低磷低碳锰硅合金(高硅硅锰)

低磷低碳锰硅合金(高硅硅锰)
低磷低碳锰硅合金(高硅硅锰)

低磷低碳锰硅合金(高硅硅锰合金)技术操作规程

1牌号及化学成分(见表1)

表1 低磷低碳锰硅合金牌号和化学成分(%)

┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓

┃┃┃化学成分┃

┃品种┃牌号┃┃

┃┃┣━━━━━┳━━━━━┳━━━━━━━┳━━━━━━━┫

┃┃┃ Mn ┃ Si ┃ C ┃ P ┃

┣━━━━━━━━━╋━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫

┃┃ FeMn60Si28 ┃ 60 --62 ┃≥28 ┃≤0. 050 ┃≤0. 050 ┃

┃高硅锰硅合金I ┃┃┃┃┃┃

┃┣━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫

┃┃ FeMn58Si28 ┃ 58~60 ┃≥28 ┃≤0. 050 ┃≤0. 050 ┃

┣━━━━━━━━━╋━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫

┃┃ FeMn60Si28 ┃ 60~62 ┃≥28 ┃≤0. 080 ┃≤0. 080 ┃

┃高硅锰硅合金II ┃┃┃┃┃┃

┃┣━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫

┃┃ FeMn58Si28 ┃ 58~60 ┃≥28 ┃≤0. 080 ┃≤0. 080 ┃

2锰矿技术条件(含喂线因素)(见表2)

表2锰矿技术条件(%)

3喂线机操作(降P)

3.1 喂线准备

3.1.1检查机器各部均正常无误方可开机。

3.1.2穿线:把需要喂的线从进线口一直穿入导线管中。

3.1.3进车:按动操作盘上的前行按钮,使主机前行到位。

3.1.4落管:按动操作盘上的落管按钮,使导线管落下对准钢包。

3.2喂线操作

3.2.1 长度设定:把计数器开关拨至ON位置,使计数器显示并对其进行设定。

3.2.2按动右(左)边喂线按钮,启动右(左)边主电机。

3.2.3速度设定:旋转速度调节按钮,同时观察速度显示,直至所需喂线速度。

3.2.4压下喂线:按动右(左)边压下按钮,使右(左)边辊轮压下开始喂线。当喂够设定长度时压下轮自动升起,主电机停止运转,导线管自动升起。

3.3退线操作

退线操作规程与喂线操作一样,所不同的是操作时应按退线按钮。

4摇包机操作(降C)

4.1 使用前检查设备是否完好。

4.2 空转试车:确认设备能否正常运行。

4.3 设定转速:40转/min。

5冶炼操作

5.1 出炉结束后,迅速扒掉出铁包内炉渣、扒净

5.2 摇包

5. 2.1 将出铁包吊至摇包机处准备摇包。

5.2.2 摇包(同上摇包机操作),时间5分钟。

5.2.3 摇包结束后测出铁包内铁水温度。

5.3喂线

5. 3.1 将出铁包吊至脱磷站准备喂线。

5.3.2 检查线卷,确认无沾水、受潮、破损、线种线型正确后方可使用。

5.3.3 根据铁量设定喂线长度。

5.3.4 与铁水量(t)对应的相对喂线量(m)见表3。

表3铁水量与喂线量

5.3.5 初始喂线速度设定1 m/s,根据反应激烈程度调整喂线速度。

5.3.6 喂线(同上喂线机操作)。

5.3.7 喂线结束后退线,线头高于出铁包包沿即可。

5.3.8 将出铁包拉出脱磷处理站,测包内铁水温度。

5.4 浇注、取样

5.4.1 喂线结束后立即扒净包内脱磷炉渣。

5.4.2 浇注、取样。

6 高硅锰硅合金配料计算

6.1计算依据

合金成分控制:[Mn]>60%,[Si]≥28%.[P]≤0.10%,[C]≤0.10%,其它0.5%,其余是Fe。

6.2元素及化合物分配(见表4)

表4元素及化合物分配

6.2.1原料成分(见表5)

表5混合矿成分(%)

6.2.2焦炭成分(见表6)

表6焦炭成分(%)

炉眼排炭、炉口烧损l0%。

硅石成分:Si02-98%。

6.2.3配料计算(以100 (kg)混合矿为基准计算)

合金制得量:

100×(35. 91%×85%+3.91%×95%)/(100% - 28% - 0.10% - 0.10% -0.5%)=48.02 (kg)

合金成分:

[Mn]= 100× 35.91%×85%/48.02=63.56%

[P]=100×0.035%×90%/48.02=0.066%

焦炭用量计算:

①反应 Mn304+C=3Mn0+CO

用炭量:12×100×35. 91%/(55×3)=2.61(kg)

②反应MnO+C= Mn+CO

用炭量:100×35. 91%×12×(85+10)% / 55= 7.44 (kg)

③反应Si02+2C=Si+ 2CO

用炭量:48.02×28%×24×(52+10)%/(28×52%)=13.74(kg)

④反应Fe0 +C=Fe+ CO

用炭量:100×3.91%×90%×12/55=0.75(kg)

⑤反应合金渗碳量

48.02×0.1%=0.048 (kg)

考虑到出铁口排炭、焦炭含水,则需焦炭量:

(2.61+7.44+13.74+0.75+0.048)÷0.82÷0.9÷0.9=37.01(kg)

硅石用量:

焦炭代入Si02: 37.01×14%×52%=2.69 (kg)

矿中代入Si02: 100×20.5%=20.5 (kg)

合金需硅量:48.02×28%=13.45 (kg)

折成Si02量:13.45×60÷28=28.81

考虑Si的回收率为52%,则需Si02量:

28.81÷52%=55.41 (kg)

原料需补加Si02量:

55.41-20.5-2.69= 32.22 (kg)

折成硅石量:32.22÷98%=32.87 (kg)

料批组成(见表7):

6.2.4炉渣成分计算(见表8)

6.2.5渣铁比:42.44÷48.02=0.88

矿耗:1×60%×82÷88÷35.91%÷85%=1.832(t)

锰硅合金矿热炉(电弧炉)烘炉及冶炼操作工艺

锰硅合金矿热炉(电弧炉) 烘炉及冶炼操作工艺 2019年3月4日 烘炉 硅锰炉内衬砌筑好之后的第一步就是进行烘炉,烘炉也是影响整个炉子使用寿命和质量的重要步骤。 (1)准备好木材,大块焦炭。将炉内清扫干净,三相电级下铺一层黏土砖,放长电极,将电极下到炉底松开铜瓦,把持器抬到上线位置再抱紧,焙烧长度大于2500mm,在电极焙烧部位扎上5?6个小孔,间距200mm。下放电极后向壳内添加电极糊,保证电极糊柱高3500mm。 (2)砌筑花墙,烘烤电极。围绕三相电极用黏土砖砌一圈花墙,花墙内矿热炉与电极矿热炉面距350mm,花墙高度以花墙上沿与铜瓦下缘距350mm为好,花墙底部装引火木柴并加少量废油,其上部加大块焦炭,引火,视电极直径大小烘烤35?48h,电极焙烧好,要迅速拆除花墙,尽量掏净花墙黏土砖。 (3)烘电极不松开铜瓦,但要关小铜瓦水。烘烤完毕将电极倒放,铜瓦要夹烘好的电极200mm以上。

