ADINA有限元软件简介

ADINA有限元软件简介
ADINA有限元软件简介

有限元变分原理

1有限元变分原理 有限元是求解偏微分方程的数值方法,在数学上属于变分法范畴,是古典的 Ritz-Galerkin方法与分片多项式插值的结合。古典的Ritz-Galerkin方法的试函 数是求解域内的连续函数,有限元法的试函数是分片多项式。作为变分法的试函 数产生了很大区别:古典的Ritz-Galerkin方法的试函数要求域内的连续或平方 可积且满足位移边界条件,试函数定义在泛函分析的Hilbert空间,或称为内积 空间。有限元法的试函数要求在单元域内连续或平方可积,且不用考虑位移边界 条件,因为有限元是以节点位移参数为未知数,可以直接代入位移边界条件,但 是单元间出现了连续性条件,即所谓的平面和三维弹性问题的C0连续,和薄板 问题的C1连续等,相对古典的Ritz-Galerkin方法的试函数是一种广义函数。有 限元试函数定义在泛函分析的Sobolev空间,或称为广义导数空间。 2 分片检验 2.1分片检验 长期以来在有限元收敛理论中的分片检验成为关注的焦点,同时也是一个疑难症。分片检验所以倍受关注,是因为它不仅可以用于检验单元的收敛性还可以用于构造收敛单元,而且十分方便。分片检验的研究大致经历了如下三个里程。第一,1965年Irons提出了不协调元的分片检验条件(Patch Test) [1,2],这是一个通过数值计算检验单元的收敛性的方法,可以通过对一小片有限元问题的数值计算检验单元的收敛性,也是有限元法中最实用的检验单元收敛性的方法,但是,作为一种数值检验的方法,在数学和力学原理上的提法都不够严密,而有限元的单元收敛性又是不能回避的问题。鉴于这个方法的有效性和实用性,人们一直对其开展系列的理论研究工作。1972年Strang首先给出分片检验的数学描述[3],后来,这个条件被解释成对一个单元的约束条件,称之为单体条件[4],这个条件使用很方便,可以做为单体的约束条件构造单元函数,但是,对这个分片检验一直缺少严格的数学证明。第二,1980年Stummel 基于严格的数学理论,建立了不协调元收敛的充分必要条件-广义分片检验[5],并且,通过举反例证明Irons的分片检验即不充分也不必要[6]。这个严格的理论是整体条件,而非单体条件,应用很困难,只限于用于少量单元的检验,而且需要有相当的泛函分析基础,对于大多数单元无法得到应用,更是无法用于指导构造不协调元,因此深入研究实用的不协调元收敛性条件是十分必要的。 此间,还推出了一些实用的充分条件,例如,F-E-M检验[7] 和IPT 检验[8]等,1995年建立了C0类非协调元收敛准则—强分片检验(SPT) [9],1997年基于加权Sobolev 空间理论,建立了轴对称非协调元收敛准则—强分片检验(ASPT) [10]。但是,数学的严格理论(例如,广义分片检验)难以在力学中应用,实用的力学准则(例如,分

