肌松监测概述

肌松监测概述
肌松监测概述

1 ?概述

现代医学中,肌松药已广泛应用于临床麻醉以及危重病人的呼吸支持和呼吸治疗中[1]。由于不同的个体对于肌松药的敏感性和反应性差异很大,加之肌松药的作用受到挥发性麻醉药、静脉麻醉药、氨基糖贰类抗生素以及病人的年龄、体温等多种因素的影响,因此通过适宜的方法监测应用肌松药后机体神经肌肉传递功能的阻滞程度和恢复状况,对于降低术后因肌松作用残留而引起的各种严重并发症的发生率、提高肌松药临床应用的安全性和合理性十分必要[2]。肌松监测仪的出现,为此研究开拓了更广阔的空间。肌松监测仪是通过刺激周围神经,引起患者肌颤搐来观察肌松药效的仪器。除了监测肌松情况,还用于肌松药药代动力学和药效动力学的研究,有助于发现肌松药敏感的病人和评价神经肌肉功能的恢复程度。

使用肌松监测仪进行肌松药作用监测能够:1.决定气管插管和拔管时机; 2.维持适当肌松,满足手术要求,保证手术各阶段顺利进行; 3.指导使用肌松药的方法和追加肌松药

的时间;4.避免琥珀胆碱用量过多引起的□相阻滞; 5.节约肌松药用量;6.决定肌松药

逆转的时机及拮抗药的剂量;7.预防肌松药的残余作用所引起的术后呼吸功能不全。

2 ?肌松监测基本原理

生理学原理已经阐明,在神经肌肉功能完整的情况下,用电刺激周围运动神经达到一定刺激强度(阈值)时,肌肉就会发生收缩产生一定的肌力。单根肌纤维对刺激的反应遵循全或无模式,而整个肌群的肌力取决于参与收缩的肌纤维数目。如刺激强度超过阈值,神经支配的所有肌纤维都收缩,肌肉产生最大收缩力。临床上用大于阈值20 %至25 %的

刺激强度,称为超强刺激,以保证能引起最大的收缩反应。超强刺激会产生疼痛,患者于麻醉期间无痛感,恢复期却能感到疼痛。因此,有人提出在恢复期使用次强电流刺激,但其监测结果的准确性目前还难以接受。所以要尽可能使用超强刺激。给予肌松剂后,肌肉反应性降低的程度与被阻滞肌纤维的数量呈平行关系,保持超强刺激程度不变,所测得的肌肉收缩力强弱就能表示神经肌肉阻滞的程度。

3 ?神经电刺激模式及其作用

3.1 单刺激:Sin gle-Twitch Stimulatio n, SS

单刺激模式使用频率为1Hz到0.1Hz的单个超强刺激作用于外周运动神经,肌力反应取决于单刺激频率。其可用于监测非去极化和去极化肌松药对神经肌肉功能的阻滞作用。

图为注射非去极化和去极化肌松剂(箭毒)后,使用单刺激(0.1到1.0Hz )的电刺激模

式及肌力反应情况。值得注意的是,除了时间因素,两者的肌力反应强度无差异。

3.2 四个成串刺激:Train-of-Four Stimulation, TOF

又称连续四次刺激,用于评价阻滞程度,是临床应用最广的刺激模式[3]。其间隔0.5秒连续发出四个超强刺激(即2Hz ),通常每10 - 12秒重复一次。四个成串刺激分别引起四个肌颤搐,记为T1、T2、T3、T4。观察其收缩强度以及T1与T4间是否依次出现衰减,根据衰减情况可以确定肌松剂的阻滞特性、评定肌松作用。第四个刺激产生的反应振幅除以第一个刺激产生的反应振幅得到TOF比率(T4/T1 ),可反应衰减的大小。神

经肌肉兴奋传递功能正常时T4/T1接近1.0 ;非去极化阻滞不完全时出现衰减,

T4/T1<1.0 ,随着阻滞程度的增强,比值逐渐变小直至为0。阻滞进一步加深,由T4到

T1依次消失。而非去极化肌松剂作用消退时,T1到T4按顺序出现。去极化阻滞不引

起衰减,T4/T1为0.9 — 1.0。但若持续使用去极化肌松剂,其阻滞性质由I相转变为H

相时,该值逐渐变小。如T4/T1V0.70 ,提示可能发生□相阻滞;(T4/T1 )<0.50时,

提示已发生□相阻滞。

图为注射非去极化和去极化肌松剂(箭毒)后,使用四个成串刺激时电刺激模式和肌力反应情况。

3.3 强直刺激:Tetanic Stimulation, TS

强直刺激由快速发放的电刺激(30, 50或100Hz )形成,临床实践中最常用的模式是持续5秒的50 Hz电刺激。神经肌肉传递功能正常和去极化阻滞时,肌肉对持续5秒的50 Hz

强直刺激可以保持不变。而非去极化阻滞和使用琥珀胆碱后的□相阻滞时,肌力反应出现衰减现象。

3.4 强直刺激后单刺激计数:Post-Teta nic Cou nt Stimulatio n, PTC

当非去极化阻滞较深,以致对四个成串刺激和单刺激均无肌颤搐反应时使用此模式。其组成是:给予持续5秒的50Hz强直刺激,间隔3秒后改为1Hz的单刺激,观察单刺激时肌颤搐的次数。该模式可以量化肌肉阻滞的程度,预计神经肌肉收缩功能开始恢复的时间,更敏感地评价残余肌松作用。

3.5 双短强直刺激:Double Burst Stimulation, DBS

双短强直刺激由两串间距750ms的50Hz强直刺激组成,每串强直刺激有3或4个波宽为0.2ms 的矩形波。其主要用于没有监测肌颤搐效应记录设备时,通过手感或目测来感觉神经肌肉功能的恢复程度。临床多使用含3个刺激脉冲的DBS (DBS3,3)。