(4)送电前必须向操作工提交送电制度矿热炉。 (5) 送电时可以用较正常使用电压高1?2级送电引弧,引弧后1h,改为正常电压级烘炉,开始加料的工作电压不超过满载负荷的一半,电烘炉前期(额定矿热炉三分之一断)应有间歇时间,间歇时间不超过20min,后期连续送电,从电烘炉一加料一第一炉一第二炉,出第二炉前各料管封上,各工作区间电耗和加料批数。 (6)月计划检修后的开炉操作:矿热炉经过小修后,必须立即送电生产,使炉况恢复正常,送电前,与大中修后开炉时要求相同,检查机电设备。送电时必须按正常规则操作,送电后缓给负荷,一般为停电时间的三分之一到二分之一给满负荷,送电前与煤气净化组联系完毕才能送电。 锰硅合金冶炼具体操作 1、熔炼操作 正常的锰硅合金合金炉况,必须有足够大的坩埚,炉料透气性良好,炉口冒火均匀,炉气净化时不冒火,创造足够的世祸空间的条件是:入炉原料杂质少,粒度和水分符合要求,配料准确,原料成分及粒度稳定。炉渣碱度适合,二元碱度Ca0/Si02=0.6?0.85,炉渣中Si02=35%43%,

高氯酸脱水重量法测定锰硅合金中硅

冶金分析,2018,38(8):75-78Metallurgical Analysis ,2018,38(8):75-78 DOI:10.13228/j .b oyuan .i ssn 1000-7571.010371 高氯酸脱水重量法测定锰硅合金中硅 杨载明 (贵州省地质矿产勘查开发局一O 六地质大队,贵州遵义563000) 摘 要:锰硅合金中硅含量对炼钢过程用料配比具有重要指导作用,也是交易计价的重要指标 之一,因此,快速准确地测定锰硅合金中硅显得尤为重要。采用盐酸、硝酸分开加入的模式分解样品,通过冒两次高氯酸烟使样品中碳炭化,再加入过氧化氢可得到清澈溶液利于过滤及灼烧。试验结果表明,滤液中二氧化硅含量与二氧化硅沉淀中杂质含量相当,由此引入的系统误差可相互抵消,实际工作中可不予校正。按照实验方法测定4个锰硅合金标准物质中硅,结果的相对标准偏差(RSD )为0.47%~0.69%,测定值与认定值相符。关键词:锰硅合金;重量法;硅;高氯酸脱水 中图分类号:T F 03+1;O 655.1 文献标志码:A 文章编号:1000-7571(2018)08-0075-04 收稿日期:2018-03-21作者简介:杨载明(1972—),男,高级工程师,从事化学分析及仪器分析工作;E -mail :106240958@qq .c om 锰硅合金是由锰、硅、铁及少量碳和其他元素组成的合金,硅质量分数一般在10%~30%之间,是一种用途较广、产量较大的铁合金,在冶炼中常用作还原剂、复合脱氧剂及脱硫剂等。锰硅合金中硅含量对交易计价及炼钢过程用料配比具有重要指导作用,因此,快速准确地测定锰硅合金中硅显得极为重要。 目前,锰硅合金中硅的测定方法主要有硅钼蓝光度法[1-2]、氟硅酸钾滴定法[3-4]、重量法[1,5]、X 射线荧光光谱法(XRF ) [6-10] 等。其中硅钼蓝光度 法虽然简便快捷,但对高含量硅分析误差较大;氟硅酸钾滴定法是测定高含量硅的理想方法,但该方法多与碱分解试样配套使用,碱熔过程易发生溅跳,使结果不稳定,且对银坩锅的损伤也较大;高氯酸重量法采用碱熔、氢氟酸挥损测定,过程较长,且灼烧过程用到铂坩埚,检测成本较高;使用盐酸-过氧化氢溶样个别样品分解较为困难;而使用XRF 进行定量分析必须使用相匹配的标样。 本文采用盐酸、硝酸分开加入的方式分解样品,高氯酸二次脱水重量法测定锰硅合金中硅。对称样量、溶样用酸、高氯酸加入量、脱水次数和时间等进行了优化,校正了滤液中二氧化硅含量与二氧化硅沉淀中杂质含量的系统影响。按照实验方法测定了4个锰硅合金标准物质中硅,结果满意。 1 实验部分 1.1 主要试剂 盐酸(ρ≈1.19g /mL );硝酸(ρ≈1.42g /mL );高氯酸(ρ≈1.67g /mL );过氧化氢:30%(体积分数)。 实验所用试剂均为分析纯;实验用水为三级水。1.2 实验方法 称取0.50g (精确至0.0001g )试样于250mL 烧杯中,加少量水润湿试样,加入15mL 盐酸,盖上表面皿,150℃加热保持微沸5min ,取下稍冷,加入5mL 硝酸,盖上表面皿继续加热微沸10min ,取下稍冷,加入10mL 高氯酸,250℃加热高温分解,并蒸至高氯酸白烟冒尽,保持10min ,取下冷却。 再加入5mL 盐酸、10mL 高氯酸,250℃加热蒸至高氯酸白烟冒尽并保持10min ,取下冷却,加入15mL 盐酸(2+1),150℃加热至微沸,分数次加入5~10mL 过氧化氢,至黑色物消失,取下冷却。 加30mL 沸水溶解可溶性盐类,趁热以快速定量滤纸过滤,用带橡皮头的玻璃棒擦净烧杯,用热盐酸(1+4)洗净烧杯,洗涤滤纸及沉淀至无铁离子,再用热水洗涤至无氯离子,将沉淀转入已恒重瓷坩埚中,于马弗炉低温加热炭化、灰化,在1000℃中灼烧至恒重,以沉淀质量计算硅量。 — 57—万方数据