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

ADINA软件在土石坝渗流场计算中的应用

第22卷 第1期2006年3月 西北水力发电 JOURNAL OF NORTH W EST HYD ROEL ECTR I C POW ER V o l.22 N o.1 M ar.2006 文章编号:167124768(2006)0120039204 AD INA软件在土石坝渗流场计算中的应用 熊 政,何蕴龙,韩 健 (武汉大学水资源与水电工程科学国家重点实验室,湖北武汉430072) 摘 要:根据基本方程及定解条件的比较分析,将AD I NA软件的温度场模块分析功能应用于渗流场的分析,并采用死活单元技术,通过迭代算法计算自由水面位置(浸润线),解决了实际工程观音岩心墙土石坝渗流稳定问题的求解。该方法可以解决复杂边界、多种介质的渗流问题,为实际工程设计应用提供强有力的途径。 关键词:土石坝;有限元;AD I NA软件;温度场;渗流场;死活单元;浸润线 中图分类号:TV641文献标识码:B 1 前言 渗流是土石坝的一个重要研究课题。土石坝的渗流属于地下水流的性质,其流动性态及对土石坝的破坏现象和过程,不易从表面发现,而在发现问题以后往往又难以补救。根据土石坝破坏的一些调查统计资料看,由渗流引起的破坏占相当高的比例。由此可见,渗流会对土坝稳定产生严重的危害。实际工程中,渗流边界条件非常复杂,介质也不单一,采用通常水力学近似解法难以得到满意结果。随着有限元技术的成熟,有限元法成为渗流分析的主要数值方法,对渗流场已经可以达到比较精确的模拟了。AD I NA软件是美国AD I NA R&D公司的产品,是基于有限元技术的大型通用分析仿真平台,其广泛应用到各个行业领域,具有强大的前、后处理功能和求解器。在AD I NA软件的温度场计算模块中,定义有渗流材料,具有专门的渗流场模拟计算功能,能得出令人满意的结果。 2 计算原理 AD I NA理论手册给出温度场的控制分析方程为: 5 5x k x 5Η 5x+ 5 5y k y 5Η 5y+ 5 5z k z 5Η 5z+q B=0 (1)边界条件满足: Η S1=Η(2) k n 5Η 5n S2=q S(3)式中 Η——温度;  k x、k y、k z——为介质三向热传导率;  q B——域内热源密度(即单位体积热生成 率);  S1、S2——两类已知边界条件(已知边界温 度和已知边界热源密度);  q S——边界热源密度。 若以渗透总水头H代替式中的Η,三向渗透系数K x、K y、K z代替k x、k y、k z,q0代替q S,同时q B 取为零,则上式变成: 5 5x K x 5H 5x+ 5 5y K y 5H 5y+ 5 5z K z 5H 5z=0 (4) 收稿日期:2005210224 作者简介:熊政(19802),男,湖北广水人,武汉大学在读硕士生。

22 后处理(doc)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 22 后处理(doc) 22 后处理 22. 1 显示局部坐标系上的结果问: 我前处理用的是直角坐标系,但是我想在后处理中输出关于柱坐标的位移分量是不是要设计局部的坐标系?怎样设计?答:后处理时点菜单 tools / coordinates system / create, 创建柱坐标系(例如使用默认的名称 csys-1) . 菜单 result / options, 点tranformation, 点user-specified, 选中csys-1, 点 OK. 窗口左上角显示的变量如果原来是 U, U1,现在就变为 U, U1(CSYS-1) . 22. 1 显示局部坐标系上的结果问: 我前处理用的是直角坐标系,但是我想在后处理中输出关于柱坐标的位移分量是不是要设计局部的坐标系?怎样设计?答:后处理时点菜单 tools / coordinates system / create, 创建柱坐标系(例如使用默认的名称 csys-1) . 菜单 result / options, 点tranformation, 点user-specified, 选中csys-1, 点 OK. 窗口左上角显示的变量如果原来是 U, U1,现在就变为 U, U1(CSYS-1) . 22. 2 绘制曲线(X Y data)问:例如我想用 odb 文件建立这样一个曲线: x y(自行指定) currentmax(my-xy01) 1. 0 currentmax(my-xy02) 3. 3 搜索了半天也找不到,在此向用过的前辈请教,或者有第三方软件也请指点。 1 / 14

adina中文使用手册第三章

第三章数据准备 3.1 数据类型 AUI 模型定义和显示中使用的数据类型有三种:无名数据(单个数据变量),记录形式的表格数据,命名数据(多个数据变量)。数据输入采用对话框方式。 3.2 对话框类型 —— 使用单个数据编辑器,如图3.1。 图3.1 OK:AUI 更新数据并关闭对话框。 Cancel:撤销修改并关闭对话框。 —— 使用表格数据编辑器,如图3.2。 图3.2