3.6 磁力刺激:Magnetic Stimulation

磁力刺激法是将一圆形的磁力刺激线圈(外直径14cm)通过一特制的支架沿受刺激神经

的正切向放置,距离皮肤约2-3cm。在磁力刺激线圈的中心,可产生 1.5Tesla的电场。将磁力刺激器的电磁输出调至引起肌肉最大颤搐反应再增加10%的强度,以确保神经肌

肉各单元完全去极化。磁力刺激每4-10秒刺激一次,其只能引起神经产生冲动,而不能

使神经所支配的肌肉出现收缩;随着神经肌肉接头功能的恢复,肌肉收缩的幅度逐渐增大⑷。4.肌松诱发反应的记录

记录方法主要有三种:诱发机械反应测量(机械肌动图),诱发电反应测量(肌电图)和

肌肉反应的加速度测量(加速度肌动图)。诱发电位和机械反应代表不同的生理事件。诱发肌电图记录的是一个或多个肌肉的电活动变化,而诱发机械肌动图记录的是与兴奋收缩偶联和肌肉收缩相关联的所有改变。因此用这些方法获得的结果可能不一样。尽管诱发肌电反应通常与诱发机械反应良好相关,然而有时也会出现明显的差别。尤其是对司可林的反应和非去极阻滞恢复期间的TOF比值测量。迄今为止,只有个别研究[5]探究了神经肌肉功能充分恢复临床标准与诱发肌电图反应的相关性。通过同步测量诱发电位和机械反应的方法比较阿曲库铵阻滞临床恢复过程与TOF比值之间的关系。这两种类型

的诱发反应与临床恢复表现之间的关系非常相似。故还需更多研究来确定诱发肌电反应与手术肌松临床标准和神经肌肉阻滞完全恢复之间的相关性。加速度肌动图是手术室和ICU中分析神经肌肉功能的简单方法,要求监测肌肉能自由活动。在非去极化神经肌肉阻滞期间,加速度肌动图测得的TOF比值与肌张力-位移换能器或肌电图测得的TOF比

肌松药作用的监测

肌松药作用得监测 现代全麻包含了全身麻醉药,麻醉性镇痛药与肌肉松弛药。肌松药得应用,对维持适当麻醉,避免麻醉过深所导致得生理干扰、为手术提供安静术野与良好得操作条件,增加机体对气管插管得耐受具有不可替代得作用,已成为现代全麻得三要素之一。但就是多年来,临床评价肌松药得标准多以临床征象为主,如睁眼、抬头、举臂、吐舌、潮气量及吸气负压等试验,因影响因素多,且很不精确,其实验结果评价肌松作用有很大局限性,故并不可靠、许多文献报道,可采用神经刺激器等进行肌松药得监测,有些可达定性,有些指标具有定量意义,对临床合理应用肌松药有很强得指导意义。 一、全麻期间肌松监测得意义 (1)决定最佳得气管内导管插管时机。 (2)维持适当得肌松,保证对气管内插管得良好耐受,为术者提供松弛,安静得术野,保证手术各阶段顺利进行,尤其精细手术得进行。 (3)避免琥珀胆碱过量,并对其用量过多引起得II相阻滞作出正确诊断。 (4)合理使用药物,可节省肌松药量。 (5)决定肌松药逆转得时机及拮抗药得剂量。 (6)指导肌松药得使用方法与追加肌松药得时间。 (7)对术后呼吸功能不全进行原因得鉴别,确诊就是否存在肌松药得残余效应,及决定最佳拔管时机。 二、肌松药作用得监测方法 1。神经刺激器就是临床上常规应用得肌松药作用监测仪,要求操作简单,轻便,安全可靠。脉冲宽度0。2—0、3ms,单相正弦波,电池使用时间长。理想得神经刺激器应为桓流,呈线性输出。输出电压300—400V,当皮肤阻抗为0—2.5千欧姆时,输出电流25-50mA,最大电流60—80mA。但末梢较冷时.皮肤阻抗增大(>2。5-5千欧姆),则输出电流减少,对刺激得反应降低,为克服上述缺点,神经刺激器应有电流指示及低电流报警,避免判断错误。远端电极放在近端腕横纹1cm尺侧屈腕肌桡侧,近端电极置于远端电极近侧2-3cm处。对尺神经刺激,产生拇指内收与余四指屈曲,凭视觉与触觉估计肌松程度。此方法系客观指标,主观评价得方法。 2、加速度仪为新型神经肌肉传递功能监测仪。基本原理根据牛顿第二定律,即力等于质量与加速度得乘积,公式为f=ma,因质量不变,力得变化与加速度呈正比,即加速度可反映力得变化、测定时将微型加速度换能器,固定于拇指端腹侧,将刺激电极置于尺神经体表处,

肌松监测仪操作规范

肌松监测仪操作规范文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

肌松监测仪(TOF-Watch)操作规程 一、使用科室:麻醉科 二、基本操作程序 A)对于未松弛的病人,其步骤为 正确安装电极和传感器――开启TOF-Watch――调整刺激强 度――注入诱导剂――待病人足够放松后进行校正――进行连续 的四个成串刺激 B)对于已松弛的病人,其步骤为 正确安装电极和传感器――开启TOF-Watch――调整刺激强度――进行连续 的四个成串刺激 注:若用于科学研究,建议采取A步骤。 三、使用注意事项 A) 在确定本仪器的电刺激不会影响起搏器功能之前,不得用于带有 心脏起搏器的病人。 任何其它仪器不得与本仪器的刺激电极相接触。 B) 采用绝缘性材料复盖刺激电极,保证各种电缆不会接触到刺激电极。 C) 每次使用前检查:加速度传感器与刺激电缆的绝缘材料是否完整无损。 D) 刺激方式中止前,不得接触电极。 E)TOF-Watch 肌松监测仪不能在可燃性麻醉药存在的环境中使用。

