三角形的五心

三角形的五心
三角形的五心

三角形的五心

三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.

一、外心.

三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.

例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN

∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上.

(杭州大学《中学数学竞赛习题》)

分析:由已知可得MP ′=MP =MB ,NP ′=NP

=NC ,故点M 是△P ′BP 的外心,点

N 是△P ′PC 的外心.有

∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =2

1

∠BAC .

∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .

从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC . 例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,

△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.

(B ·波拉索洛夫《中学数学奥林匹克》)

分析:设O 1,O 2,O 3是△APS ,△BQP ,

△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外

心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .

∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+

∠O 2QO 3+∠O 3SO 1=360°

将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,

同时可得△O 1O 2O 3≌△O 1KO 3.

A B C P P M

N 'A B C Q

K P O O O ....S 123

∴∠O 2O 1O 3=∠KO 1O 3=2

1

∠O 2O 1K =

21

(∠O 2O 1S +∠SO 1K ) =21

(∠O 2O 1S +∠PO 1O 2)

=2

1

∠PO 1S =∠A ;

同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心

三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.

例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在

△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和.

(第26届莫斯科数学奥林匹克)

分析:设G 为△ABC 重心,直线PG 与AB ,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .

两边各扩大3倍,有S △PBE =S △PAD +S △PCF .

例4.如果三角形三边的平方成等差数列,那么该三角形和由它

的三条中线围成的新三角形相似.其逆亦真.

分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简

记为△′.G 为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .

(1)a 2,b 2,c 2成等差数列?△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有

CF =2222221

c b a -+, BE =222222

1

b a

c -+, A

A 'F F 'G

E E '

D 'C 'P

C B D

AD =222222

1

a c

b -+. 将a 2+

c 2=2b 2,分别代入以上三式,得 CF =

a 23,BE =

b 23,AD =

c 2

3. ∴CF :BE :AD =

a 23:

b 23:

c 2

3

=a :b :c .

故有△∽△′.

(2)△∽△′?a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴

??S S '=(a

CF )2

. 据“三角形的三条中线围成的新三角形面积等于原三角形

面积的

4

3”,有??S S '=43

.

∴22a

CF =43

?3a 2=4CF 2=2a 2+b 2-c 2

?a 2+c 2=2b 2

.

三、垂心

三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利. 例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为

△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. (1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径

为R .由△A 2A 3A 4知 .

O

A A A A 1

2

3

4

H H

1

2

1

321

2sin H A A H A ∠=2R ?A 2H 1=2R cos ∠A 3A 2A 4;

由△A 1A 3A 4得

A 1H 2=2R cos ∠A 3A 1A 4.

但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2

故得H 1H 2 A 2A 1

.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称.

同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中

心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.

例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一

个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2.

求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.

(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外

接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2

=r 2+(AM 2-MH 2), ①

又AM 2-HM 2=(21AH 1)2-(AH -2

1

AH 1)2

=AH ·AH 1-AH 2=AH 2·AB -AH 2

=cos A ·

bc -AH 2, ② 而ABH AH

∠sin =2R ?AH 2=4R 2cos 2A ,

A

a

sin =2R ?a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有

∥=∥

=H H H

M A B B

A A

B

C C

C F

1

2111

222

D E

A 21

A =r 2

+bc

a c

b 22

22-+·bc -(4R 2-a 2)

=

2

1(a 2+b 2+c 2

)-4R 2+r 2. 同理,21BB =21

(a 2+b 2+c 2)-4R 2+r 2,

21CC =2

1

(a 2+b 2+c 2)-4R 2+r 2.

故有AA 1=BB 1=CC 1. 四、内心

三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:

设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量

关系之逆同样有用).

例7.ABCD 为圆内接凸四边形,取 △DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3,

O 4.求证:O 1O 2O 3O 4为矩形.

(1986,中国数学奥林匹克集训题)

证明见《中等数学》1992;4

例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.

试证:EF 中点P 是△ABC 之内心.

(B ·波拉索洛夫《中学数学奥林匹克》)

分析:在第20届IMO 中,美国提供的一道题实际上是例8的一

种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分

线上.易知AQ =αsin r

.