OK:AUI 更新数据并关闭对话框。Apply:更新数据但不关闭对话框。Reset:撤销修改,回到初始状态。Cancel:撤销修改并关闭对话框。Help:显示在线帮助。 ——使用多个数据编辑器,如图3.3。 图3.3 1)使用实例选择器 Add:添加新项。Delete:删除当前项,原来的下一项成为当前项。Copy:复制当前工作项。 2)使用实例编辑器 Save:存储当前工作项,不关闭对话框。 Discard:放弃对当前工作项的修改,不关闭对话框。 3)使用控制按钮 OK:AUI 更新数据并关闭对话框。Cancel:撤销修改并关闭对话框。Help:显示在线帮助。 4)使用操作编辑器 OK:AUI 更新数据并关闭对话框。Cancel:撤销修改并关闭对话框。Help:显示在线帮助。

—— 使用列表选择器 AUI 中的列表选项有两种基本选择方法: 单选方式:单选列标,只选中一条条目,操作如下: 鼠标:点击选取想要的条目,不选其他条目。 键盘:重复点按键直到选中想要的条目,然后使用 方向键移动列标选项。按键确认选择。 多重选择:多选列标,可选中多条条目,条目选择之间相互独立,互不影响,操作如下:鼠标:点击选取想要的条目。 键盘:重复点按键直到选中想要的条目,然后使用 方向键移动列标选项。按< Space >键确认选择(或放弃改选项)。 注意:除非特别说明,AUI 缺省列标选择均为单选列标。 —— 使用复选钮和单选钮 复选钮示例如下:允许一次选择多项,各项相互独立。如图3.4。 单选钮示例如下:一次只允许选择一项,各项相互排斥。至少有两种选择元素供选择,如图3.5。 图3.4 图3.5

一般有限元原理

一般有限元原理 一、基本理论 有限元单元法是数值计算方法中发展较早、应用最广的一种方法。利用有限元法,可以解决经典的传统的方法难以解决或无法求解的许多实际问题。其优点是部分地考虑边坡岩土体的非均质、不连续的介质特征,考虑岩土体的应力应变特征,可以避免将坡体视为刚体,过于简化边界条件的缺点,能够接近实际从应力应变的角度分析边坡的变形破坏机制。对了解边坡的应力分布及应变位移变化很有利。 有限单元法实质是变分法的一种特殊的有效形式,其基本思想是:把连续体离散化为一系列的连接单元,每个单元内可以任意指定各种不同的力学形态,从而可以在一定程度上更好地模拟地质体的实际情况,特殊的节理元,可以有效地模拟岩土体中的结构面。 在大多数情况下岩土体材料应采用非线形模型,其中包括岩体弹塑性、蠕变、不抗拉特性以及结构面性质的影响。下面简要叙述有限元法的求解过程和原理。 有限单元法的基本原理 1.有限单元法的实施步骤 有限元的重要步骤归纳起来,主要有以下几步: (1)建立离散化的计算模型,包括以一定型式的单元进行离散化,按照求解问题的具体条件确定荷载及边界条件; (2)建立单元的刚度矩阵; (3)由单元刚度矩阵组集总体刚度矩阵,并建立系统的整体方程组; (4)引入边界条件,解方程组,求得节点位移; (5)求各单元的应变、应力及主应力。 2位移模式与单元类型 在一般的有限单元法问题中,我们常以位移作为未知数,称为位移法。为保证解的收敛性,要求位移模式必须满足以下三条: (1)位移模式必须能包含单元的刚体位移。即当节点位移是由某个刚体位移所引起时,弹性体内不会有应变。 (2)位移模式必须能包含单元的常应变,即与位置坐标无关的那部分应变。

adina提取内力

adina中如何查看三维实体单元的截面轴力、弯矩与剪力? 1. cut surface方法 下面结合一个自由端作用集中荷载的三维悬臂梁实例,讲解如何计算某截面的轴力、弯矩与剪力。 1)实例概况 一根完全弹性的悬臂梁,截面尺寸为0.10*0.1,长度为1,在自由端作用2个集中力,数值均为1000,需要计算离自由端距离为0.5单位的横截面上的轴力、弯矩与剪力,按照结构力学,该计算截面的轴力为0,剪力为2000,弯矩为1000.下面通过ADINA程序验证上述数值的正确性。 2)建模并求解 由于模型比较简单,不详细讲解了,需要说明的是,坐标原点位移自由端截面最下边。命令流如下,最终模型如下图:

* DATABASE NEW SAVE=NO PROMPT=NO FEPROGRAM ADINA CONTROL FILEVERSION=V83 * COORDINATES POINT SYSTEM=0 @CLEAR 1 0.00000000000000 0.00000000000000 0.00000000000000 0 2 0.00000000000000 0.100000000000000 0.00000000000000 0

3 0.00000000000000 0.100000000000000 0.100000000000000 0 4 0.00000000000000 0.00000000000000 0.100000000000000 0 @ * SURFACE VERTEX NAME=1 P1=3 P2=4 P3=1 P4=2 * VOLUME EXTRUDED NAME=1 SURFACE=1 DX=1.00000000000000, DY=0.00000000000000 DZ=0.00000000000000 SYSTEM=0 PCOINCID=YES, PTOLERAN=1.00000000000000E-05 NDIV=1 OPTION=VECTOR, RATIO=1.00000000000000 PROGRESS=GEOMETRIC CBIAS=NO * FIXBOUNDARY SURFACES FIXITY=ALL @CLEAR 6 'ALL' @ * LOAD FORCE NAME=1 MAGNITUD=1000.00000000000 FX=0.00000000000000, FY=0.00000000000000 FZ=-1.00000000000000

ADINA 软件数据接口和应用实例1

第1章 ADINA软件数据接口和应用实例 1.1 ADINA软件简介 ADINA出现于1975,在K. J. Bathe博士的带领下,其研究小组共同开发出ADINA有限元分析软件。ADINA的含义是Automatic Dynamic Incremental Nonlinear Analysis的首字母缩写,这表达了软件开发者的基本目标,即ADINA除了求解线性问题外,还具备分析非线性问题的强大功能,即求解结构以及涉及结构场之外的多场耦合问题。 到84年以前,ADINA是全球最流行的有限元分析程序,一方面由于其强大功能,被工程界、科学研究、教育等众多用户广泛应用;80年代到ADINA84版其源代码是完全公开的Public Domain Code,后来出现的很多知名商业有限元大量采用ADINA的早期源代码。 1986年,K. J. Bathe博士在美国马萨诸塞州Watertown成立ADINA R&D公司,开始其商业化发展的历程。ADINA公司发展的目标是使其产品ADINA-大型商业有限元求解软件,专注求解结构、流体、流体与结构耦合等复杂非线性问题,并力求程序的求解能力、可靠性、求解效率全球领先。 一直以来,ADINA在计算理论和求解问题的广泛性方面处于全球领先的地位,尤其针对结构非线性、流体、流/固耦合等复杂问题具有强大优势,被业内人士认为是非线性有限元发展方向的代表。经过近30年的开发,ADINA已经成为全球最重要的有限元求解软件,被广泛应用于各个行业的工程仿真分析,包括机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究及大专院校等各个领域。 ADINA系统主要包括以下模块: ADINA-AUI:用户前后处理界面 ADINA:结构分析模块 ADINA-F:计算流体动力学分析模块(CFD) ADINA-FSI:(Fluid Structure Interaction)流体结构耦合分析模块 ADINA-T:温度,场问题求解模块 ADINA-TMC:热、机械耦合求解模块 ADINA-TRANSOR:与I-DEAS, PATRAN, PRO/E, AutoCAD等软件的专用数据接口。 1.2 数据接口 1.2.1 数据接口简介 ADINA有限元系统与工程上主流的CAD、CAE软件通过各种接口传递工程数据,这些接口可以完成几何模型、有限元模型的直接转换,有些软件系统甚至与ADINA直接集成,

