图论二分图最大匹配算法

图论二分图最大匹配算法
图论二分图最大匹配算法

二分图最大匹配算法

令G = (X,*,Y)是一个二分图,其中,X = {x1,x2,...xm}, Y = {y1,y2,...yn}。令M为G中的任一个匹配。

1)讲X的所有不与M的边关联的顶点标上(@),并称所有的顶点为未被扫描的。转到2)。2)如果在上一步没有新的标记加到X的顶点上,则停止。否则转到3)。

3)当存在X被标记但未被扫描的顶点时,选择一个被标记但未被扫描的X的顶点,比如,xi,用(xi)标记Y的所有顶点,这些顶点被不属于M且尚未标记的边连到xi .现在,顶点xi 是被扫描的。如果不存在被标记但未被扫描的顶点,则转到4)。

4)如果在步骤3)没有新的标记被标到Y的顶点上,则停止。否则,转到5)。

5)当存在Y被标记但未被扫描的顶点时,选择Y的一个被标记但未被扫描的顶点,比如yi,用(yi)标记X的顶点,这些顶点被属于M且尚未标记的边连到yi.现在,顶点yi是被扫描的。如果不存在被标记但未被扫描的顶点,则转到2)。

也可以叙述为:

[ZZ]匈牙利算法

关键在于匈牙利算法的递归过程中有很多重复计算的节点,而且这种重复无法避免,他不能向动态规划一样找到一个“序”将递归改为递推。

算法中的几个术语说明:

1。二部图:

如果图G=(V,E)的顶点集何V可分为两个集合X,Y,且满足X∪Y = V, X∩Y=Φ,则G称为二

部图;

图G的边集用E(G)表示,点集用V(G)表示。

2。匹配:

设M是E(G)的一个子集,如果M中任意两条边在G中均不邻接,则称M是G的一个匹配。M中的

—条边的两个端点叫做在M是配对的。

3。饱和与非饱和:

若匹配M的某条边与顶点v关联,则称M饱和顶点v,并且称v是M-饱和的,否则称v 是M-不

饱和的。

4。交互道:

若M是二分图G=(V,E)的一个匹配。设从图G中的一个顶点到另一个顶点存在一条道路,这条道路是由属于M的边和不属于M的边交替出现组成的,则称这条道路为交互道。

5。可增广道路:

若一交互道的两端点为关于M非饱和顶点时,则称这条交互道是可增广道路。显然,一条边的两端点非饱和,则这条边也是可增广道路。

6。最大匹配:

如果M是一匹配,而不存在其它匹配M',使得|M'|>|M|,则称M是最大匹配。其中|M|表

匹配M的边数。

7。对称差:

A,B是两个集合,定义

A⊕B = (A∪B)\(A∩B)

则A⊕B称为A和B的对称差。

定理:M为G的最大匹配的充要条件是G中不存在可增广道路。

Hall定理:对于二部图G,存在一个匹配M,使得X的所有顶点关于M饱和的充要条件是:对于

X的任意一个子集A,和A邻接的点集为T(A),恒有:|T(A)| >= |A|

匈牙利算法是基于Hall定理中充分性证明的思想,其基本步骤为:

1。任给初始匹配M;

2。若X已饱和则结束,否则进行第3步;

3。在X中找到一个非饱和顶点x0,作

V1 ← {x0}, V2 ← Φ

4。若T(V1) = V2则因为无法匹配而停止,否则任选一点y ∈T(V1)\V2;

5。若y已饱和则转6,否则做一条从x0 →y的可增广道路P,M←M⊕E(P),转2;

6。由于y已饱和,所以M中有一条边(y,z),作V1 ← V1 ∪{z}, V2 ← V2 ∪{y},转4;

Ku二分图最大权匹配(KM算法)hn

Maigo的KM算法讲解(的确精彩) 顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立。KM 算法的正确性基于以下定理: * 若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。 这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。 初始时为了使A[i]+B[j]>=w[i,j]恒成立,令A[i]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。 我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:

两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。 两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。 X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。 X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。 现在的问题就是求d值了。为了使A[i]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于min{A[i]+B[j]-w[i,j]|Xi在交错树中,Yi不在交错树中}。 以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为 O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的slack值都减去d。

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

二分图匹配(匈牙利算法和KM算法)