硅锰合金的牌号和化学成分

硅锰合金的牌号和化学成分(GB4008) 发表商友:6517 发表时间: 2004年09月15日 10:46 阅读数: 1285 ...牌号................................化学成分% ....................Mn...........Si..........C...............P..............S ....................................................Ⅰ.......Ⅱ.. (Ⅲ) ...................................................不大于 FeMn60Si25.....60.0—70.0....25.0—28.0.....0.5....0.10....0.15....0.25....0. 04 FeMn63Si22.....63.0—70.0....22.0—25.0.....0.7....0.10....0.15....0.25....0. 04 FeMn65Si20.....65.0—70.0....20.0—22.0.....1.2....0.10....0.15....0.20....0. 04 FeMn65Si17.....65.0—70.0....17.0—20.0.....1.8....0.10....0.15....0.20....0. 04

FeMn60Si17.....60.0—70.0....17.0—20.0.....1.8....0.10....0.15....0.20....0. 04 FeMn65Si14.....65.0—70.0....14.0—17.0.....2.5....0.10....0.15....0.20....0. 04 FeMn60Si14.....60.0—70.0....14.0—17.0.....2.5....0.20....0.25....0.30....0. 04 FeMn60Si12.....60.0—70.0....12.0—14.0.....3.0............0.30 FeMn60Si10.....60.0—70.0....10.0—12.0.....3.5............0.35

硅锰合金的冶炼

硅锰合金的冶炼
关于硅锰合金的冶炼方式和方法 邓绍鑫、邓元华 内容摘要:硅锰合金是炼钢中常用的复合脱氧剂,因此,世界上对于硅锰合金的 冶炼都十分的重视。本文通过对硅锰合金的冶炼过程进行剖析阐述,客观上总结了国 内外硅锰合金冶炼的技术手段和方法。b5E2RGbCAP 关键词:硅锰合金 复合脱氧剂 冶炼
硅锰合金是炼钢常用的复合脱氧剂,又是生产中,低碳锰铁和电硅热法生产金属 锰的还原剂。 硅锰合金可在大中小型矿热炉内采取连续式操作进行冶炼。目前,世界上硅锰合 金电炉正向大型化、全封闭的方向发展,南非 1975 年投产了一台 88000KVA 的大型硅 锰合金电炉。p1EanqFDPw 生产硅锰合金的原料有锰矿、富锰渣、硅石、焦炭。 生产硅锰合金可使用一种锰 矿或几种锰矿(包括富锰渣)的混合矿。为保证炼出合格产品,矿石中的锰铁比和锰
DXDiTa9E3d
磷比应满足一定要求,见表 1-2 所示。所用的锰矿含锰越高, 表 1-2 各项指标越好,图 1-1 为锰矿品位对硅锰合金技术经 济指标的影响。锰矿中二氧 化硅含量通常不受限制。采用含二氧化硅较高的锰矿 (30~40%SiO2)来冶炼硅锰合金在技术上是允许的,在资源利用上是合理的。
1 / 11

图 1-1 锰矿中的杂质 P 2O 5 要低,P 2O 5 使合金中磷含量升高。锰矿粒度一般为 10~80mm,小于 10mm 不超过总量的 10%。RTCrpUDGiT 对于硅石的要求,SiO 2≥97%,P 2O 5<0.02,粒度 10~40mm,不带泥土及杂物。 对于焦炭的要求,固定碳≥84%,灰分≤14%,焦炭粒度,一般中小电炉使用 3~13mm,大电炉使用 5~25mm。5PCzVD7HxA 对于石灰的要求与碳素锰铁对石灰的要求相同。 为了改善硅的还原,炉料中必须有足够的 SiO 2 使在酸性渣中进行冶炼,渣中 SiO 2 过高,会使排渣困难,通常冶炼硅锰合金的炉渣成分:jLBHrnAILg CaO+MgO (SiO 2)=34~42%,=0.6~0.8 SiO 2 锰的高价氧化物不稳定,受热后容易分解和被 CO 还原成低价的氧化物 MnO ,在 1373K~1473K 的温度区间,锰的高价氧化物已经分解或还原成 MnO 。MnO 较稳定,只 能用碳直接还原,由于炉料中 SiO 2 较高,MnO 在没开始还原时就与它反应成硅酸盐, 富锰渣中的硅锰也是硅酸盐的形式存在,因此从 MnO 中还原锰的反应,实际上是液态 炉渣的硅酸盐中进行还原的。xHAQX74J0X 由于锰与碳组成稳定的化合物 Mn 3C ,用碳还原 MnO 得到的不是纯锰,而是锰的 化合物 Mn 3C 。 MnO·SiO24 3 C= 1 3
2 / 11
Mn<8%

锰硅合金生产工艺

锰硅合金生产工艺 一、技术要求 执行GB/T4008-96标准,其化学成份见表一。 表一:锰硅合金牌号及化学成分 通常生产FeMn68Si18的牌号,根据用户需求生产其它牌号的锰硅合金和含P<0.1%的低磷硅锰,S<0.03%的低硫硅锰,合金表面和断面均不得带有非金属杂质。 二、冶炼原理 以焦炭作还原剂,在高温电热状态下(1500。C以上)还原矿石中的氧化锰、二氧化硅、氧化铁并按一定比例形成锰硅合金。最终反应方程式为 MnxOy+yC=xMn+yCO↑ SiO2+2C=Si+2CO↑ FexOy+yC=xFe+yCO↑ 冶炼中还带入一部分其它有害元素,如磷、碳、硫等,应在原料中加以控制。冶炼中还存在未还原物质,如氧化锰、二氧化硅等,要加入石灰石或白云石与此反应形成炉渣。炉渣碱度应控制在0.6~0.8之间。 三、入炉原料技术要求 冶炼锰硅合金的原料有:锰矿石、富锰渣、硅石、熔剂(白云石或石灰),入炉原料技术要求如下: 1、锰矿石 1.1 Mn>30%,Mn/Fe 6~8,P/Mn<0.002。 1.2 粒度5~80mm,水份≤6% (巴西矿、加蓬矿除外)。 2、焦炭 2.1 冶金焦:固定炭≥80%,灰份≤10%,粒度5~20mm。 2.2 煤气焦:固定炭≥80%,灰份≤10%,粒度5~20mm。 2.3 硅石:SiO2≥97%,Al2O3≤1.5%, P2O5≤0.02%,粒度10~40mm。 2.4 熔剂(白云石):CaO+MgO≥50%,粒度5~40mm。 四、配料 1、配料准备 1.1 收料人同应将当天的进料情况向工艺人员通报,并按工艺人员要求进行原料准备。1.2 需破碎加工的原料按上述技术要求加工后送入指定料位,并通知配料人员。