∵QK ·AQ =MQ ·QN ,

∴QK =AQ

QN

MQ ?

sin /)2(r r

r R ?-=)2(sin r R -?α.

由Rt △EPQ 知PQ =r ?αsin .

A B C

D O O O 234O

1

A ααM

B

C

K

N

E

R O

Q

F r

P

∴PK =PQ +QK =r ?αsin +)2(sin r R -?α=R 2sin ?α. ∴PK =BK .α

利用内心等量关系之逆定理,即知P 是△ABC 这内心. 五、旁心

三角形的一条内角平分线与另两个内角的外角平分线相交

一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.

例9.在直角三角形中,求证:r +r a +r b +r c =2p .

式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切

的旁切圆半径,p 表示半周.

(杭州大学《中学数学竞赛习题》)

分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:

p (p -c )=(p -a )(p -b ).

∵p (p -c )=21(a +b +c )·21

(a +b -c ) =4

1[(a +b )2-c 2]

=21

ab ; (p -a )(p -b )=21(-a +b +c )·21

(a -b +c )

=41[c 2-(a -b )2]=2

1

ab .

∴p (p -c )=(p -a )(p -b ). ①

观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p .

而r =2

1

(a +b -c )

=p -c . ∴r +r a +r b +r c

=(p -c )+(p -b )+(p -a )+p

K

r r r r O O O 2

1

3A O E C

B a b c

=4p -(a +b +c )=2p . 由①及图形易证.

例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,

△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角

形在∠ACB 内部的旁切圆半径.证明:

11q r ·22q r =q

r . (IMO -12)

分析:对任意△A ′B ′C ′,由正弦定理可知

OD =OA ′·2

'

sin A

=A ′B ′·'

''sin 2'sin

B O A B ∠·2'sin A =A ′B ′·

2''sin

2'sin

2'sin B A B A +?, O ′E = A ′B ′·

2

''sin

2'cos

2'cos B A B A +. ∴2'2''B tg A tg E O OD =. 亦即有

11q r ·22q r =2

222B tg CNB tg CMA tg A tg ∠∠ =22B tg A tg

=q

r

. 六、众心共圆

这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.

例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .

试证:(1)AD ,BE ,CF 三条对角线交于一点;

(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF .

A ...

'B '

C 'O

O '

E

D

(1991,国家教委数学试验班招生试题)

分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三

条内角平分线,I 为△ACE 的内心.从而有ID =CD =DE ,

IF =EF =FA , IB =AB =BC .

再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂

心,利用 不等式有: BI +DI +FI ≥2·(IP +IQ +IS ).

不难证明IE =2IP ,IA =2IQ ,IC =2IS . ∴BI +DI +FI ≥IA +IE +IC .

∴AB +BC +CD +DE +EF +FA =2(BI +DI +FI )

≥(IA +IE +IC )+(BI +DI +FI ) =AD +BE +CF .

I 就是一点两心.

例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重

心.证明OE 丄CD .

(加拿大数学奥林匹克训练题)

分析:设AM 为高亦为中线,取AC 中点

F ,E 必在DF 上且DE :EF =2:1.设

CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3

121-)DC =2:1. ∴DG :GK =DE :EF ?GE ∥MF . ∵OD 丄AB ,MF ∥AB ,

∴OD 丄MF ?OD 丄GE .但OG 丄DE ?G 又是△ODE 之垂心. 易证OE 丄CD .

例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点

与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .

(1988,中国数学奥林匹克集训题)

分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,

∠AID =∠AIB =∠EIB . 利用内心张角公式,有

∠AIB =90°+21∠C =105°,

Erdos

..

I P A

B

C

D E F

Q

S

A B C D E F O K

G

O A B

C D

E

F I K

30°

∴∠DIE =360°-105°×3=45°.

∵∠AKB =30°+21

∠DAO

=30°+21

(∠BAC -∠BAO )

=30°+21

(∠BAC -60°)

=2

1

∠BAC =∠BAI =∠BEI .

∴AK ∥IE .