F) 将患者同时与高频率手术仪器连接可能导致刺激器电极部分燃 烧,可能对刺激器造成破坏。 G) 在密切接近(如1m)短波或微波的治疗仪器中操作,可能产生刺激输出的不稳定性。 H)不得将TOF-Watch 直接放于其它电力仪器之上。如果必须叠放,用于患者前要观察 TOF-Watch,确保其能正常使用。 I)患有神经损伤。Bell 氏麻痹、重症肌无力以及其它神经肌肉麻痹疾患的病人对刺激的反应与正常人相比,可能有所不同。因此, TOF-Watch 监测仪在这些病人中会表现出不同寻常的反应。 J)刺激电极不得置放在有感染或损伤的部位。 K) TOF-Watch 根据患者条件提供了许多有关肌松的信息。本仪器监测不能取代迄今为止的任何临床判断或非TOF-Watch 做出的任何 检测。 L) 监测神经肌肉传导或神经肌肉阻断只能使用表面电极。 M) 必须使用有CE 标记的电极。 N) 使用非TOF-Watch 自带的附件、传感器和电缆可能导致电磁适应性能降低。

肌松药作用的监测

肌松药作用的监测 现代全麻包含了全身麻醉药,麻醉性镇痛药和肌肉松弛药。肌松药的应用,对维持适当麻醉,避免麻醉过深所导致的生理干扰、为手术提供安静术野和良好的操作条件,增加机体对气管插管的耐受具有不可替代的作用,已成为现代全麻的三要素之一。但是多年来,临床评价肌松药的标准多以临床征象为主,如睁眼、抬头、举臂、吐舌、潮气量及吸气负压等试验,因影响因素多,且很不精确,其实验结果评价肌松作用有很大局限性,故并不可靠。许多文献报道,可采用神经刺激器等进行肌松药的监测,有些可达定性,有些指标具有定量意义,对临床合理应用肌松药有很强的指导意义。 一、全麻期间肌松监测的意义 (1)决定最佳的气管内导管插管时机。 (2)维持适当的肌松,保证对气管内插管的良好耐受,为术者提供松弛,安静的术野,保证手术各阶段顺利进行,尤其精细手术的进行。 (3)避免琥珀胆碱过量,并对其用量过多引起的II相阻滞作出正确诊断。 (4)合理使用药物,可节省肌松药量。 (5)决定肌松药逆转的时机及拮抗药的剂量。 (6)指导肌松药的使用方法和追加肌松药的时间。 (7)对术后呼吸功能不全进行原因的鉴别,确诊是否存在肌松药的残余效应,及决定最佳拔管时机。 二、肌松药作用的监测方法 1.神经刺激器是临床上常规应用的肌松药作用监测仪,要求操作简单,轻便,安全可靠。脉冲宽度0.2-0.3ms,单相正弦波,电池使用时间长。理想的神经刺激器应为桓流,呈线性输出。输出电压300-400V,当皮肤阻抗为0-2.5千欧姆时,输出电流25-50mA,最大电流60-80mA。但末梢较冷时.皮肤阻抗增大(>2.5-5千欧姆),则输出电流减少,对刺激的反应降低,为克服上述缺点,神经刺激器应有电流指示及低电流报警,避免判断错误。远端电极放在近端腕横纹1cm尺侧屈腕肌桡侧,近端电极置于远端电极近侧2-3cm处。对尺神经刺激,产生拇指内收和余四指屈曲,凭视觉和触觉估计肌松程度。此方法系客观指标,主观评价的方法。 2.加速度仪为新型神经肌肉传递功能监测仪。基本原理根据牛顿第二定律,即力等于质量和加速度的乘积,公式为f=ma,因质量不变,力的变化与加速度呈正比,即加速度

肌松监测概述

1 ?概述 现代医学中,肌松药已广泛应用于临床麻醉以及危重病人的呼吸支持和呼吸治疗中[1]。由于不同的个体对于肌松药的敏感性和反应性差异很大,加之肌松药的作用受到挥发性麻醉药、静脉麻醉药、氨基糖贰类抗生素以及病人的年龄、体温等多种因素的影响,因此通过适宜的方法监测应用肌松药后机体神经肌肉传递功能的阻滞程度和恢复状况,对于降低术后因肌松作用残留而引起的各种严重并发症的发生率、提高肌松药临床应用的安全性和合理性十分必要[2]。肌松监测仪的出现,为此研究开拓了更广阔的空间。肌松监测仪是通过刺激周围神经,引起患者肌颤搐来观察肌松药效的仪器。除了监测肌松情况,还用于肌松药药代动力学和药效动力学的研究,有助于发现肌松药敏感的病人和评价神经肌肉功能的恢复程度。 使用肌松监测仪进行肌松药作用监测能够:1.决定气管插管和拔管时机; 2.维持适当肌松,满足手术要求,保证手术各阶段顺利进行; 3.指导使用肌松药的方法和追加肌松药 的时间;4.避免琥珀胆碱用量过多引起的□相阻滞; 5.节约肌松药用量;6.决定肌松药 逆转的时机及拮抗药的剂量;7.预防肌松药的残余作用所引起的术后呼吸功能不全。 2 ?肌松监测基本原理 生理学原理已经阐明,在神经肌肉功能完整的情况下,用电刺激周围运动神经达到一定刺激强度(阈值)时,肌肉就会发生收缩产生一定的肌力。单根肌纤维对刺激的反应遵循全或无模式,而整个肌群的肌力取决于参与收缩的肌纤维数目。如刺激强度超过阈值,神经支配的所有肌纤维都收缩,肌肉产生最大收缩力。临床上用大于阈值20 %至25 %的 刺激强度,称为超强刺激,以保证能引起最大的收缩反应。超强刺激会产生疼痛,患者于麻醉期间无痛感,恢复期却能感到疼痛。因此,有人提出在恢复期使用次强电流刺激,但其监测结果的准确性目前还难以接受。所以要尽可能使用超强刺激。给予肌松剂后,肌肉反应性降低的程度与被阻滞肌纤维的数量呈平行关系,保持超强刺激程度不变,所测得的肌肉收缩力强弱就能表示神经肌肉阻滞的程度。 3 ?神经电刺激模式及其作用 3.1 单刺激:Sin gle-Twitch Stimulatio n, SS 单刺激模式使用频率为1Hz到0.1Hz的单个超强刺激作用于外周运动神经,肌力反应取决于单刺激频率。其可用于监测非去极化和去极化肌松药对神经肌肉功能的阻滞作用。 图为注射非去极化和去极化肌松剂(箭毒)后,使用单刺激(0.1到1.0Hz )的电刺激模 式及肌力反应情况。值得注意的是,除了时间因素,两者的肌力反应强度无差异。 3.2 四个成串刺激:Train-of-Four Stimulation, TOF 又称连续四次刺激,用于评价阻滞程度,是临床应用最广的刺激模式[3]。其间隔0.5秒连续发出四个超强刺激(即2Hz ),通常每10 - 12秒重复一次。四个成串刺激分别引起四个肌颤搐,记为T1、T2、T3、T4。观察其收缩强度以及T1与T4间是否依次出现衰减,根据衰减情况可以确定肌松剂的阻滞特性、评定肌松作用。第四个刺激产生的反应振幅除以第一个刺激产生的反应振幅得到TOF比率(T4/T1 ),可反应衰减的大小。神 经肌肉兴奋传递功能正常时T4/T1接近1.0 ;非去极化阻滞不完全时出现衰减, T4/T1<1.0 ,随着阻滞程度的增强,比值逐渐变小直至为0。阻滞进一步加深,由T4到 T1依次消失。而非去极化肌松剂作用消退时,T1到T4按顺序出现。去极化阻滞不引 起衰减,T4/T1为0.9 — 1.0。但若持续使用去极化肌松剂,其阻滞性质由I相转变为H