水钢转炉炼钢应用锰硅合金的生产实践_张新建

第32卷 第1期2003年 2月 贵州工业大学学报(自然科学版) JOURNAL OF GU IZHOU UNIVERSITY OF TECHNOLOGY Vol.32No.1 February.2003 (Natural Science Edition) 文章编号:1009-0193(2003)01-0027-03y 水钢转炉炼钢应用锰硅合金的生产实践 张新建,王立君,郑家良 (水城钢铁(集团)有限责任公司炼钢厂,贵州水城553028) 摘 要:转炉炼钢生产实践表明,应用相对密度与钢水相近的锰硅合金取代部分75硅铁和部 分高碳锰铁,有利于添加到钢包中的铁合金颗粒进入钢液并延长铁合金与钢液的作用时间。 冶炼普通碳素钢时,铁合金中硅的收得率由原来的68.38%提高到74.78%,锰的收得率由原 来的86.7%提高到91.2%;冶炼低合金钢20MnSi时,铁合金中硅的收得率由82.86%提高到 88.25%,锰的收得率由90.05%提高到92.50%. 关键词:炼钢;铁合金;收得率 中图分类号:TF723;TF702.4 文献标识码:B 0 引 言 钢铁作为一种重要的基础原材料,在世界各国的经济发展中发挥着举足轻重的作用。自18世纪50年代以来,随着贝塞麦转炉的出现以及大规模的钢铁制造业的兴起,人类社会的文明进步明显加快。尤其是20世纪以来,钢铁工业的蓬勃发展,成为全球经济和社会文明进步的重要物质基础。在可以预见的时间范围内,钢铁仍然是世界上非常重要的材料,钢铁材料的综合优异性能使其在主要基础工业和基础设施中仍然是不可替代的材料。钢铁以其成本的竞争力和原料的高储备量、易开采、易加工以及良好的再生利用性,仍将作为全球性的主要基础原材料。 在钢铁工业的发展进程中,其基本原理并没有出现根本性的变化,但钢铁生产工艺流程中各工序的技术形式以及工程的组成内涵则发生了巨大的变化,从而使钢厂结构模式及制造流程发生了深刻变化。20世纪50年代氧气转炉的出现,使炼钢工业面貌迅速改观。70年代石油危机以后,由于能源价格上涨,连铸技术迅猛发展,连铸坯热送热装和直接轧制的实现,使钢厂的生产愈益专业化和系统化。 在绝大部分钢种的生产中,锰和硅都是必须元素。在炼钢过程中作为添加剂,它们是应用最广泛的脱氧剂,它们互相作用能共同提高脱氧能力。同时,又分别以合金元素的形式对钢的性能起着重要的作用。此外,元素锰还是常规的主要脱硫元素,防止钢的热脆,改善钢的加工性能和力学性能。 1 工艺设备概况 水钢炼钢厂主体设计为三座公称容量15吨的氧气顶吹转炉,始建于20世纪70年代。1997年对主体设备和辅助设施进行技术改造,实现了全连铸生产,实际出钢量达到25t.2001年又完成了对转炉的扩容改造,公称容量增为25t,实际出钢量达到了35t.钢包容量也相应增大,为满足炉外精炼的需要,液面自由高度约为350-500mm. 水钢转炉炼钢工艺的脱氧和合金化操作全部在钢包中完成。采用的铁合金种类主要有:高碳锰铁、硅铁、以及少量的硅钙钡或硅铝钡。加入顺序根据铁合金中主要元素的脱氧能力大小,先弱后强,依次为:高碳锰铁、硅铁、硅钙钡或硅铝钡。铁合金在钢包中的加入时间控制在转炉出钢量约30%-60%的范围内。此外,转炉出钢量约30%时,通过钢包底部的吹氩透气砖吹氩搅拌,加速钢液成分和温度的均匀化。 与国内同行业先进指标相比,存在的主要差距是铁合金消耗量较高,合金收得率较低。2000年的平均消耗量为:锰铁14.59kg/t,硅铁6.79kg/t. y 收稿日期:2002-07-09

硅锰合金标准

硅锰合金国家标准GB/T4008-1996 代替GB 4008-87 前言 原国家标准GB 4008-87《锰硅合金》牌号过多,有些牌号没有生产,原标准主元素在各牌号之间有不衔接 .没有形成系列化,组织生产、判级比较困难。这次修改,删去一些牌号,补充了个别牌号。各牌号主元素 含量和个别牌号的参数在不影响使用的前提下进行了合理的调整。 本标准1983年首次发布,1987年第一次修订。 自本标准实施之日起。代替GB 4008-87。 本l标准由中华人民共和国冶金工业部提出。 本标准由冶金工业部信息标准研失院归口。 本标准由上海申佳铁合金有限公司负责起草。 本标准主要起草人:陈震华、章少春、钱宗华。 1范围 本标准规定了锰硅合金的技术要求、试验方法、检验规则、包装、储运、标志和质量证明书。 本标准适用于炼钢及铸造作合金剂、复合脱氧剂利脱硫剂。冶炼中低碳锰铁作还原剂用的锰硅合金。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所 有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 3650-83 铁合金验收、包装、储运、标志和质量证明书的一般规定。 GB/T 4010-94 铁合金化学分析用试样采取和制备 GB 5686.1-88 锰硅合金化学分析方法电位滴定法测定锰量 GB 5686.2-85 锰硅合金化学分析方法重量法测定硅量 GB 5686.3-88 锰硅合金化学分析方法中和滴定法测定磷量 GB 5686.4-85 锰硅合金化学分析方法钼蓝光度法测定磷量 GB 5686.5-88 锰硅合金化学分析方法红外线吸收法测定碳量 GB/T 13247-9l 铁合金产品粒度的取样和检测方法 3技术要求

低磷低碳锰硅合金(高硅硅锰)

低磷低碳锰硅合金(高硅硅锰合金)技术操作规程 1牌号及化学成分(见表1) 表1 低磷低碳锰硅合金牌号和化学成分(%) ┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃┃┃化学成分┃ ┃品种┃牌号┃┃ ┃┃┣━━━━━┳━━━━━┳━━━━━━━┳━━━━━━━┫ ┃┃┃ Mn ┃ Si ┃ C ┃ P ┃ ┣━━━━━━━━━╋━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫ ┃┃ FeMn60Si28 ┃ 60 --62 ┃≥28 ┃≤0. 050 ┃≤0. 050 ┃ ┃高硅锰硅合金I ┃┃┃┃┃┃ ┃┣━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫ ┃┃ FeMn58Si28 ┃ 58~60 ┃≥28 ┃≤0. 050 ┃≤0. 050 ┃ ┣━━━━━━━━━╋━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫ ┃┃ FeMn60Si28 ┃ 60~62 ┃≥28 ┃≤0. 080 ┃≤0. 080 ┃ ┃高硅锰硅合金II ┃┃┃┃┃┃ ┃┣━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫ ┃┃ FeMn58Si28 ┃ 58~60 ┃≥28 ┃≤0. 080 ┃≤0. 080 ┃ 2锰矿技术条件(含喂线因素)(见表2) 表2锰矿技术条件(%)