由等腰△AOD 可知DO 丄AK ,

∴DO 丄IE ,即DF 是△DIE 的一条高. 同理EO 是△DIE 之垂心,OI 丄DE . 由∠DIE =∠IDO ,易知OI =DE .

例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心

到三边距离和为d 外,重心到三边距 离和为d 重,垂心到三边距离和为d 垂.

求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆

半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,

∴2d 外=2(cos A +cos B +cos C ). ① ∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得BH 2·CH 3.

∴3d 重=△ABC 三条高的和 =2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ②

∴BCH

BH

sin =2,

∴HH 1=cos C ·BH =2·cos B ·cos C . 同样可得HH 2,HH 3. ∴d 垂=HH 1+HH 2+HH 3

=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③ 欲证结论,观察①、②、③, 须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B + cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.

B C O I

A O G H O G H G

O G H 12

3

11

2

23

3

练 习 题

1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)

2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)

3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)

4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.

5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)

6.△ABC 的边BC =2

1

(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I

为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)

7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)

8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.

9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;

(2)△AEF 与△ABC 有一个旁心重合.

三角形五心及其性质

三角形的三条高的交点叫做三角形的垂心。 三角形垂心的性质 设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、 C的对边分别为a、b、c,p=(a+b+c)/2. 1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的 垂心在三角形外. 2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的 垂心; 3、垂心H关于三边的对称点,均在△ABC的外接圆上。 4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH?HD=BH?HE=CH?HF。 5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。 6、△ABC,△ABH,△BCH,△ACH的外接圆是等圆。 7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP?tanB+AC/AQ?tanC=tanA+tanB+tanC。 8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9、设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。 10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。 11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。 12、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 13、设锐角△ABC内有一点T,那么T是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。 垂心的向径 定义 设点H为锐角三角形ABC的垂心,向量OH=h,向量OA=a,向量OB=b,向量OC=c, 则h=(tanA a +tanB b +tanC c)/(tanA+tanB+tanC). 垂心坐标的解析解: 设三个顶点的坐标分别为(a1,b1)(a2,b2)(a3,b3),那么垂心坐标x=Δx/2/Δ,y=-Δy/2/Δ。 其中, Δ=det([x2-x1,x3-x2,y2-y1,y3-y2]); Δx=det([(x1+x2)*(x2-x1)+(y1+y2)*(y2-y1),y2-y1;(x2+x3)*(x3-x2)+(y2+y3)*(y3-y2),y3-y2]);

三角形五心性质概念整理(超全)

重心 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ) 平面上任意一点为(x,y)则该点到三顶点距离平 方和为: (x 1-x)2+(y 1 -y)2+(x 2 -x)2+(y 2 -y)2+(x 3 -x)2+(y 3 -y)2 =3x2-2x(x 1+x 2 +x 3 )+3y2-2y(y 1 +y 2 +y 3 )+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2 =3[x-1/3*(x 1+x 2 +x 3 )]2+3[y-1/3*(y 1 +y 2 +y 3 )]2+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 显然当x=(x 1+x 2 +x 3 )/3,y=(y 1 +y 2 +y 3 )/3(重心坐标)时 上式取得最小值x 12+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 。 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+ 向量OC) —

三角形五心定律

垂心 三角形的三条高的交点叫做三角形的垂心。 锐角三角形垂心在三角形内部。 直角三角形垂心在三角形直角顶点。 钝角三角形垂心在三角形外部。 垂心是高线的交点 垂心是从三角形的各顶点向其对边所作的三条垂线的交点。 三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 三角形上作三高,三高必于垂心交。 高线分割三角形,出现直角三对整, 直角三角有十二,构成六对相似形, 四点共圆图中有,细心分析可找清, 重心 重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点 内心 内心是三角形三条内角平分线的交点,即内切圆的圆心。 内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。 内心定理:三角形的三个内角的角平分线交于一点。该点叫做三角形的内心。 注意到内心到三边距离相等(为内切圆半径),内心定理其实极易证。 若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。 直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。 双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。 希望对你有帮助!三角形五心定律 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定律指是三角形重心定律,外心定律,垂心定律,内心定律,旁心定律的总称。 一、三角形重心定律 三角形的三条边的中线交于一点。该点叫做作三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名) 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。 2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的