治疗药物监测

治疗药物监测 治疗药物监测(1)概念掌握(2)工作内容了解(3)范围掌握 一、概念(记住缩写) 治疗药物监测:therapeutic drug monitoring,TDM 是临床药学的重要内容之一。它采用现代分析测定技术,定量测定生物样品中的药物或其代谢物的浓度,并将所得的数据以药动学原理来探讨体液中药物浓度与药物疗效和毒性的关系,制订合理的给药方案,使给药方案个体化,以提高药物的疗效,避免或减少不良反应,同时也为药物过量中毒的诊断和处理提供有价值的实验室依据。 TDM历程如下(了解): 治疗决策→处方剂量→初剂量设计→调剂→给药→观察→抽血→血药浓度监测→药动学处理→调整给药方案 二、工作内容 (一)实验室的工作内容 1.血药浓度的测定 多种药物的测定 一种药物的多种测定方法 在测定中注意质控 2.数据的处理(峰谷浓度法) 峰浓度谷浓度剂量给药间隔 预期预期不变不变 高高减少或不变增加 低高增加增加 低低减少或不变减少 高低减少减少 高预期减少不变

3.结果的解释 在取得异常结果时,应该分析原因,提出造成异常的可能原因及处理意见。 4.临床药代动力学研究 在进行常规TDM情况下,实验室还可结合临床特点开展多种科研,如疾病对药物处置的影响、活性代谢物、药物相互作用等研究。 (二)TDM的咨询服务 一般可分为二类: (1)简单测定和报告测定结果 (2)提供测定结果,解释结果,设计个体化给药方案 TDM咨询服务的内容:两个层次 初级: (1)向临床提供合适的抽血时间 (2)提供病人可接受的治疗浓度范围 (3)影响所报告浓度的病理因素 (4)药代动力学参数 (5)测定结果的精确度 高级: (1)推荐给药剂量、剂型、给药间隔 (2)其他咨询服务:下一步合适的抽血时间、预期的血药浓度范围、治疗中有可能影响血药浓度的病理生理变化等。 三、适用范围(理解并掌握) 1.治疗指数低/治疗窗窄、毒性大的药物 常见于:地高辛、洋地黄毒苷、锂盐、茶碱、氨基糖苷类抗生素、免疫抑制剂及某些抗心律失常药(如利多卡因、奎尼丁)等等。 治疗指数:是指药物的最低中毒浓度与最低有效浓度之比值,药物治疗指数越高表明药物越安全。 治疗窗:产生治疗效应的药物浓度范围。 2.中毒症状容易和疾病本身的症状混淆的药物 (1)苯妥英钠中毒引起的抽搐与癫痫发作而引起的抽搐不易区别; (2)地高辛、普鲁卡因胺控制心律失常时,药物过量也可引起心律失常,亦难于区别; 3.临床效果不易很快被觉察的药物 (1)特别是那些用于预防某些慢性发作性疾病(如癫痫)的药物。 (2)抗癫痫药物卡马西平、苯妥英、苯巴比妥、丙戊酸;茶碱;抗心律失常药。 4.具有非线性药动学特征的药物 非线性药动学指药物在体内的消除速率常数与剂量有依赖关系,即剂量与血浓度间不呈线性关系,当剂量稍有增加,可能使血浓度明显上升,半衰期明显延长,必须进行血浓度监测。常见于苯妥英钠,茶碱、普萘洛尔等。