3喂线机操作(降P) 3.1 喂线准备 3.1.1检查机器各部均正常无误方可开机。 3.1.2穿线:把需要喂的线从进线口一直穿入导线管中。 3.1.3进车:按动操作盘上的前行按钮,使主机前行到位。 3.1.4落管:按动操作盘上的落管按钮,使导线管落下对准钢包。 3.2喂线操作 3.2.1 长度设定:把计数器开关拨至ON位置,使计数器显示并对其进行设定。 3.2.2按动右(左)边喂线按钮,启动右(左)边主电机。 3.2.3速度设定:旋转速度调节按钮,同时观察速度显示,直至所需喂线速度。 3.2.4压下喂线:按动右(左)边压下按钮,使右(左)边辊轮压下开始喂线。当喂够设定长度时压下轮自动升起,主电机停止运转,导线管自动升起。 3.3退线操作 退线操作规程与喂线操作一样,所不同的是操作时应按退线按钮。 4摇包机操作(降C) 4.1 使用前检查设备是否完好。 4.2 空转试车:确认设备能否正常运行。

我国锰系合金生产工艺介绍

我国锰系合金生产工艺介绍 锰铁:锰和铁组成的铁合金。主要分类:高碳锰铁(含碳7%)、中碳锰铁(含碳1.0~1.5%)、低碳锰铁(含碳0.5%)、金属锰、镜铁、硅锰合金。 高炉冶炼 一般采用1000米3以下的高炉,设备和生产工艺大体与炼铁高炉相同。锰矿石在由炉顶下降的过程中,高价的氧化锰(MnO2,Mn2O3,Mn3O4)随温度升高,被CO逐步还原到MnO。但MnO只能在高温下通过碳直接还原成金属,所以冶炼锰铁需要较高的炉缸温度,为此炼锰铁的高炉采用较高的焦比(1600公斤/吨左右)和风温(1000℃以上)。为降低锰损耗,炉渣应保持较高的碱度(CaO/SiO2大于1.3)。由于焦比高和间接还原率低,炼锰铁高炉的煤气产率和含CO量比炼铁高炉高,炉顶温度也较高(350℃以上)。富养鼓风可提高炉缸温度,降低焦比,增加产量,且因煤气量减少可降低炉顶温度,对锰铁的冶炼有显著的改进作用。 电炉冶炼 近年来,国内外众多铁合金厂家就如何在硅锰冶炼中提高锰元素回收率,进行了深入的研究和时间。虽然在工艺配比、渣型选择、配送点制度等方面存在不尽相同的观点,但这些厂家均通过时间提高了回收率。“精料入炉,优化配料”是合金生产的发展方向之一,不同理化性能原料的搭配在很大程度上影响着铁合金的各项经济技术指标。 提高入炉有效功率。电炉设备参数和电器操作制度对炉内冶炼熔池温度影响较大,温度差异直接影响化学反应速率。根据设备参数及实际原料条件合理地选择供电制度,确定合适的二次电压、二次电流、有功功率,使电炉熔池和极心圆功率密度达到最理想状态,电炉甚至可以通过超负荷运行来确保熔池达到足够高的冶炼温度。温度越高,MnO和SiO2还原进入合金的程度越大,其中MnO和SiO2对还原温度的要求更高。在铁合金电炉内,主要存在由电能向热能的转化,即提高有效入炉功率有利于提高炉膛温度,同时有利于促进Mn和Si的还原。 选择合理的工艺制度。锰硅合金炉料配比以精料入炉为原则,入炉原料的有效成分应包括Mn、Fe、SiO2的总和(下问题到的有效成分皆同上),有效成分越高,即主要元素的富集度越高,越有利于增大

锰硅合金冶炼各岗位安全操作规程

1、冶炼炉前工岗位安全操作规程 1.1新的或长期停用的旧的铁水包(渣包)、锭模,一定烘烤到120℃以上方能使用。 1.2吊车吊物或浇注、倒渣时,应有专人按规定信号指挥吊车,其它人员应远离吊物。 1.3电炉在生产时,禁止在炉口下逗留或通过。如必须在该处工作时,要有专人看管炉口。 1.4烧炉眼时,工作鞋、手套必须干燥。使用大锤者,不准戴手套。 1.5用氧开炉眼时,应安放挡板,开氧气时应由小到大缓慢开启。炉眼烧开后,迅速成关闭氧气,氧气安全关闭后,方准将氧气管拉出安全挡板外。 1.6使用氧气时,应遵守下列规定: 1.6.1氧气瓶必须有关防震圈、安全帽等安全附件。搬运时要轻拿轻放,严禁在地面滚动、碰撞和吊车吊运。 1.6.2氧气瓶要在指定地点存放。不准在露天曝晒,不准接近高温,距明火要10米以上。 1.6.3氧气瓶或使用的工具严禁沾油。 1.6.4开氧气时,站在氧气瓶的一侧。严禁吸烟,集中注意力。 1.7用卷扬拉铁水包(渣包)时,钢丝绳和铁水包(渣包)两则不准有人,拉到位置后必须脱钩。 1.8不准用潮湿样勺取铁液样,不准将潮湿物体或密闭容器投入铁水包、锭模中,炉前严禁积水,防止发生爆炸。 1.9熟记吊车联系信号,并严格执行。 2、冶炼炉面工岗位安全操作规程 2.1送电前,班长必须与有关岗位联系好,人员离开危险区,确认无误方可发出送电信号,送电后解除信号。 2.2正常工作时,不准同时接触两相电极。 2.3电炉工作时,不准往短网上投掷物品,严禁用水浇短网,不得爬上烟罩。 2.4不准随意从操作平台上往下扔物品。必要时,要有专人监护,确保安全。 2.5洗炉时,禁止向炉内投入冷料。必须加入时,要有确保避免爆炸的措施。 3、冶炼配电岗位工安全操作规程 3.1供配电按电业系统有关规定执行。 3.2在正常供电或停、送电、下放电极等过程中,要与冶炼工密切配合,听从冶炼班长指挥。 3.3拉、合闸,揿按钮要一看、二确认、三操作。 3.4操作高压部分,要一人操作,一人监护。 3.5高压合闸操作,先合隔离开关,后合油开关,分闸时,先分油开关,后分隔离开关。 3.6非工作人员,一律不得进入配电室和变压器房。 3.7进入液压房、变压器房,严禁吸烟。 4、加糊工岗位安全操作规程 4.1吊运电极糊,执行吊车工安全操作规程。 4.2向电极筒内加电极糊时,要准确,不许掉在电极悬挂及压放设备上,加电极糊平台要保持整洁,不准放金属物。 4.3同一座电炉不准同时从事装填电极糊和焊接电极壳。 4.4用大锤破碎电极糊时,禁止戴手套。 4.5禁止同时接触两相电极或同时接触电极与金属构件。 4.6加完电极糊后要清扫作业场地,电极筒顶端加好盖。 5、修炉工岗位安全操作规程