基于ADINA的基坑开挖有限元模拟分析

基于ADINA的基坑开挖有限元模拟分析 张力,张宁宁 辽宁工程技术大学研究生院,辽宁阜新(123000) E-mail:znn88888888@https://www.360docs.net/doc/322243429.html, 摘要:基坑开挖由于场地的复杂性对开挖过程的有限元模拟是一个复杂的过程,本文应用大型有限元软件ADINA,对基坑的开挖进行模拟分析,通过对参数的调整和二维平面的实例分析说明采用ADINA进行模拟是可行的。 关键词:深基坑,有限元,ADINA 中图分类号:TU258.6 1.引言 基坑开挖是基础和地下工程的一个古老的传统课题,同时又是一个综合性的岩土工程难题,由于不同的地质条件的影响,不能对其进行通用性的研究,需要因地制宜选取最优方案,深基坑开挖的研究涉及了许多方面的问题,一般可分为基坑本身的稳定性,应力应变问题,基坑支护结构的变形问题以及基坑周围土体的位移及其对临近建筑物和地下管线的影响等[1]。对这些问题现今主要的研究方法有:工程经验总结,现场及室内试验研究、数值模拟计算,近几十年,国内外学者进行了大量基坑开挖性状的研究工作,并已取得了相当丰富的成果。Terzaghi和Peck等人早在20世纪40年代就提出了预估挖方稳定程序和支撑荷载大小的总应力法;Bjenum和Eide在20世纪50年代给出了分析深基坑底板隆起的方法;20世纪60年代开始在奥斯陆和墨西哥城软黏土深基坑中使用仪器进行监测;20世纪70年代产生了相应的指导开挖的法规;从20世纪80年代初开始,我国逐步进入深基坑设计与施工领域;20世纪90年代以后,我国编制了多部国家行业标准及地方的相关法规。国内许多专家提出新的理论和方法,秦四清提出支护结构优化设计理论;杨光华提出多锚撑设计增量计算法;刘建航院士提出软土深基坑开挖的时空效应理论[2]。 2. 我国深基坑工程存在的主要问题 深基坑开挖中大量的实测资料表明,基坑周边向基坑内发生的水平位移是中间大两边小。深基坑边坡失稳常常以长边的居中位置发生,这说明深基坑开挖是一个空间问题。 传统的深基坑支护结构的设计是按平面应变问题处理的。对一些细长条基坑来讲,这种平面应变假设比较符合实际,而对近似方形或长方形深基坑则差别比较大。所以,在未能进行空间问题处理前而需按平面应变假设设计时,支护结构的构造要适当调整,以适应开挖空间效应的要求。 深基坑支护结构所承担的土压力大小直接影响其安全度,但要精确地计算土压力目前还十分困难,所以许多工程至今仍在采用库仑公式或郎肯公式近似计算。此时,土体物理力学参数的选择是一个十分复杂的问题。如果对地基土体的物理力学参数取值不准,将对有限元分析的结果产生很大的影响。 3. 有限元理论 有限元方法最初是在50年代作为处理固体力学问题的方法提出的。国外在这方面起步比较早。纵观已有的研究,有限元在土力学的发展大致有三个方向:有限元计算中土体本构

(完整版)有限元法的基本原理

第二章有限元法的基本原理 有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。 2.1等效积分形式与加权余量法 加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。 2.1.1 微分方程的等效积分形式 工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组 12()()()0A A A ?? ?== ? ??? u u u M (在Ω内) (2-1) 域Ω可以是体积域、面积域等,如图2-1所示。同时未知函数u 还应满足边界条件 12()()()0B B B ?? ?== ? ??? u u u M (在Γ内) (2-2) 要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。所以在以上两式中采用了矩阵形式。 以二维稳态的热传导方程为例,其控制方程和定解条件如下: ()()()0A k k q x x y y φφφ????=++=???? (在Ω内) (2-3)