前言: 高中时候老师讲这个就听得迷迷糊糊,有一晚花了通宵看KM的Pascal代码,大概知道过程了,后来老师说不是重点,所以忘的差不多了。都知道二分图匹配是个难点,我这周花了些时间研究了一下这两个算法,总结一下 1.基本概念 M代表匹配集合 未盖点:不与任何一条属于M的边相连的点 交错轨:属于M的边与不属于M的边交替出现的轨(链) 可增广轨:两端点是未盖点的交错轨 判断M是最大匹配的标准:M中不存在可增广轨 2.最大匹配,匈牙利算法 时间复杂度:O(|V||E|) 原理: 寻找M的可增广轨P,P包含2k+1条边,其中k条属于M,k+1条不属于M。修改M 为M&P。即这条轨进行与M进行对称差分运算。 所谓对称差分运算,就是比如X和Y都是集合,X&Y=(X并Y)-(x交Y) 有一个定理是:M&P的边数是|M|+1,因此对称差分运算扩大了M 实现: 关于这个实现,有DFS和BFS两种方法。先列出DFS的代码,带注释。这段代码来自中山大学的教材

核心部分在dfs(x),来寻找可增广轨。如果找到的话,在Hungarian()中,最大匹配数加一。这是用了刚才提到的定理。大家可以想想初始状态是什么,又是如何变化的 view plaincopy to clipboardprint?

第二种方法BFS,来自我的学长cnhawk 核心步骤还是寻找可增广链,过程是: 1.从左的一个未匹配点开始,把所有她相连的点加入队列 2.如果在右边找到一个未匹配点,则找到可增广链 3.如果在右边找到的是一个匹配的点,则看它是从左边哪个点匹配而来的,将那个点出发的所有右边点加入队列 这么说还是不容易明白,看代码吧

基于特征的图像匹配算法毕业设计论文(含源代码)

诚信声明 本人声明: 我所呈交的本科毕业设计论文是本人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。本人完全意识到本声明的法律结果由本人承担。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 本人签名:日期:2010 年05 月20日

毕业设计(论文)任务书 设计(论文)题目: 学院:专业:班级: 学生指导教师(含职称):专业负责人: 1.设计(论文)的主要任务及目标 (1) 了解图象匹配技术的发展和应用情况,尤其是基于特征的图象匹配技术的发展和应用。 (2) 学习并掌握图像匹配方法,按要求完成算法 2.设计(论文)的基本要求和内容 (1)查阅相关中、英文文献,完成5000汉字的与设计内容有关的英文资料的翻译。(2)查阅15篇以上参考文献,其中至少5篇为外文文献,对目前国内外图象匹配技术的发展和应用进行全面综述。 (3)学习图象匹配算法,尤其是基于特征的图象匹配算法。 (4)实现并分析至少两种基于特征的图象匹配算法,并分析算法性能。 3.主要参考文献 [1]谭磊, 张桦, 薛彦斌.一种基于特征点的图像匹配算法[J].天津理工大学报,2006, 22(6),66-69. [2]甘进,王晓丹,权文.基于特征点的快速匹配算法[J].电光与控制,2009,16(2), 65-66. [3]王军,张明柱.图像匹配算法的研究进展[J].大气与环境光学学报,2007,2(1), 12-15.

一笔画问题是图论中一个著名的问题

一笔画问题是图论中一个著名的问题。一笔画问题起源于柯尼斯堡七桥问题。数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题[1]。一般认为,欧拉的研究是图论的开端。 与一笔画问题相对应的一个图论问题是哈密顿问题。 目录[隐藏] 1 问题的提出 2 一笔画定理 2.1 定理一 2.2 定理二 3 例子 3.1 七桥问题 3.2 一个可以一笔画的例子 4 一笔画问题与哈密顿问题 5 参见 6 参考来源 [编辑] 问题的提出 一笔画问题是柯尼斯堡问题经抽象化后的推广,是图遍历问题的一种。在柯尼斯堡问题中,如果将桥所连接的地区视为点,将每座桥视为一条边,那么问题将变成:对于一个有着四个顶点和七条边的连通图G(S,E),能否找到一个恰好包含了所有的边,并且没有重复的路径。欧拉将这个问题推广为:对于一个给定的连通图,怎样判断是否存在着一个恰好包含了所有的边,并且没有重复的路径?这就是一笔画问题。用图论的术语来说,就是判断这个图是否是一个能够遍历完所有的边而没有重复。这样的图现称为欧拉图。这时遍历的路径称作欧拉路径(一个圈或者一条链),如果路径闭合(一个圈),则称为欧拉回路[1]。 一笔画问题的推广是多笔画问题,即对于不能一笔画的图,探讨最少能用多少笔来画成。 [编辑] 一笔画定理 对于一笔画问题,有两个判断的准则,它们都由欧拉提出并证明[1]。 [编辑] 定理一 有限图G是链或圈的充要条件是:G为连通图,且其中奇顶点的数目等于0或者2。有限连通图G是圈当且仅当它没有奇顶点[2]。 证明[2][3]: 必要性:如果一个图能一笔画成,那么对每一个顶点,要么路径中“进入”这个点的边数等于“离开”这个点的边数:这时点的度为偶数。要么两者相差一:这时这个点必然是起点或终点之一。注意到有起点就必然有终点,因此奇顶点的数目要么是0,要么是2。 充分性: 如果图中没有奇顶点,那么随便选一个点出发,连一个圈C1。如果这个圈就是原图,那么