硅锰合金

硅锰合金及生产工艺 硅锰合金是由锰、硅、铁及少量碳和其它元素组成的合金,是一种用途较广、产量较大的铁合金。锰硅合金是炼钢常用的复合脱氧剂,又是生产中低碳锰铁和电硅热法生产金属锰的还原剂。 1.概述 锰和硅是碳钢中所用的主要合金元素。锰是炼钢过程中最主要的脱氧剂之一,几乎所有的钢种都需要用锰来脱氧。因为用锰来脱氧时所生成的氧产物熔点较低,易于上浮;锰还能增大硅和铝等强脱氧剂的脱氧效果。所有的工业钢都需加入少量的锰作为脱硫剂,使钢能进行热轧、锻造及其它工艺而不致断裂,锰还是各钢种中最重要的合金元素,在合金钢中也会添加15%以上的锰以增加钢的结构强度。硅是生铁和碳钢中仅次于锰的最重要的合金元素。在钢生产中,硅主要用作熔融金属的脱氧剂,或作为合金添加剂使钢增加强度和改善其性能。硅还是一种有效的石磨化介质,它能使铸铁中的碳变成游离的石磨碳。加入标准灰口铸铁和球墨铸铁中的硅可达4%。而大量的锰和硅都是以铁合金的形式添加到钢液中的:锰铁、硅锰和硅铁。 生产锰硅合金的原料有锰矿、富锰渣、硅石、焦炭、白云石(或石灰石)、萤石。生产锰硅合金可使用一种锰矿或几种锰矿(包括富锰渣)的混合矿。由于锰硅合金要求铁、磷含量比高碳锰铁低,故要求冶炼锰硅合金的锰矿有更高的锰铁比和锰磷比。所用的锰矿含锰越高,各项指标越好。 2.工艺技术 硅锰合金是在矿热炉中用炭同时还原锰矿石(包括富锰渣)和硅石中的氧化锰和二氧化硅而炼制生产的。锰硅合金的生产在矿热炉内进行,使用碳质还原剂、锰矿石、富锰渣、烧结锰矿、焙烧锰矿和硅石作原料,石灰、白云石、萤石等作熔剂在电炉内连续生产。 3.硅锰合金矿热炉 矿热炉又称电弧电炉或电阻电炉,亦称还原电炉或矿热电炉,电极一端埋入料层,在料层内形成电弧并利用料层自身的电阻发热加热物料。它主要用于还原冶炼矿石,碳质还原剂及溶剂等原料。其工作特点是采用碳质或镁质耐火材料作炉衬,使用自培石墨电极。电极插入炉料进行埋弧操作,利用电弧的能量及电流通过炉料,因炉料的电阻而产生能量来熔炼金属,陆续续加料,间歇式出铁渣,连续作业的一种工业电炉。 (1)结构特点: 矿热炉是一种耗电量巨大的工业电炉。主要由炉壳,炉盖、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

硅锰合金生产工艺

锰系产品 一、锰系产业链及我司操作相关产品在产业链中位置(红色) 从图上看到不管锰矿还是中间任何的其它产品最终是以钢材为最终产品,钢材产品的价格直接影响相关其它产品的介个走势。其中电价是按季节变动的,在每年夏季的丰水期价格相应都会下调部分。 锰矿:储量主要集中在南非、莫桑比克、澳大利亚、俄罗斯、缅甸、加蓬等国,我国的锰矿产地是辽宁、湖南、四川、广西等地区,但是因为品位低,所以每年需要从国外进口大量高品位锰矿搭配使用。: 二、硅锰生产所需主原料: 锰、焦炭、硅、电

据不完全统计,锰矿品位每降低1%,硅锰合金电耗升高135KWh。尽可能提高入炉锰矿石的品位,是提高锰回收率、降低电耗,改善其他各项指标的重要手段。对于硅石的要求:SiO2>97%,P2O5<0.02%,粒度10-40mm,不带泥土及杂物。对于焦炭的要求:固定碳>84%,灰分<;14%,焦炭粒度,一般中小电炉使用3-13mm,大电炉使用5-25mm。 三、生产工艺: 锰矿石、硅石、碳质还原剂(焦炭)等,在配料站按冶炼工艺要求进行称量配料,混匀后,通过上料系统、布料系统及下料管加到电炉内,供电冶炼。电炉为连续还原冶炼,定时间歇出铁出渣。出炉的铁水铸锭成形,经精整破碎加工后,产品散装或包装出厂,大量的炉渣需进行水淬处理。 还原电炉是铁合金的主要冶炼设备,主要原料是矿石和炭质还原剂。含硅、锰的矿石和炭质原料在电炉中靠电弧放电作用发生还原反应,加热熔炼物料及反应所需的能量为电能。原料入炉后,在电炉炉温高达摄氏2000多度的高温下,发生还原反应,得到产品。 四、硅锰行业标准 锰硅合金GB/T4008-1996 表1 化学成分

铝锰硅合金项目可行性研究报告

铝锰硅合金项目可行性研究报告 核心提示:铝锰硅合金项目投资环境分析,铝锰硅合金项目背景和发展概况,铝锰硅合金项目建设的必要性,铝锰硅合金行业竞争格局分析,铝锰硅合金行业财务指标分析参考,铝锰硅合金行业市场分析与建设规模,铝锰硅合金项目建设条件与选址方案,铝锰硅合金项目不确定性及风险分析,铝锰硅合金行业发展趋势分析 提供国家发改委甲级资质 专业编写: 铝锰硅合金项目建议书 铝锰硅合金项目申请报告 铝锰硅合金项目环评报告 铝锰硅合金项目商业计划书 铝锰硅合金项目资金申请报告 铝锰硅合金项目节能评估报告 铝锰硅合金项目规划设计咨询 铝锰硅合金项目可行性研究报告 【主要用途】发改委立项,政府批地,融资,贷款,申请国家补助资金等【关键词】铝锰硅合金项目可行性研究报告、申请报告 【交付方式】特快专递、E-mail 【交付时间】2-3个工作日 【报告格式】Word格式;PDF格式 【报告价格】此报告为委托项目报告,具体价格根据具体的要求协商,欢迎进入公司网站,了解详情,工程师(高建先生)会给您满意的答复。 【报告说明】 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、上马、融资提供全程指引服务。