三角形的五心性质以及典型问题--初中数学竞赛

三角形的五心 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 一.三角形的外心 定理1:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 定理2:三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 定理3:锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 定理4:AOB C AOC B BOC A ∠=∠∠=∠∠= ∠2 1 ,21,21 1.如图所示,在锐角ABC ?中,BC AD ⊥于D ,AC DE ⊥于E ,AB DF ⊥于F ,O 为ABC ?的外心. 求证:(1)AEF ?∽ABC ? (2)EF AO ⊥ O F E D C B A 2.设O 为锐角ABC ?的外心,连接CO BO AO ,,并延长分别交对边于N M L ,,,则 CN BM AL 1 11++的值是_______________.(设R 为ABC ?外接圆半径) 二.三角形的内心 定理1:三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 定理2:三角形的内心到三边的距离相等,都等于三角形内切圆半径. 定理3:内切圆半径r 的计算: 设三角形面积为S ,并记p =12(a +b +c ),则r =S p . 特别的,在直角三角形中,有 r =1 2 (a +b -c ). A B C O I K H E F A B C M

B C D A I B C E D A 定理4:I 为三角形的内心,A 、B 、C 分别为三角形的三个顶点,延长AO 交BC 边于N ,则有AI: IN=AB:BN=AC:CN=(AB+AC):BC 定理5:,2 1 90A BIC ∠+ =∠ B CIA ∠+=∠2190 , C AIB ∠+=∠2190 。 3.如图所示,⊙1O 与⊙2O 相交于B A ,两点,且2O 在⊙1O 的圆周上,弦C O 2交⊙2O 于D 。证明:D 是ABC ?的内心. 4.如图,在ABC ?中,点D 、E 是ABC ∠,ACB ∠的三等分线的交点,当?=∠60A 时,求BDE ∠度数 5.如图,I 是ABC ?的内心,AI 的延长线交ABC ?的外接圆于D ,则,DC DB DI ==

(完整word版)初中几何三角形五心及定理性质

初中几何三角形五心定律及性质 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。 三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称 重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。 5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。 外心定理

三角形外接圆的圆心,叫做三角形的外心。 外心的性质: 1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。 2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或 ∠BOC=360°-2∠A(∠A为钝角)。 3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。 5、外心到三顶点的距离相等 垂心定理 图1 图2 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质: 1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line)) 3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。 4、垂心分每条高线的两部分乘积相等。 推论: 1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图1) 2. 三角形的垂心是其垂足三角形的内心。(图1) 3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图2) 定理证明 已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB 证明: 连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE

三角形的五心

三角形的五心 三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心. 三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》) 分析:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点 N 是△P ′PC 的外心.有 ∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =2 1 ∠BAC . ∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC . 从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC . 例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS , △BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似. (B ·波拉索洛夫《中学数学奥林匹克》) 分析:设O 1,O 2,O 3是△APS ,△BQP , △CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外 心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C . ∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+ ∠O 2QO 3+∠O 3SO 1=360° 将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1, 同时可得△O 1O 2O 3≌△O 1KO 3. A B C P P M N 'A B C Q K P O O O ....S 123

三角形五心的位置

复习三角形五心的位置 (1)内心:三角形的三条角平分线的交点(即内切圆圆心). (2)外心:三角形三边垂直平分线的交点(即外接圆圆心). (3)重心:三角形三条中线的交点. (4)垂心:三角形三条高线的交点. (5)旁心:三角形的一条内角平分线与不相邻的两条外角平分线的交点(即三角形旁切圆圆心). 相关结论 (1)三角形的内心到三角形三边距离相等. (2)三角形的外心到三角形三个顶点距离相等. (3)三角形的重心把每条中线均分成2:1两部分. (4)直角三角形的内切圆半径r= 1/2 (a+b-c);外接圆半径R= c/2 (5)三角形面积公式:S= 1/2 * 周长* r 三角形外心的性质 设⊿ABC的外接圆为☉G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2、锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心在斜边上,与斜边中点重合. 3、GA=GB=GC=R. 3、∠BGC=2∠A,或∠BGC=2(180°-∠A). 4、R=abc/4S⊿ABC. 5、点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件是: (向量GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=向量0. 6、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:向量PG=((tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC). 7、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC. 8、设d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。9、外心到三顶点的距离相等。 三角形重心的性质 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 三角形垂心的性质 设⊿ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外. 2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;3、垂心H关于三边的对称点,均在△ABC的外接圆上。4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。6、△ABC,△ABH,△BCH,△ACH 的外接圆是等圆。7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC。8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。9、设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。12、西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上。