肌松监测仪操作规范

肌松监测仪(TOF-Watch)操作规程 一、使用科室:麻醉科 二、基本操作程序 A)对于未松弛的病人,其步骤为 正确安装电极和传感器――开启TOF-Watch――调整刺激强度――注入诱导 剂――待病人足够放松后进行校正――进行连续的四个成串刺激 B)对于已松弛的病人,其步骤为 正确安装电极和传感器――开启TOF-Watch――调整刺激强度――进行连续 的四个成串刺激 注:若用于科学研究,建议采取A步骤。 三、使用注意事项 A) 在确定本仪器的电刺激不会影响起搏器功能之前,不得用于带有心脏起搏器的病人。 任何其它仪器不得与本仪器的刺激电极相接触。 B) 采用绝缘性材料复盖刺激电极,保证各种电缆不会接触到刺激电极。 C) 每次使用前检查:加速度传感器与刺激电缆的绝缘材料是否完整无损。 D) 刺激方式中止前,不得接触电极。 E)TOF-Watch 肌松监测仪不能在可燃性麻醉药存在的环境中使用。 F) 将患者同时与高频率手术仪器连接可能导致刺激器电极部分燃烧,可能对刺激器造 成破坏。 G) 在密切接近(如1m)短波或微波的治疗仪器中操作,可能产生刺激输出的不稳定性。 H)不得将TOF-Watch 直接放于其它电力仪器之上。如果必须叠放,用于患者前要观察TOF-Watch,确保其能正常使用。 I)患有神经损伤。Bell 氏麻痹、重症肌无力以及其它神经肌肉麻痹疾患的病人对刺激的反应与正常人相比,可能有所不同。因此,TOF-Watch 监测仪在这些病人中会表 现出不同寻常的反应。 J)刺激电极不得置放在有感染或损伤的部位。 K) TOF-Watch 根据患者条件提供了许多有关肌松的信息。本仪器监测不能取代迄今为止的任何临床判断或非TOF-Watch 做出的任何检测。 L) 监测神经肌肉传导或神经肌肉阻断只能使用表面电极。 M) 必须使用有CE 标记的电极。 N) 使用非TOF-Watch 自带的附件、传感器和电缆可能导致电磁适应性能降低。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持) 编辑版word

肌松药残余作用的危害及评估

北京大学人民医院杨拔贤 写在课前的话 近年来临床和实验研究都表明,即使应用中效肌松药,以临床或主观方法是很难完全 避免术后肌松药的残余作用。因此,对神经-肌肉功能的客观监测和评估,以及对肌松药残 余作用的桔抗,对肌松药的安全应用是十分重要的。通过本课程学习,您将能明确肌松药残 余作用的危害及评估方法。 病例:女,31岁,体重46kg 。因附件肿物在全麻下行腹腔镜肿物切除术。全麻诱导的药物为:丙泊酚100mg +芬太尼0.1mg +潘库溴铵8mg,气管插管,机械通气,吸入安氟醚维持麻醉。诱导后10min开始手术,45min后结束。停止吸入安氟醚,10min后病人清醒,唤之睁眼;自主呼吸恢复,呼吸12次/min ,潮气量220?280ml ,带插管 自主呼吸空气时,SpO2为95 %。吸痰后拔管,送回普通病房。1h后拔除胃管,5min后循环骤停。经心肺复苏恢复自主心跳和呼吸。但出现明显的缺氧性脑损伤。虽经过脑复苏,神志未能恢复,7天后死于多器官功能衰竭。专家意见:死因不明;手术损伤不大,出血很少;麻醉恢复,拔管指征明确。死亡与手术及麻醉无明显相关。病人是否出现迷走反射? 肌松残余作用:是指在应用肌松药后神经肌肉功能恢复过程中,发生肌无力体征和症 状,同时TOFr低于一定值(<0.7 or <0.9) 。 一、肌松药残余作用的危害性 (一)对呼吸功能的损害 可能损害吸气流速,引起呼吸道梗阻或误吸入。Fikermann对12名自愿受试者进行 了一项研究,研究的目的是检测加速度仪在测试肌松残余作用、肺功能、上呼吸道功能中的 作用;同时观察肺功能、上呼吸道功能与拇内收肌TOFr之间的关系。研究的方法是:以罗 库溴铵0.01mg/kg 诱导,维持TOFr为0.5 和0.8 在5min以上。在肌松稳态时,评价呼吸功能、喉部及面部肌肉的功能。

肌松监测仪简介

产品介绍: TOF-Watch? SX 是TOF-Watch 实时肌松监测仪家族中设计 最为考究的一款。秉承了肌松监测在手术室及ICU中使用所 要求的所有特性,同时它也完全符合临床科研要求。清晰的 界面提供了所有的相关数据。同时这些数据可以通过光纤同 步上传到装有TOF-Watch? SX 软件的计算机中。 TOF-Watch? SX在临床上可用于 1.判断神经肌肉阻滞的类型 2.测定肌松药作用起效时间和气管插管时机的选择 3.维持术中最佳肌松状态 4.神经肌肉阻滞的恢复判断 5.神经定位 配置需求: 1.TOF-Watch SX Sales package(肌松监测仪主机及导线) 2.TOF-LINK USB interface incl.TOF-MONITOR program(USB导线及接口,含安装程序) 3.Handadapter(手掌适配器) 4.Stimulation Cable for needle electrode(LA)针电极刺激导线 5.Mounting bracket(clamp for IV-pole)输液架支架

产品名称肌松监测仪 产品型号TOF-Watch?SX 生产企业爱尔兰,欧加农 产品组成产品由监测仪主机、温度传感器、表层加速度传感器组成。 技术参数1)刺激模式 TOF PTC 1Hz ST 0.1Hz ST DBS(3.3或3.2Hz) TET(50或100Hz) 慢速TOF(TOFs)可在1~60min编程 2)刺激电流(0~60mA 阻抗≤5kOhm) 3)刺激脉冲宽度单相200μs 4)刺激脉冲宽度单相300μs 5)根据用户选择的电流校正 6)根据自动设定的亚极量电流校正 7)手动调整传感器灵敏度 8)用户编辑的TOF和TOFs的报警上下限(OFF,计数或%TOF)9)用户编辑的声音报警(ON或OFF) 10) 自动电源关闭(2小时没任何操作) 11) 表面温度探头(20~41.5℃) 12) 连接电脑,实时采集,分析数据 13) 神经定位--LA(1Hz刺激) 电流0~6mA 阻抗≤5kOhm 脉冲宽度40μs单相