可行性研究报告是在制定某一建设或科研项目之前,对该项目实施的可能性、有效性、技术方案及技术政策进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。可行性研究报告主要内容是要求以全面、系统的分析为主要方法,经济效益为核心,围绕影响项目的各种因素,运用大量的数据资料论证拟建项目是否可行。对整个可行性研究提出综合分析评价,指出优缺点和建议。为了结论的需要,往往还需要加上一些附件,如试验数据、论证材料、计算图表、附图等,以增强可行性报告的说服力。 可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。 投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可 行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。 报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。 可行性研究报告大纲(具体可根据客户要求进行调整) 为客户提供国家发委甲级资质 第一章铝锰硅合金项目总论 第一节铝锰硅合金项目背景 一、铝锰硅合金项目名称 二、铝锰硅合金项目承办单位 三、铝锰硅合金项目主管部门 四、铝锰硅合金项目拟建地区、地点 五、承担可行性研究工作的单位和法人代表

硅锰合金的冶炼

关于硅锰合金的冶炼方式和方法 邓绍鑫、邓元华 内容摘要:硅锰合金是炼钢中常用的复合脱氧剂,因此,世界上对于硅锰合金的冶炼都十分的重视。本文通过对硅锰合金的冶炼过程进行剖析阐述,客观上总结了国内外硅锰合金冶炼的技术手段和方法。 关键词:硅锰合金复合脱氧剂冶炼 硅锰合金是炼钢常用的复合脱氧剂,又是生产中,低碳锰铁和电硅热法生产金属锰的还原剂。 硅锰合金可在大中小型矿热炉内采取连续式操作进行冶炼。目前,世界上硅锰合金电炉正向大型化、全封闭的方向发展,南非1975年投产了一台88000KVA的大型硅锰合金电炉。 生产硅锰合金的原料有锰矿、富锰渣、硅石、焦炭。 生产硅锰合金可使用一种锰矿或几种锰矿(包括富锰渣)的混合矿。为保证炼出合格产品,矿石中的锰铁比和锰

磷比应满足一定要求,见表1-2所示。所用的锰矿含锰越高, 表1-2 各项指标越好,图1-1为锰矿品位对硅锰合金技术经 济指标的影响。锰矿中二氧 化硅含量通常不受限制。采用含二氧化硅较高的锰矿 (30~40%SiO 2)来冶炼硅锰合金在技术上是允许的,在资源利用上是合理的。 锰矿中的杂质P 2O 5要低,P 2O 5使合金中磷含量升高。锰矿粒度一般为10~80mm ,小于10mm 不超过总量的10%。 对于硅石的要求,SiO 2≥97%,P 2O 5<0.02,粒度10~40mm ,不带泥土及杂物。 对于焦炭的要求,固定碳≥84%,灰分≤14%,焦炭粒度,一般中小电炉使用3~13mm ,大电炉使用5~25mm 。 对于石灰的要求与碳素锰铁对石灰的要求相同。 图 1-1

为了改善硅的还原,炉料中必须有足够的SiO2使在酸性渣中进行冶炼,渣中SiO2过高,会使排渣困难,通常冶炼硅锰合金的炉渣成分: (SiO 2)=34~42%, CaO+MgO =0.6~0.8 Mn<8% SiO 2 锰的高价氧化物不稳定,受热后容易分解和被CO还原成低价的氧化物MnO,在1373K~1473K的温度区间,锰的高价氧化物已经分解或还原成MnO。MnO较稳定,只能用碳直接还原,由于炉料中SiO2较高,MnO在没开始还原时就与它反应成硅酸盐,富锰渣中的硅锰也是硅酸盐的形式存在,因此从MnO中还原锰的反应,实际上是液态炉渣的硅酸盐中进行还原的。 由于锰与碳组成稳定的化合物Mn3C,用碳还原MnO 得到的不是纯锰,而是锰的化合物Mn3C。 MnO·SiO 2+ 4 C= 1 Mn 3 C+SiO 2 +CO 3 3 炉料中的氧化铁比氧化锰容易还原,还原出来的铁与锰组成共熔体,大大改善了MnO的还原条件。 温度升高,硅也被还原出来,其反应式是: SiO 2 +2C=Si+2CO 由于硅与锰生成比Mn3C更稳定地化合物MnSi,当硅遇到了Mn3C时,Mn3C中的碳被排挤出来,使合金含碳量下降,其反应式为: 1/3Mn 3 C+Si=MnSi+1/3C 被还原出来的硅越多,碳化物破坏得越彻底,合金的含

锰硅合金冶炼降低吨铁电耗方法浅析

12500KV A矿热炉生产锰硅合金降低冶炼电耗措施浅析 摘要分析了影响锰硅矿热炉吨铁冶炼电耗升高的原因,结合实际生产情况,指出了降低吨铁冶炼电耗所采取的措施,取得了良好的经济效益。 关健词锰硅合金矿热炉冶炼电耗避峰生产 前言 公司两台(12.5MV A)矿热炉自2004年9月份生产锰硅合金以来,受当地电价影响,一直采取避电价高峰期生产方式,避峰时间较长,送电后炉温提升缓慢,技术经济指标较差,锰收得率低,吨铁冶炼电耗较高。为降低吨铁冶炼电耗,进一步降低成本,经过对影响冶炼电耗升高的因素全面分析,有针对性地改进了冶炼工艺,并加强了工艺及操作管理。通过努力,在2006~2008年,进一步提高了电炉的生产能力,冶炼电耗较大辐度的逐年降低(参见表1),取得了良好的经济效益。 表1:我公司2005~2008年平均吨铁冶炼电耗 1 影响吨铁冶炼电耗的因素 1.1 综合料入炉品位 综合料入炉品位是指按理论计算配好的入炉料中的含锰量。一般来说,随着矿石含锰量的升高,单位炉料合金产出率就会越高,从而单位电耗就会越低。反之,综合料含锰量较低时,综合锰矿中脉石(无用和有害杂质)含量所占比例就会越大,导致冶炼中渣量增加,渣铁比升高,锰的回收率降低,单炉产量降低,吨铁电耗升高。 1.2 还原剂质量 焦炭作为冶炼锰硅合金的还原剂固定碳要高,灰分低,粒度均衡,电阻率高,化学活性好,才能提高矿热炉的电效率和热效率,取得优异的技术经济指