三角形五心性质概念整理(超全)

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ) 平面上任意一点为(x,y)则该点到三顶点距离平 方和为: (x 1-x)2+(y 1 -y)2+(x 2 -x)2+(y 2 -y)2+(x 3 -x)2+(y 3 -y)2 =3x2-2x(x 1+x 2 +x 3 )+3y2-2y(y 1 +y 2 +y 3 )+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2 =3[x-1/3*(x 1+x 2 +x 3 )]2+3[y-1/3*(y 1 +y 2 +y 3 )]2+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 显然当x=(x 1+x 2 +x 3 )/3,y=(y 1 +y 2 +y 3 )/3(重心坐标)时 上式取得最小值x 12+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+ 向量OC)

专题三角形的五心汇总

专题:三角形的五心 三角形五心将在本节详细介绍,其难度较大,望量力而行 三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍. 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 1、三角形的外心 三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心 三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算: 设三角形面积为S ,并记p =12(a +b +c ),则r =S p . 特别的,在直角三角形中,有 r =1 2(a +b -c ). 3、三角形的重心 三角形的三条中线交于一点,这点称为三角形的重心. 上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2. 4、三角形的垂心 三角形的三条高交于一点,这点称为三角形的垂心. 斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”. 5、三角形的旁心 三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心). 每个三角形都有三个旁切圆. A 类例题 例1 证明重心定理。 证法1 如图,D 、E 、F 为三边中点,设BE 、CF 交于G ,连接EF ,显然EF ∥=12 BC ,由三角形相似可得GB =2GE ,GC =2GF . 又设AD 、BE 交于G ',同理可证G 'B =2G 'E ,G 'A =2G 'D ,即G 、G '都是BE 上从B 到E 的三分之二 处的点,故G '、G 重合. A B C O A B C D E F G A B C D E F I a I K H E F D A B C M A B C D E F G

三角形五心性质概念超全

三角形五心性质概念超全 The document was prepared on January 2, 2021

重心 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1),(x 2,y 2),(x 3,y 3) 平面上任意一点为(x ,y ) 则该点到三顶点距离平方和为: (x 1-x)2+(y 1-y)2+(x 2-x)2+(y 2-y)2+(x 3-x)2+(y 3-y)2 =3x 2-2x(x 1+x 2+x 3)+3y 2-2y(y 1+y 2+y 3)+x 12+x 22+x 32+y 12+y 22+y 32 =3[x-1/3*(x 1+x 2+x 3)]2+3[y-1/3*(y 1+y 2+y 3)]2+x 12+x 22+x 32+y 12+y 22+y 32-1/3(x 1+x 2+x 3)2-1/3(y 1+y 2+y 3)2 显然当x=(x 1+x 2+x 3)/3,y=(y 1+y 2+y 3)/3()时 上式取得最小值x 12+x 22+x 32+y 12+y 22+y 32-1/3(x 1+x 2+x 3)2-1/3(y 1+y 2+y 3)2 最终得出结论。 4、在中,重心的坐标是的, 即其坐标为[(X 1+X 2+X 3)/3,(Y 1+Y 2+Y 3)/3];

空间——:(X 1+X 2 +X 3 )/3,:(Y 1 +Y 2 +Y 3 )/3,:(Z 1 +Z 2 +Z 3 )/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则OG=1/3(向量OA+向量OB+向量OC) 内心 设△ABC的内切圆为☉I(r),∠A、∠B、∠C的对边分别为a、b、c, p=(a+b+c)/2. 1、三角形的内心到三边的距离相等,都等于内切圆半径r. 2、∠BIC=90°+∠BAC/2. 3、在RtΔABC中,∠A=90°,三角形内切圆切BC于D,则S△ABC=BD×CD 4、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是: 向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c). 5、在△ABC中,若三个顶点分别是A(x1,y1),B(x2,y2),C(x3,y3), 那么△ABC内心I的坐标是:

(完整版)三角形五心的证明

三角形五心 内心:内切圆的圆心,即三条角平分线的交点。 外心:外切圆的圆心,即三条中垂线的交点。 旁心:旁切圆的圆心,即三条角平分线的交点。(类似、但不同于内心)垂心:三条高的交点。 重心:三条中线的交点。 注:红线为所要证明的线,绿线为辅助线。 内心:三条角平分线的交点 证:过点O作三边的垂线,垂足分别为D、E、F。 由角平分线定理(角平分线上一点到两边的 距离相等)得: OD=OF,OF=OE ∴ OD=OE ∴AO为角BAC的平分线 外心:三条中垂线的交点 证:连结OA、OB、OC,并过O点作OF⊥BC于点F。 由线段中垂线定理(线段中垂线上一点到 两端点的距离相等),得: OA=OB,OA=OC. ∴OB=OC ∴点O在线段BC的中垂线上 ∴OF为线段BC的中垂线 旁心: 证:过点O作三边的垂线,垂足分别为D、E、F。 由角平分线定理(角平分线上一点到两边的 距离相等)得: OD=OF,OD=OE ∴ OF=OE ∴BO为角ABC的平分线

垂心:三条高的交点 证:连结DE,连结AO交BC于F点。 ∵角BDC=角BEC=90° ∴B、D、E、C四点共圆(以BC为直径的圆)。 ∴角FBO=角CDE ······① (同弦(弧)所对圆周角相等) 又∵角ODA=角AEO=90° ∴O、D、A、E四点共圆(以AO为直径的圆)。 ∴角AOE=角ADE (同弦(弧)所对圆周角相等) 且角AOE=角BOF ∴角ADE=角BOF ······② 由①②可知,角OFB=角ODA=90° ∴AF为BC边上的高。 重心:三条中线的交点 方法一: 证:连结AO交BC于点F。 ∵D为AB的中点 ∴S△ACD=S△BCD (S△表示三角形的面积) (底相等(AD=BD),高相同(都为点C到AB的距离)) S△AOD=S△BOD ∴S△AOC=S△BOC ······① 同理可得: S△BOC=S△AOB ······② 由①②得,S△AOC=S△AOB 又∵△AOC与△AOB底都为AO ∴它们高相等,即:点B和点C到AF的距离相等。 对于△AFB和△AFC,底相同(为AF),高相等(分别为点B和点C到AF的距离)。 ∴S△AFB=S△AFC 又对于△AFB和△AFC,高相同(为点A到BC的距离)。 ∴它们底相等,即:BF=CF ∴AF为三角形的中线。 方法二: 证:连AO交BC于点F,连DE交AF于点N, G,H分别为OB、OC的中点,连DG,EH。 连GH交AF于点M。 ∵DE为△ABC的中位线 ∴DE#1/2BC (#表示平行且等于) 同理,可得:GH#1/2BC ∴DE#GH 即:四边形DEHG为平行四边形。 易证,△ODN≌△OHM,得HM=DN ∵DG为△ABO的中位线 ∴DG∥NM,即四边形DGMN为平行四边形

高中三角形的五心

三角形的五心 三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍. 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 1、三角形的外心 三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心 三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算: 设三角形面积为S ,并记p =12(a +b +c ),则r =S p . 特别的,在直角三角形中,有 r =1 2(a +b -c ). 3、三角形的重心 三角形的三条中线交于一点,这点称为三角形的重心. 上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2. 4、三角形的垂心 三角形的三条高交于一点,这点称为三角形的垂心. 斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”. 5、三角形的旁心 三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心). 每个三角形都有三个旁切圆. A 类例题 例1 证明重心定理。 证法1 如图,D 、E 、F 为三边中点,设BE 、CF 交于G ,连接EF ,显然 EF ∥=12 BC ,由三角形相似可得GB =2GE ,GC =2GF . 又设AD 、BE 交于G ',同理可证G 'B =2G 'E ,G 'A =2G 'D ,即G 、G '都是BE 上 从B 到E 的三分之二处的点,故G '、G 重合.即三条中线AD 、BE 、CF 相交于一点G . A B C O A B C D E F G A B C D E F I a I K H E F A B C M A B C D E F G

