码矩阵式键盘,作为单片外围电路,应具有如下功能:

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告

2 B a B B s c a' b' H H m o B r H c 图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

雷诺实验带数据处理

雷诺实验 一、实验目的 1. 观察层流和紊流的流态及其转换特征。 2. 通过临界雷诺数,掌握圆管流态判别准则。 3. 掌握误差分析在实验数据处理中的应用。 二、实验原理 1、实际流体的流动会呈现出两种不同的型态:层流和紊流,它们的区别在于:流动过程中流体层之间是否发生混掺现象。在紊流流动中存在随机变化的脉动量,而在层流流动中则没有,如图1所示。 2、圆管中恒定流动的流态转化取决于雷诺数。雷诺根据大量实验资料,将影响流体流动状态的因素归纳成一个无因次数,称为雷诺数Re ,作为判别流体流动状态的准则 4Re Q D πυ = 式中 Q ——流体断面平均流量 , L s D ——圆管直径 , mm υ——流体的运动粘度 , 2m 在本实验中,流体是水。水的运动粘度与温度的关系可用泊肃叶和斯托克斯提出的经验公式计算 36((0.58510(T 12)0.03361)(T 12) 1.2350)10υ--=??--?-+? 式中 υ——水在t C ?时的运动粘度,2m s ; T ——水的温度,C ?。 3、判别流体流动状态的关键因素是临界速度。临界速度随流体的粘度、密度以及流道的尺寸不同而改变。流体从层流到紊流的过渡时的速度称为上临界流速,从紊流到层流的过渡时的速度为下临界流速。 4、圆管中定常流动的流态发生转化时对应的雷诺数称为临界雷诺数,对应

于上、下临界速度的雷诺数,称为上临界雷诺数和下临界雷诺数。上临界雷诺数表示超过此雷诺数的流动必为紊流,它很不确定,跨越一个较大的取值范围。而且极不稳定,只要稍有干扰,流态即发生变化。上临界雷诺数常随实验环境、流动的起始状态不同有所不同。因此,上临界雷诺数在工程技术中没有实用意义。有实际意义的是下临界雷诺数,它表示低于此雷诺数的流动必为层流,有确定的取值。通常均以它作为判别流动状态的准则,即 Re < 2320 时,层流 Re > 2320 时,紊流 该值是圆形光滑管或近于光滑管的数值,工程实际中一般取Re = 2000。 5、实际流体的流动之所以会呈现出两种不同的型态是扰动因素与粘性稳定作用之间对比和抗衡的结果。针对圆管中定常流动的情况,容易理解:减小 D ,减小 ,加大v 三种途径都是有利于流动稳定的。综合起来看,小雷诺数流动趋于稳定,而大雷诺数流动稳定性差,容易发生紊流现象。 6、由于两种流态的流场结构和动力特性存在很大的区别,对它们加以判别并分别讨论是十分必要的。圆管中恒定流动的流态为层流时,沿程水头损失与平均流速成正比,而紊流时则与平均流速的1.75~2.0次方成正比,如图2所示。 7 图1 图2 三种流态曲线

铁磁材料磁滞回线和基本磁化曲线的测量数据处理.

I/mA B/mT H/ A/m 29.3 5.5207.729272.91 6.2500.175102.125.4682.5583140.340.7899.5292171.955.41065.47520 2.471.11215.629250.195.71450.154301.41231696.792350.3148.41936.017384.2165.221 0 7.217416.1180.72270.36345 8.72002497.5495.3215.42700.475535.322 9.92937.7465572 36.83072.867 581.1243.93226.663600.9249.13357.213620.72543489.75627.7255.33539.471I/mA B/mT H/ A/m 628.7257.93528.43612.6256.43404.213597.92553291566.5252.23047.907538249.3 2829.643

510.4246.22620.207458.6240.12229.003403.7231.51828.55363.2223.81542.127309 .9210.51186.183266.8196.7918.5567231.3183713.6189.8164.4491.1467138.6138.8234.2 93383.4109-28.03335794-148.533 4385.9-211.47 30.178.4-269.2217.270.9-326.97 9.766.5-360.283 4.561.3-369.123初始磁化曲线测量 磁滞回线测量 060.5-401.317 -3042.3-530.59 -131.5-19.1-969.137 -165.4-39-1119.63 -202.6-61.4-1281.05 -245-86.7-1466.56 -421.1-182.8-2296.59 -464.5-202.7-2526.26 -515.8-223.2-2817.77 -542.1-238.8-2933.46 -591.9-245.9-3301.36 -611.8-250.7-3435.36 -625-253.6-3526.12 -625.9-253.8-3532.29 -609.5-255.4-3385.01 -574.2-252.3-3111.41 -515.5-246.5-2660.72 -457.7-239.6-2224.82 -415.1-233.2-1912.27 -307-209.5-1168.65 -247.9-189.4-809.48 -202.7-170.3-559.51 -147.3-143.3-276.943