第十一章 肌松监测仪器

第十一章肌松监测仪器 一、选择题 A型题 1.肌松监测中,双重爆发刺激(DBS)与四个成串刺激(TOF)对清醒病人所造成的不适感比较而言() A.DBS大于TOF B.DBS等于TOF C.DBS小于TOF D.结果不确定(大于或小于) E.无法比较 2.下列哪项不属于单次颤搐刺激的特点() A.操作简单 B.病人不适感轻微 C.可以反复测试 D.可判断神经肌肉阻滞性质 E.敏感性差 3.肌松监测时,两个刺激电极间的距离最合适的为()。 A.2mm B.3cm C.2cm D.5cm E.4cm 4.DBS3,3表示() A.强直刺激后计数 B.四个成串刺激 C.强直刺激 D.双重爆发刺激(两组刺激且各含3个刺激脉冲) E.双重爆发刺激(三组刺激且各含3个刺激脉冲) 5.DBS法检测肌松的主要优点是() A.操作简单 B.清醒病人易于接受 C.对清醒病人刺激轻于TOF D.显著提高残余神经肌肉阻滞的检出率 E.可做连续动态监测 6.当神经肌肉阻滞深度达到(),四个成串刺激中T2消失。 A.65~75 B.75~80 C.80~90 D.90以上 E.100 7.肌松监测对刺激电流输出进行调整时,应从超强刺激开始后至少()分钟选取参照值。 A.2~4

B.4~6 C.6~8 D.8~10 E.10~12 8.神经肌肉监测时,调定电刺激参数所采用的亚强刺激电流强度一般为()。 A.10~15mA B.10~20mA C.10~30mA D.15~30mA E.20~30mA 9.因检测间隔时间长而不能应用于去极化阻滞监测的电刺激方式是()。 A.强直刺激后计数 B.强直刺激 C.四个成串刺激 D.单次颤搐刺激 E.双重爆发刺激 B型题 (1~5题) A.TOF B.BIS C.单次颤搐刺激 D.DBS E.听觉诱发电位 1.可有效预防术中知晓的是() 2.其监测结果具有明确解剖生理学意义的是() 3.临床上肌松监测目前应用最广的电刺激方式() 4.由两组短暂的强制刺激组成的肌松电刺激方式() 5.病人不适感轻,操作简单的是() (6~8题) A.0 B.0.3 C.0.5 D.0.7 E.1 6.当T4/T1为()时,插管绝对不会出现呛咳 7.当T4/T1为()时,患者未使用肌松药 8.当T4/T1为()时,可考虑拔出气管导管 X型题 1.DBS2,3所包含的信息是() A.双重爆发刺激由三组强直刺激组成 B.双重爆发刺激第一组刺激含2个刺激脉冲 C.双重爆发刺激第二组刺激含3个刺激脉冲 D.双重爆发刺激由两组各含3个刺激脉冲的强直刺激组成 E.双重爆发刺激由三组各含2个刺激脉冲的强直刺激组成

肌松监测概述

1.概述 现代医学中,肌松药已广泛应用于临床麻醉以及危重病人得呼吸支持与呼吸治疗中[1]。由于不同得个体对于肌松药得敏感性与反应性差异很大,加之肌松药得作用受到挥发性麻醉药、静脉麻醉药、氨基糖贰类抗生素以及病人得年龄、体温等多种因素得影响,因此通过适宜得方法监测应用肌松药后机体神经肌肉传递功能得阻滞程度与恢复状况,对于降低术后因肌松作用残留而引起得各种严重并发症得发生率、提高肌松药临床应用得安全性与合理性十分必要[2]。肌松监测仪得出现,为此研究开拓了更广阔得空间。 肌松监测仪就是通过刺激周围神经,引起患者肌颤搐来观察肌松药效得仪器。除了监测肌松情况,还用于肌松药药代动力学与药效动力学得研究,有助于发现肌松药敏感得病人与评价神经肌肉功能得恢复程度。 使用肌松监测仪进行肌松药作用监测能够:1、决定气管插管与拔管时机;2、维持适当肌松,满足手术要求,保证手术各阶段顺利进行;3、指导使用肌松药得方法与追加肌松药得时间;4、避免琥珀胆碱用量过多引起得Ⅱ相阻滞;5、节约肌松药用量;6、决定肌松药逆转得时机及拮抗药得剂量;7、预防肌松药得残余作用所引起得术后呼吸功能不全。 2.肌松监测基本原理 生理学原理已经阐明,在神经肌肉功能完整得情况下,用电刺激周围运动神经达到一定刺激强度(阈值)时,肌肉就会发生收缩产生一定得肌力。单根肌纤维对刺激得反应遵循全或无模式,而整个肌群得肌力取决于参与收缩得肌纤维数目。如刺激强度超过阈值,神经支配得所有肌纤维都收缩,肌肉产生最大收缩力。临床上用大于阈值20%至25%得刺激强度,称为超强刺激,以保证能引起最大得收缩反应。超强刺激会产生疼痛,患者于麻醉期间无痛感,恢复期却能感到疼痛。因此,有人提出在恢复期使用次强电流刺激,但其监测结果得准确性目前还难以接受。所以要尽可能使用超强刺激。给予肌松剂后,肌肉反应性降低得程度与被阻滞肌纤维得数量呈平行关系,保持超强刺激程度不变,所测得得肌肉收缩力强弱就能表示神经肌肉阻滞得程度。 3.神经电刺激模式及其作用 3、1 单刺激:Single-Twitch Stimulation, SS 单刺激模式使用频率为1Hz到0、1Hz得单个超强刺激作用于外周运动神经,肌力反应取决于单刺激频率。其可用于监测非去极化与去极化肌松药对神经肌肉功能得阻滞作用。 图为注射非去极化与去极化肌松剂(箭毒)后,使用单刺激(0、1到1、0Hz)得电刺激模式及肌力反应情况。值得注意得就是,除了时间因素,两者得肌力反应强度无差异。 3、2 四个成串刺激: Train-of-Four Stimulation, TOF 又称连续四次刺激,用于评价阻滞程度,就是临床应用最广得刺激模式[3]。其间隔0、5秒连续发出四个超强刺激(即2Hz),通常每10-12秒重复一次。四个成串刺激分别引起四个肌颤搐,记为T1、T2、T3、T4。观察其收缩强度以及T1与T4间就是否依次出现衰减,根据衰减情况可以确定肌松剂得阻滞特性、评定肌松作用。第四个刺激产生得反应振幅除以第一个刺激产生得反应振幅得到TOF比率(T4/T1),可反应衰减得大小。神经肌肉兴奋传递功能正常时T4/T1接近1、0;非去极化阻滞不完全时出现衰减,T4/T1<1、0,随着阻滞程度得增强,比值逐渐变小直至为0。阻滞进一步加深,由T4到T1依次消失。而非去极化肌松剂作用消退时,T1 到T4按顺序出现。去极化阻滞不