第17讲 三角形的五心教案

第17讲 三角形的五心 三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍. 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 1、三角形的外心 三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心 三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算: 设三角形面积为S ,并记p =12(a +b +c ),则r =S p . 特别的,在直角三角形中,有 r =1 2 (a +b -c ). 3、三角形的重心 三角形的三条中线交于一点,这点称为三角形的重心. 上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2. 4、三角形的垂心 三角形的三条高交于一点,这点称为三角形的垂心. 斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”. 5、三角形的旁心 三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心). 每个三角形都有三个旁切圆. A 类例题 例1 证明重心定理。 证法1 如图,D 、E 、F 为三边中点,设BE 、CF 交于G ,连接EF ,显 然EF ∥=12 BC ,由三角形相似可得GB =2GE ,GC =2GF . 又设AD 、BE 交于G ',同理可证G 'B =2G 'E ,G 'A =2G 'D ,即G 、G '都是 BE 上从B 到E 的三分之二处的点,故G '、G 重合. 即三条中线AD 、BE 、CF 相交于一点G . 证法2 设BE 、CF 交于G ,BG 、CG 中点为H 、I .连EF 、 FH 、HI 、IE , 因为EF ∥=12BC ,HI ∥=12 BC , A B C O A B C D E F G A B C D E F I a I K H E F A B C M A B C D E F G

三角形五心性质概念整理(超全)课件.doc

1、重心到顶点的距离与重心到对边中点的距离之比为 2:1。 2、重心和三角形 3 个顶点组成的 3 个三角形面积相等。 3、重心到三角形 3 个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为 (x 1,y 1),(x 2,y 2),(x 3,y 3) 平面上任意一点为 (x ,y ) 则该点到三顶点距离平 方和为: (x 1-x) 1-y) 2-x) 2-y) 3-x) 3-y) 2+(y 2+(x 2+(y 2+(x 2+(y 2+(y 2+(x 2+(y 2+(x 2+(y 2 =3x 2-2x(x 2-2x(x 1+x 2+x 3)+3y 2-2y(y 1+y 2+y 3)+x 1 2+x 2+x 2+y 2+y 2+y 2+x 2+x 2+y 2+y 2+y 2 3 1 2 3 2 =3[x-1/3*(x 1+x 2+x 3)] 2+3[y-1/3*(y 1+y 2+y 3)] 2+x 2+x 2+x 2+y 2+y 2+y 2-1/3(x 2-1/3(y 1 2 3 1 2 32+x 2+x 2+x 2+y 2+y 2+y 2-1/3(x 2-1/3(y 1+x 2+x 3) 1+y 2+y 3) 2 显然当 x=(x 1+x 2+x 3)/3,y=(y 1+y 2+y 3)/3 (重心坐标)时 上式取得最小值 x 1 2+x 2+x 2+y 2+y 2+y 2-1/3(x 2+x 2+x 2+y 2+y 2+y 2-1/3(x 2 3 1 2 3 1+x 2+x 3) 1+y 2+y 3) 2-1/3(y 2-1/3(y 2 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为 [(X 1+X 2+X 3)/3,(Y 1+Y 2+ Y 3)/3] ; 空间直角坐标系——横坐标: (X 1+X 2+X 3)/3 ,纵坐标:(Y 1+ Y 2+Y 3)/3 ,纵坐标:(Z 1+ Z 2+Z 3) /3 5、三角形内到三边距离之积最大的点。 6、在△ABC 中,若 MA 向量+MB 向量+MC 向量= 0(向量) ,则 M 点为△ABC 的重心, 反之也成立。 7、设△ABC 重心为 G 点,所在平面有一点 O ,则向量 OG=1/3(向量 OA+向量 OB+ 向量 OC )