0()0q B k q n φφφφφ?-=Γ?=??-=Γ???(在上)(在上) (2-4) 这里φ表示温度(在渗流问题中对应压力);k 是流度或热传导系数(在渗流问题中对应流度/K μ);φ和q 是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n 是有关边界Γ的外法线方向;q 是源密度(在渗流问题中对应井的产量)。 在上述问题中,若k 和q 只是空间位置的函数时,问题是线性的。若k 和q 是φ及其导数的函数时,问题则是非线性的。 由于微分方程组(2-1)在域Ω中每一点都必须为零,因此就有 1122()(()())0u d v A u v A u d ΩΩ Ω≡++Ω≡? ?T V A L (2-5) 其中 12v V v ?? ?= ? ??? M (2-6) 其中V 是函数向量,它是一组和微分方程个数相等的任意函数。 式(2-5)是与微分方程组(2-1)完全等效的积分形式。我们可以说,若积分方程对于任意的V 都能成立,则微分方程(2-1)必然在域内任一点都得到满足。同理,假如边界条件(2-2)亦同时在边界上每一点都得到满足,对于一组任意函数,下式应当成立 1122 ()(()())0u d v B u v B u d ΓΓΓ≡++Γ≡??VB L 因此积分形式 ()()0u d u d ΓΓ Ω+Γ=??T T V A V B 对于所有的V 和V 都成立是等效于满足微分方程(2-1)和边界条件(2-2)。我们把(2-7)式称为微分方程的等效积分形式。 2.1.2等效积分的“弱”形式 在一般情况下,对(2-7)式进行分部积分得到另一种形式: ()()()()0T T v d v d ΩΓ Ω+Γ=??C D u E F u (2-8) 其中C ,D ,E ,F 是微分算子,它们中所包含的导数的阶数较(2-7)式的低,这样对函数u 只需要求较低阶的连续性就可以了。在(2-8)式中降低连续性要求是以提高V 和V 的连续性要求为代价的,由于原来对V 和V (在(2-7)式中)并无连续性要求,但是适当提高对其连续性的要求并不困难,因为它们是可以选择的已知函数。这种降低对函数u 连续性要求的作法在近似计算中,尤其是在有限单元法中是十分重要的。(2-8)式称为微分方程

adina作业-结构分析实例-详细步骤教学文案

a d i n a作业-结构分析 实例-详细步骤

辽宁工程技术大学研究生考试试卷 考试时间: 2013 年4月11日 考试科目:工程仿真分析 考生姓名:韩志强 评卷人:张淑坤 考试分数:建工研12-2班

一、ADINA概述 ADINA出现于1975年,是全球最流行的有限元分析软件之一。一方面由于其强大功能,被工程界、科学研究、教育等众多用户广泛应用;另一方面由于其源代码Public Domain Code,其后出现的很多知名有限元程序都来源于ADINA的基础代码。到ADINA84版本时已经具备基本功能框架,ADINA公司成立的目标是使其产品ADINA-大型商业有限元求解软件,专注求解结构、流体、流体与结构耦合等复杂非线性问题,并力求程序的求解能力、可靠性、求解效率全球领先。经过30多年的持续发展,ADINA已经成为近年来发展最快的有限元软件之一及全球最重要的非线性求解软件之一,被广泛应用于各个行业的工程仿真分析,包括机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究及大专院校等各个领域。 二、问题描述 如下图所示受顶部集中荷载的线弹性实体圆柱,利用ADINA有限元工程仿真软件进行模拟分析,绘出应力云图及变形图,再利用ANSYS软件对结果进行比较分析。 材料性质:弹性模量E=2.07?1011N/m2;泊松比μ =0.29。 集中荷载:P=5000N。 其几何尺寸如下图:(单位:m)

P 三、ADINA预处理 1、设置初始数据 题目名称:选Control-Heading,输入标题“hanzhiqiang”,然后单击OK。 自由度:选Control-Degrees of Freedom,X-Rotation,Y-Rotation和Z-Rotation选项为不选,单击OK。 2、几何建模 定义点:单击Define Points图标,并把以下信息输入到表中,然后单击OK 。 Point# X1 X2 X3 1 0 0 0 定义线:单击Define Lines图标,增加线1,把Type设置成Extruded,Initial Point设置成1,the components of the Vector设置成0.05,0.0,0.0,然后单击OK。 定义曲面:单击Define Surfaces图标,增加曲面1,把Type设置成Revolved,Initial Line设置成1,the Angle of Rotation设置成360,the Axis设置成Y,Check Coincidence按钮为不选,然后单击OK。

有限元计算原理与方法..