肌松监测的临床应用_百度文库解读

肌松监测的临床应用 李国华赵嘉训 山西省肿瘤医院麻醉科 , 太原 , 030013 摘要 肌松监测在临床使用过程中具有十分重要的作用。本文概述了肌松监测的意义、肌松监测基本原理、神经电刺激模式、各项监测指标及其临床意义和使用范围, 并对肌松监测的影响因素进行了分析,以期对正确使用临床肌松监测评估肌松作用有所帮助。 关键词:肌松监测, 四个成串刺激,强直刺激后单刺激计数 1.概述 现代医学中,肌松药已广泛应用于临床麻醉以及危重病人的呼吸支持和呼吸治疗中 [1]。由于不同的个体对于肌松药的敏感性和反应性差异很大,加之肌松药的作用受到挥发性麻醉药、静脉麻醉药、氨基糖贰类抗生素以及病人的年龄、体温等多种因素的影响, 因此通过适宜的方法监测应用肌松药后机体神经肌肉传递功能的阻滞程度和恢复状况, 对于降低术后因肌松作用残留而引起的各种严重并发症的发生率、提高肌松药临床应用的安全性和合理性十分必要 [2]。肌松监测仪的出现,为此研究开拓了更广阔的空间。 肌松监测仪是通过刺激周围神经, 引起患者肌颤搐来观察肌松药效的仪器。除了监测肌松情况, 还用于肌松药药代动力学和药效动力学的研究, 有助于发现肌松药敏感的病人和评价神经肌肉功能的恢复程度。 使用肌松监测仪进行肌松药作用监测能够:1. 决定气管插管和拔管时机; 2. 维持适当肌松, 满足手术要求, 保证手术各阶段顺利进行; 3. 指导使用肌松药的方法和追加肌松药的时间; 4. 避免琥珀胆碱用量过多引起的Ⅱ相阻滞; 5. 节约肌松药用量; 6.

决定肌松药逆转的时机及拮抗药的剂量; 7. 预防肌松药的残余作用所引起的术后呼吸功能不全。 2.肌松监测基本原理 生理学原理已经阐明,在神经肌肉功能完整的情况下,用电刺激周围运动神经达到一定刺激强度 (阈值时,肌肉就会发生收缩产生一定的肌力。单根肌纤维对刺激的反应遵循全或无模式, 而整个肌群的肌力取决于参与收缩的肌纤维数目。如刺激强度超过阈值, 神经支配的所有肌纤维都收缩,肌肉产生最大收缩力。临床上用大于阈值 20%至 25%的刺激强度,称为超强刺激, 以保证能引起最大的收缩反应。超强刺激会产生疼痛, 患者于麻醉期间无痛感,恢复期却能感到疼痛。因此,有人提出在恢复期使用次强电流刺激,但其监测结果的准确性目前还难以接受。所以要尽可能使用超强刺激。给予肌松剂后, 肌肉反应性降低的程度与被阻滞肌纤维的数量呈平行关系, 保持超强刺激程度不变, 所测得的肌肉收缩力强弱就能表示神经肌肉阻滞的程度。 3.神经电刺激模式及其作用 3.1 单刺激:Single-Twitch Stimulation, SS 单刺激模式使用频率为 1Hz 到 0.1Hz 的单个超强刺激作用于外周运动神经,肌力反应取决于单刺激频率。其可用于监测非去极化和去极化肌松药对神经肌肉功能的阻滞作用。

肌松药的临床应用_百度文库解读

第八章肌松药的临床应用 教学目的: 1 介绍肌松药的选择及应用方法,讲解神经肌肉传递功能监测的常用方法,正确应用肌松药拮抗药的指征、方法与注意事项 2、重点讲解肌松药在麻醉中应用的基本原则 3 重点讲解四个成串刺激(TOF)的临床应用 教学要求: 1、掌握肌松药在麻醉中应用的基本原则,重点掌握四个成串刺激(TOF)的临床应用 2、熟悉肌松药常见的不良反应和影响肌松药作用的因素,熟悉神经肌肉传递功能监测的常用方法,正确应用肌松药结抗药的指征、方法与注意事项 3、了解肌松药的选择及应用方法,肌松药作用的消退过程与残留肌松作用 教学内容: 1、肌松药的选择及应用方法 2、正确应用肌松药拮抗药的指征、方法与注意事项 3、肌松药在麻醉中应用的基本原则 4、神经肌肉传递功能监测的常用方法 5、重点讲解四个成串刺激(TOF)的临床应用 肌松弛药松弛骨骼肌(简称肌松),是全麻中重要的辅助用药,用以在全麻诱导时便于作气管内插管和在术中保持良好肌松。肌松药不能在病人清醒时应用,更不能替代麻醉药和镇痛药。使用肌松药必须注意气道管理,和根据肌松程度作辅助呼吸或控制呼吸,保证病人有效和足够的每分钟通气量。