标,并为强化冶炼打下基础。还原剂粒度较小时,一方面入炉后烧损增大,吨铁焦耗升高;另一方面易造成炉内上层料多碳,下层料缺碳,电极较难下插,炉底温度低,恶化炉况,炉膛内反应区化学反应不充分,元素收得率低,产量降低,吨铁电耗升高。 2007年12月份,我公司焦丁粒度小于5mm量大于40%时与搭配炼铁厂供粒度焦丁10~25mm的量>60%,影响产量指标情况对比情况见表2: 表2:不同焦丁粒度对冶炼指标的影响 1.3 单炉用电量 矿热炉生产锰硅合金冶炼周期通常是根据每炉用电量来确定的(理论上以不“翻渣”为界,而实际生产中又受铁水包容积、天车起重量等因素限制),简单地说,每炉冶炼锰硅合金时炉内物理化学反应状态过程大致分为冶炼前期、中期和后期这么三个阶段。冶炼前期送电后,三相电极下插,电能通过电极弧光热和炉料电阻热转化为内能,逐渐加热炉料,随着炉温升高炉料熔化形成液态熔渣时,开始伴随着一部分的还原反应,当温度升高到约1700K时,还原出来的铁、锰和硅元素结合形成合金积聚在炉膛底部,冶炼前期和中期熔化速度要远大于还原速度,冶炼后期随着电能的不断输入,炉温不断升高,炉料熔化较多,成渣较多时,还原速度会越来越快,在单炉用电量较充足的情况下,还原剂与炉渣间的还原反应相对充分,渣量一定情况下,渣中含锰较少时停电出铁,能有效提高单炉产量,降低吨铁电耗。当单炉用电量不足时,冶炼后期会直接影响还原速度,导致元素还原不充分,渣中含锰高,渣量大,元素收得率低,单炉产量低,吨铁冶炼电耗升高。 1.4 炉渣碱度 炉渣碱度对实际生产中影响较大,炉渣碱度太低时,熔渣中二氧化硅传质

硅锰合金行业浅析

硅锰合金行业浅析 (一)产品介绍 硅锰合金是由锰、硅、铁及少量碳和其他元素组成的合金,是一种用途较广、产量较大的铁合金。硅锰合金是炼钢常用的复合脱氧剂,又是生产中低碳锰铁和电硅热法生产金属锰的还原剂,钢在加入锰系铁合金后得到更好还原的同时,增强了钢铁的韧性、硬度、强度及弹性;。 (二)竞争环境分析(波特五力模型) 1.潜在进入者的威胁 根据国家工信部于2015年发布的《铁合金行业准入条件》,对新建和改扩建铁合金企业提出了具体标准和要求,该条件对相关企业进入该行业和扩大再生产都提出了较高要求,同时在当前国家环保政策压力下,新进入该行业的门槛将进一步提高。具体到硅锰合金领域,从全国范围内看,行业持续洗牌,行业集中度不断提高,合金价格总体呈震荡上升趋势,利润范围大幅放款。由于硅锰合金的下游消费者主要为钢厂,因而是否具有稳定良好的钢厂销售渠道,成为硅锰合金企业能否持续健康稳定发展的关键。 2.替代品的威胁 在我国,每吨钢材消耗平均消耗硅锰合金约25千克左右,硅锰合金本身即是硅铁在钢铁冶炼过程中作为脱氧剂

的替代品,硅锰合金既可脱氧,又可增加钢材中的锰含量,提高钢材强度,因而硅锰合金用作脱氧剂的用量持续提高,目前尚无其他替代品。 3.供应商议价能力 我国锰矿资源较大,据2017年发布数据显示,我国已探明的锰矿区有213处,保有储量达5.6亿吨,占世界第二位。主要分布在广西、湖南、云南、贵州、重庆等省区市。广西是全国锰矿最多的地方,大新县下雷锰矿是全国最大的锰矿床。重庆秀山位于渝、湘、黔“中国锰业金三角”的最佳位置,是目前世界最大的锰矿石和电解锰生产基地,人称“世界第一锰都”。同时,国内部分电解锰企业在菲律宾、越南、印度尼西亚、赞比亚、南非、巴西等国家探寻并购买锰矿资源。虽然我国锰矿资源供给量较大,但整体而言缺口仍然较大,两相对冲,从长期而言上游供给价格总体呈现平稳趋势。 4.购买商议价能力 “无锰不成钢”,目前,钢铁行业所消耗的锰占其产量的比例超过了90%,锰是生产优质钢铁不可缺少的功能性基础原材料,且锰元素在钢材生产过程中的作用尚无其他元素可以替代,硅锰合金则是我国锰合金的主要品种。同时,钢铁行业是硅锰的消费大户,因而硅锰消费需求的变化主要由钢铁行业发展的变化来决定,硅锰合金产业下游

硅锰矿及硅锰合金行业分析报告

2019年投资控股公司 硅锰矿及合金行业分析报告 2019年1月

目录 第一部分锰矿及锰铁 (3) 第二部分锰系合金综述 (7) 第四部分高炉锰铁、电解锰 (10) 第四部分硅矿 (12) 第五部分硅锰合金 (13)

第一部分锰矿及锰铁 在现代工业中,锰及其化合物应用于国民经济的各个领域。其中钢铁工业是最重要的领域,用锰量占90%~95%,主要作为炼铁和炼钢过程中的脱氧剂和脱硫剂,以及用来制造合金。其余10%~5%的锰用于其他工业领域,如化学工业(制造各种含锰盐类)、轻工业(用于电池、火柴、印漆、制皂等)、建材工业(玻璃和陶瓷的着色剂和褪色剂)、国防工业、电子工业,以及环境保护和农牧业等。总之,锰在国民经济中具有十分重要的战略地位。 一、资源状况 据美国矿业局资料,世界锰矿储量为6.8亿t、储量基础50亿t。其中南非居首位,储量基础40亿t;往下依次是乌克兰,5.2亿t;加蓬,1.5亿t;澳大利亚,0.72亿t;巴西,0.56亿t;格鲁吉亚,0.49亿t;印度,0.36亿t。如以中国的A+B+C级储量和国外的储量基础相比,中国居于格鲁吉亚之后,印度之前,大约排在第6位。 需要指出的是,世界洋底锰结核的资源非常丰富。据估计,整个大洋的锰结核资源约有3万亿t,其中太平洋约有1.7万亿t。锰结核不仅含锰,而且含丰富的铜、钴、镍T。大洋底锰结核中锰、铜、钴、镍的储量是陆上相应储量的几十到几千倍。 截至20世纪末,我国陆地已查明锰矿区213处,保有锰矿石储量5.66亿t,其中A+B+C级占40%,为2.27亿t。如按矿石平均含锰21%计算,保有锰金属储量1.19亿t,其中A+B+C级0.48亿t。 二、地理分布 我国现已查明的213个锰矿区5.66亿t保有储量分布于全国21个省、市、自治区,其中以广西和湖南最为重要,保有储量分别为2.15亿t和1.03亿t,占全国总保有储量的38%和18%。其次是贵州(0.74亿t)、云南(0.48亿t)、四川(0.27亿t)、辽宁(0.39亿t)、湖北(0.14亿t)和陕西(0.13亿t),这6个省区储量合计2.15亿t,占全国总保有储量的38%。 目前国内锰矿储量比较集中的地区有8个: (1)桂西南地区。该区包括大新、靖西、天等、德保、扶绥等县,有大、中、

相关文档
最新文档