三角形五心的性质【超全总结】

重心的性质:(三条中线的交点) 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。 5. 以重心为起点,以三角形三定点为终点的三条向量之和等于零向量。 外心的性质:(三条边的垂直平分线的交点) 1、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。 2、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。 3、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。C1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。 4、外心到三顶点的距离相等 垂心的性质:(三条高的交点) 1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线) 3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。 4、垂心分每条高线的两部分乘积相等。 内心的性质:(三个内角的角平分线的交点) 1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。 2、P为ΔABC所在空间中任意一点,点O是ΔABC内心的充要条件是: Po=(a×PA+b×PB+c×PC)/(a+b+c). 3、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有 AO:ON=AB:BN=AC:CN=(AB+AC):BC 4、(欧拉定理)ΔABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI2=R2-2Rr. 5、(内角平分线分三边长度关系) △ABC中,O为内心,∠A、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b. 6、内心到三角形三边距离相等。 旁心的性质:(外角的角平分线的交点) 1、每个三角形都有三个旁心。 2、旁心到三边的距离相等。 附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

中考数学之三角形五心定律

三角形五心定律 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。 三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称. 重心定理:三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点 可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名) 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 定理证明 已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB 证明:连接DE

∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE ∴ ∴ 1 2 3 4 5 6 △R,则 7 旁心定理:三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心, 叫做三角形的旁心。 旁心的性质: 1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。 2、每个三角形都有三个旁心。 3、旁心到三边的距离相等。 如图,点M就是△ABC的一个旁心。三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。 附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

五星定理巧记歌 三角形五心歌(重外垂内旁) 三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混. 重心 三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好. 外心 三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点. 此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键. 垂心 三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整, 直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清. 内心 三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.五心性质别记混,做起题来真是好。

三角形的五心向量结论证明

三角形的五心向量结论证明 1. O 是123PP P ?的重心?1230OP OP OP ++=u u u r u u u r u u u r r (其中,,a b c 是123PP P ?三边) 证明:充分性: 1230OP OP OP ++=u u u r u u u r u u u r r ?O 是123PP P ?的重心 若1230OP OP OP ++=u u u r u u u r u u u r r ,则123OP OP OP +=-u u u r u u u r u u u r ,以1OP u u u r ,2OP u u u r 为邻边作平行四边形132'OPP P ,设3OP 与12PP 交于点3P ',则3P '为12PP 的中点,有' 123OP OP OP +=u u u r u u u r u u u r ,得'33OP OP =-u u u r u u u u r ,即' 33,,,O P P P 四点共线,故3P P 为123PP P ?的中线,同理,12,PO P O 亦为123PP P ?的中线,所以, O 为的重心。 * △ABC 中AC AB +一定过BC u u u r 的中点,通过△ABC 的重心 1(),3 1()3AP AB AC P ABC BP BA BC ?=+?????=+?? u u u r u u u r u u u r V u u u r u u u r u u u r 为的重心, *1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为△ABC 的重心(P 是平面上任意点). 证明 PG PA AG PB BG PC CG =+=+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r ?3()()PG AG BG CG PA PB PC =+++++u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∵G 是△ABC 的重心 ∴GA GB GC ++u u u r u u u r u u u r =0r ?AG BG CG ++u u u r u u u r u u u r =0r ,即3PG PA PB PC =++u u u r u u u r u u u r u u u r 由此可得1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r .(反之亦然(证略)) *若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == P 1 2 P P 3 O P ABC ?() 1, 2 AD AB AC =+u u u r u u u r u u u r ABC ?2.在 中,给 等于已知AD 是 中 BC 边的中线;

三角形五心定律

三角形五心定律及性质 一、重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名) 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。 5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。 二、外心定理 三角形外接圆的圆心,叫做三角形的外心。 外心的性质: 1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。 2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。 3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。 5、外心到三顶点的距离相等 三、垂心定理 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。 垂心的性质: 1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line)) 3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。 4、垂心分每条高线的两部分乘积相等。 定理证明 已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB 于点F ,求证:CF⊥AB 证明:

相关文档
最新文档