肌松药还适用于危重病人在机械通气时消除病人自主呼吸与机械通气之间的对抗,以及用以治疗痉挛性疾病等。 第一节肌松药在麻醉期间的应用 (一)用于气管插管 (二)起效时间与肌松强度 (三)预给量 (四)肌松的维持 (五)肌松药的复合应用 1.琥珀胆碱与非去极化肌松药去极化肌松药和非去极化肌松药两种不同类型的肌松药合用其作用是拮抗的。琥珀胆碱与非去极化肌松药合用临床上有三种情况:①诱导时为了减轻琥珀胆碱的不良反应如肌纤维成束收缩,减少术后肌痛,减轻高钾血症及腹内压升高等,在静注琥珀胆碱前数分钟先静注小量的非去极化肌松药,其后静注琥珀胆碱的作用被减弱,要保持预期的琥珀胆碱的阻滞深度,必须要增加琥珀胆碱用量。②诱导用琥珀胆碱作气管插管,肌松维持用非去极化肌松药,此时琥珀胆碱增强其后的非去极化肌松药作用,这可能是琥珀胆碱在去极化肌松消退过程中发生Ⅱ相阻滞所致。同样,在琥珀胆碱反复间断静注或静滴较长时间出现典型的Ⅱ相阻滞时,小剂量非去极化肌松药可引起异常深的神经肌肉传导阻滞。③术中用非去极化肌松药维持,在接近手术结束时为加深肌松而静注琥珀胆碱,例如为易于缝合腹膜,此时琥珀胆碱的作用既拮抗非去极化肌松药,又产生去.极化阻滞,且可能产生Ⅱ相阻滞,以致延长肌松时间。 2.非去极化肌松药的复合应用 (1)前后复合应用:两种不同时效的肌松药前后复合应用,则前用的肌松药影响其后加用的另一肌松药的时效,如长时效肌松药后加用中时效或短时效肌松药,长时效肌松药使其后加用的中时效或短时效肌松药的时效延长;反之,短时效肌松药后加用长时效或中时效肌松药,短时效肌松药使其后加用的长时效或中时效肌松药的时效缩短。(2)同时复合应用:其结果可能是协同作用或相加作用,这取决于肌松药的化学结构。目前使用的

肌松监测概述

1.概述 现代医学中,肌松药已广泛使用于临床麻醉以及危重病人的呼吸支持和呼吸治疗中[1]。由于不同的个体对于肌松药的敏感性和反应性差异很大,加之肌松药的作用受到挥发性麻醉药、静脉麻醉药、氨基糖贰类抗生素以及病人的年龄、体温等多种因素的影响,因此通过适宜的方法监测使用肌松药后机体神经肌肉传递功能的阻滞程度和恢复状况,对于降低术后因肌松作用残留而引起的各种严重并发症的发生率、提高肌松药临床使用的安全性和合理性十分必要[2]。肌松监测仪的出现,为此研究开拓了更广阔的空间。 肌松监测仪是通过刺激周围神经,引起患者肌颤搐来观察肌松药效的仪器。除了监测肌松情况,还用于肌松药药代动力学和药效动力学的研究,有助于发现肌松药敏感的病人和评价神经肌肉功能的恢复程度。 使用肌松监测仪进行肌松药作用监测能够:1.决定气管插管和拔管时机;2.维持适当肌松,满足手术要求,保证手术各阶段顺利进行;3.指导使用肌松药的方法和追加肌松药的时间;4.避免琥珀胆碱用量过多引起的Ⅱ相阻滞;5.节约肌松药用量;6.决定肌松药逆转的时机及拮抗药的剂量;7.预防肌松药的残余作用所引起的术后呼吸功能不全。2.肌松监测基本原理 生理学原理已经阐明,在神经肌肉功能完整的情况下,用电刺激周围运动神经达到一定刺激强度(阈值)时,肌肉就会发生收缩产生一定的肌力。单根肌纤维对刺激的反应遵循全或无模式,而整个肌群的肌力取决于参和收缩的肌纤维数目。如刺激强度超过阈值,神经支配的所有肌纤维都收缩,肌肉产生最大收缩力。临床上用大于阈值20%至25%的刺激强度,称为超强刺激,以保证能引起最大的收缩反应。超强刺激会产生疼痛,患者于麻醉期间无痛感,恢复期却能感到疼痛。因此,有人提出在恢复期使用次强电流刺激,但其监测结果的准确性目前还难以接受。所以要尽可能使用超强刺激。给予肌松剂后,肌肉反应性降低的程度和被阻滞肌纤维的数量呈平行关系,保持超强刺激程度不变,所测得的肌肉收缩力强弱就能表示神经肌肉阻滞的程度。 3.神经电刺激模式及其作用 3.1 单刺激:Single-Twitch Stimulation, SS 单刺激模式使用频率为1Hz到0.1Hz的单个超强刺激作用于外周运动神经,肌力反应取决于单刺激频率。其可用于监测非去极化和去极化肌松药对神经肌肉功能的阻滞作用。 图为注射非去极化和去极化肌松剂(箭毒)后,使用单刺激(0.1到1.0Hz)的电刺激模式及肌力反应情况。值得注意的是,除了时间因素,两者的肌力反应强度无差异。 3.2 四个成串刺激: Train-of-Four Stimulation, TOF 又称连续四次刺激,用于评价阻滞程度,是临床使用最广的刺激模式[3]。其间隔0.5秒连续发出四个超强刺激(即2Hz),通常每10-12秒重复一次。四个成串刺激分别引起四个肌颤搐,记为T1、T2、T3、T4。观察其收缩强度以及T1和T4间是否依次出现衰减,根据衰减情况可以确定肌松剂的阻滞特性、评定肌松作用。第四个刺激产生的反应振幅除以第一个刺激产生的反应振幅得到TOF比率(T4/T1),可反应衰减的大小。神经肌肉兴奋传递功能正常时T4/T1接近1.0;非去极化阻滞不完全时出现衰减,T4/T1<1.0,随着阻滞程度的增强,比值逐渐变小直至为0。阻滞进一步加深,由T4到T1依次消失。而非去极化肌松剂作用消退时,T1 到T4按顺序出现。去极化阻滞不引起衰减,T4/T1为0.9-1.0。但若持续使用去极化肌松剂,其阻滞性质由Ⅰ相转变为Ⅱ

相关文档
最新文档