1.有限元计算原理与方法 有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 1.1. 有限元分析的基本理论 有限元单元法的基本过程如下: 1.1.1.连续体的离散化 首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接 而成为一个整体。单元可采用各种类 型,对于三维有限元分析,可采用四 面 体单元、五西体单元和六面体 单元等。在Plaxis 3D Foundation 程序中,土体和桩体主要采用包 含6个高斯点的15节点二次楔 形体单元,该单元由水平面为6 节点的三角形单元和竖直面为四 边形8节点组成的,其局部坐标 下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的 8个成对节点四边形单元。 在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;

若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应 把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理; 若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布 荷载等效地移置到有关节点上去。 最后,还应建立一个适合所有单元的总体坐标系。 由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料 的由众多单元以一定方式连接成的离散物体。因此,用有限元法计算获得的结果 只是近似的,单元划分越细且又合理,计算结果精度就越高。与位移不同,应力 和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通 过对桩截面进行积分褥到。 1.1. 2. 单元位移插值函数的选取 在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移 作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]T f u v w =。 引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用 场变量在节点上的值来描述单元内任一点的场变量。因此在单元内建立的位移模 式为: {}[]{}e f N δ= (3-1) 其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。 按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用 与位移插值类似的表达式。经过坐标变化后子单元与母单元(局部坐标下的规则 单元)之间建立一种映射关系。不管内部单元或边界附近的单元均可选择相同的 位移函数,则为它们建立单元特性矩阵的方法是相同的。因此,对于15节点楔 形体单元体内各点位移在整体坐标系,,x y z ()下一般取:

ADINA实例 板梁的屈曲分析

实例19 板梁的屈曲分析 问题描述: 本例为悬臂板梁自由端受有竖向集中荷载时的侧向失稳问题,单位为英制单位。 第一部分为线性屈曲分析,第二部分为非线性屈曲分析。 线性屈曲分析(特征值屈曲) 启动 AUI ,选择模块 启动AUI,从程序模块的下拉式列表框中选ADINA Structure。 建模型的关键数据 Analysis Type选择Linearized Buckling,单击图标,如下图所示定义,只需计算一阶模态。 设置大变形:单击Control>Analysis Assumption>Kinematics,Displacements/Rotations选择Large。 建几何模型 下图是建模型时用到的主要几何尺寸:

定义点:单击Define Points图标,并把以下信息输入到表中,然后单击OK。 Point # X1 X2 X3 System... 1 0.0 0.0 -2.5 0 2 100.0 0.0 -2.5 3 100.0 0.0 2.5 0 4 0.0 0.0 2. 5 0 定义面:单击Define Surfaces图标,定义以下面后,单击OK。 定义并施加约束 单击Apply Fixity 图标,把Apply Fixity 对话框中的“Apply to”域设置成Lines。在表的第一行输入2,单击OK。 定义并施加荷载 Model>Loading>Apply on Nodes/Elements,把Load Type设置成Force/Moment。如下图所示定义,施加在Node12上,荷载类型为Z-Force,Weight=-0.001,负号荷载方向表示为Z轴负向,单击OK关闭对话框。注意:所施加的荷载值要小于临界荷载,所以根据经验,这个值一般取得非常小。