流体力学实验指导书(雷诺、伯努利)

工程流体力学 实 验 指 导 书 河北理工大学给排水实验室 编者:杨永 2014 . 5 . 12 适用专业:给排水工程专业、建筑环境与设备工程专业 实验目录:

实验一:雷诺实验 实验二:伯努利方程实验 实验三:阻力及阻力系数测定实验 实验四:孔口管嘴实验 实验操作及实验报告书写要求: 一、实验课前认真预习实验要求有预习报告。 二、做实验以前把与本次实验相关的课本理论内容复习一下。 三、实验要求原始数据必须记录在原始数据实验纸上。 四、实验报告一律用标准实验报告纸。 五、实验报告内容包括: 1. 实验目的; 2. 实验仪器; 3. 实验原理; 4. 实验过程; 5. 实验数据的整理与处理。 六、实验指导书只是学生的指导性教材,学生在写实验报告时指导书制作 为参考,具体写作内容由学生根据实际操作去写。 七、根据专业不同以及实验学时,由任课教师以及实验老师选定实验内容。 建筑工程学院给排水实验室 编者:杨永 2014.5

实验一 雷诺实验指导书 一、实验目的: (一)观察实验中实验线的现象。 (二)掌握体积法测流量的方法。 (三)观察层流、临界流、紊流的现象。 (四)掌握临界雷诺数测量的方法。 二、实验仪器: 实验中用到的主要仪器有:雷诺实验仪、1000mL 量筒、秒表、10L 水桶等 三、实验原理: 有压管路流体在流动过程中,由于条件的改变(例如,管径改变、温度的改变、管壁的粗糙度改变、流速的改变)会造成流体流态的变化,会出现层流、临界流、紊流等现象。英国科学家雷诺(Reynolds )在1883年通过系统的实验研究,首先证实了流体的流动结构有层流和紊流两种形态。层流的特点是流体的质点在流动过程中互不掺混呈线状运动,运动要素不呈现脉动现象。在紊流中流体的质点互相掺混,其运动轨迹是曲折混乱的,运动要素发生脉动现象。 雷诺等人经过大量的实验发现临界流速与过流断面的特征几何尺寸管径d 、流体的动力粘度μ和密度ρ有关,即()ρμ、、d f u k =。由以上四个量组成一个无量纲数,称为雷诺数e R ,即ν μρ ud ud R e ==

通过scanf函数从键盘输入数据

通过scanf函数从键盘输入数据 1)当调用scanf函数从键盘输入数据时,最后一定要按下回车键,scanf函数才能接受键盘输入的数据。 2)输入数据值 当键盘输入数据时,输入的数值数据之间用间隔符隔开。列<间隔符>10<间隔符>20 <间隔符> 此处间隔符可以是空格符、制表符(Tab)、回车符。 3)跳过输入数据的方法 可以在格式字符和%之间加上一个*,它的作用是跳过对应的输入数据。列 Int a1,a2, a3; Scanf("%d%d*%d%d%d",&a1,&a2,&a3); 当输入如下数据时:10 20 30 40 将把10赋给a1,跳过20,把30赋给a2,把10赋给a3 4)在格式字符串中插入其他字符 如果想在屏幕上输入字符串来提示,应该使用printf函数,如果在scanf的格式控制字符串中插入其他字符,则在输入时要求按一对一的位置原样输入这些字符 列1 Int a1,a2,a3; Scanf(“inpat a1,a2,a3:%d%d%d”,&a1,&a2,&a3); 要求按以下形式进行输入 Input a1,a2,a3:102030 列1 以下程序由终端出入两个整数给变量x和y,在交换x和y的值后,在输出x和y,验证两个变量中的数是否正确的进行了交换。 #inclube "stdio.h" Main() {int x,y,t; Printf("enter x&y:\n"); Scanf("%d %d",&x,&y); Printf9("x=%d y=%d\n",x,y); T=x;x=y;y=t; Printf("x=%d y=%d\n",x,y); } 列2 输入一个doulbe类型的数,使该数保留小数点后两位,对第三位小数进行四舍五入后处理,然后输出此数,以便验证处理是否正确。

相关文档
最新文档