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定

ADINA流固耦合实例

实例3 隧道内具有柔性结构的流固耦合分析 问题:隧道内具有柔性结构的流固耦合如图3-1所示。 图3-1 流体-固体结构示意图 一、目的 1. 掌握流固耦合作用FSI在Adina-AUI中的操作过程。 2. 掌握用伸缩比例因子画流固耦合模型。 3. 定义引导点(leader-follower points)。 二、定义模型主控数据 1. 定义标题: 选Control→Heading→敲入标题“exe03: Fluid flow over a flexible structure in a channel, ADINA input”→and click OK。 2. FSI分析: 在右边Analysis Type区选FSI按钮。 3. 主控自由度 选Control→Degrees of Freedom→不选X-Translation, X-Rotation, Y-Rotation and Z-Rotation按钮→and click OK。 4. 分析假设:大位移,小应变。 选Control→Analysis Assumptions→Kinematics→设置“Displacements/Rotations”为 Large→ click OK。(注:非常薄的结构,因此为小应变)。

三、力学模型 1. 柔性结构建立模型 1). 柔性结构几何模型 坐标点如表3-1,几何结构如图3-2所示。 其几何面见表3-2所示。 ①选Define Points 图标→按表3-1输入几何点坐标→ click OK . ②选Define Surfaces 图标→设置TYPE 为Vertex → click OK(如图3-2所示)。 2). 施加固定边界条件和流- 固边界条件 ①. 图3-2中,在L2线上施加固定约束,其过程可用Adina-AUI 完成。 ②. 流-固边界,选Model →Boundary Conditions →FSI Boundary →add FSI boundary number 1→在表中头两行敲入流固边界线编号1和 3 and click OK 。 3). 定义材料特性 弹性模量1.0×106(dyne/cm 2),泊松比0.3。(线弹性问题) 选Model →Materials →Elastic_Isotropic →add material 1, 设置弹性模量1.0E6→泊松比 0.3 and click OK . 4).定义单元和单元划分 (1). 2-D 实体单元,此问题属平面应变问题。 Element group : 选 Meshing →Element Groups → 增加单元组号 1→ 设置 the Type to 2-D Solid →设置 the Element 柔性结构 图3-2 几何模型 表3-1 模型几何点坐标 几何点 X1 X2 X3 坐标系 1 30.025 15.0 0 2 30.0 0.0 0 3 30.05 0.0 图3-3 结构网格

adina结构有限元详细精彩实例

辽宁工程技术大学研究生考试试卷 考试时间:2013 年4月11日 考试科目:工程仿真分析 考生姓名:韩志强 评卷人:张淑坤 考试分数:

一、ADINA概述 ADINA出现于1975年,是全球最流行的有限元分析软件之一。一方面由于其强大功能,被工程界、科学研究、教育等众多用户广泛应用;另一方面由于其源代码Public Domain Code,其后出现的很多知名有限元程序都来源于ADINA 的基础代码。到ADINA84版本时已经具备基本功能框架,ADINA公司成立的目标是使其产品ADINA-大型商业有限元求解软件,专注求解结构、流体、流体与结构耦合等复杂非线性问题,并力求程序的求解能力、可靠性、求解效率全球领先。经过30多年的持续发展,ADINA已经成为近年来发展最快的有限元软件之一及全球最重要的非线性求解软件之一,被广泛应用于各个行业的工程仿真分析,包括机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究及大专院校等各个领域。 二、问题描述 如下图所示受顶部集中荷载的线弹性实体圆柱,利用ADINA有限元工程仿真软件进行模拟分析,绘出应力云图及变形图,再利用ANSYS软件对结果进行比较分析。 μ=0.29。 材料性质:弹性模量E=2.07×1011N/m2;泊松比 集中荷载:P=5000N。 其几何尺寸如下图:(单位:m) P 预处理 三、ADINA预处理 1、设置初始数据 设置初始数据 题目名称:选Control-Heading,输入标题“hanzhiqiang”,然后单击OK。 自由度:选Control-Degrees of Freedom,X-Rotation,Y-Rotation和Z-Rotation 选项为不选,单击OK。

相关文档
最新文档