算法学习:图论之二分图的最优匹配(KM算法)

二分图的最优匹配(KM算法) KM算法用来解决最大权匹配问题:在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。 基本原理 该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。 KM算法的正确性基于以下定理: 若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。 首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是 Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。 这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。 初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。 我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现: 1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。 2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。 3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。 4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。(针对之后例子中x1->y4这条边) 现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于: Min{A[i]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。 改进 以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[ i ]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y 顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的不在交错树中的Y顶点的slack值都减去d(因为:d的定义为 min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y? T }

图像匹配搜索算法

本文基于相关性分析来实现图像匹配 第一步:读取图像。 分别读取以下两幅相似的图片,显示效果如下: 第二步:选择一副图像的子区域。用户可以通过鼠标选择需要截取的图像部分,用于匹配。随机选取图片的一块区域,如下图:

第三步:使用相关性分析两幅图像 采用协方差的方式计算相关系数,分析图片的相似性。 1.协方差与相关系数的概念 对于二维随机变量(,)X Y ,除了关心它的各个分量的数学期望和方差外,还需要知道这两个分量之间的相互关系,这种关系无法从各个分量的期望和方差来说明,这就需要引进描述这两个分量之间相互关系的数字特征——协方差及相关系数。 若X Y 与相互独立,则()( )0 Y E X EX Y EY σ--???? =≠;若()()0E X EX Y EY --≠????,则表 示X 与Y 不独立,X 与Y 之间存在着一定的关系 设 (,)X Y 是二维随机变量, 则称()()E X EX Y EY --????为X 与Y 的协方差(Covariance ),记为 ()cov ,X Y 或XY σ,即 ()()()cov ,XY X Y E X EX Y EY σ==--???? 若 0X σ≠ 且0Y σ=≠,则称 XY XY X Y σρσσ== 为X 与Y 的相关系数(Correlation Coefficient )。()c o v ,X Y 是 有量纲的量,而XY ρ则是无量纲的量.协方差常用下列公式计算

()() =-? cov,X Y E XY EX EY 2.用全搜索和协方差计算截取图片与另外一幅图片的各点的相似度。c=normxcorr2(sub_I1(:,:,1),I2(:,:,1)); 第四步:找到整幅图像的偏移。 [max_c,imax]=max(abs(c(:))); [ypeak,xpeak]=ind2sub(size(c),imax(1)); [m,n]=size(sub_I1); xbegin=xpeak-n+1; ybegin=ypeak-m+1; xend=xpeak; yend=ypeak; 从原图像提取匹配到的图像 extracted_I1=I2(ybegin:yend,xbegin:xend,:); 第五步:显示匹配结果。 相关性匹配图: 找出峰值即最相似区域的中心

二分图匹配

二分图匹配 1.最大匹配(hdu1068) Girls and Boys Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6410 Accepted Submission(s): 2888 Problem Description the second year of the university somebody started a study on the romantic relations between the students. The relation “romantically involved” is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been “romantically involved”. The result of the program is the number of students in such a set. The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description: the number of students the description of each student, in the following format student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ... or student_identifier:(0) The student_identifier is an integer number between 0 and n-1, for n subjects. For each given data set, the program should write to standard output a line containing the result. Sample Input 7 0: (3) 4 5 6 1: (2) 4 6 2: (0) 3: (0) 4: (2) 0 1 5: (1) 0 6: (2) 0 1 3

经典图论问题

5经典图论问题 5.1 一笔画问题 一笔画算法即是从起点a开始选择关联边(第一这条边不是往回倒,第二这条边在前面延伸路上没有出现过)向前延伸,如果到达终点b,得到a—b迹,判断路上的的边数是否为图的总边数,是就终止,否则选择迹上某个关联边没有用完的顶点v,用同样方式再搜索v—v的闭迹,添加到a—b迹上,即得到a—v---v—b迹,如果这个迹的边数还没有达到总边数,则再选择迹上某个关联边没有用完的顶点。。。。。。逐步扩展即可。

二、弗罗莱(Fleury )算法 任取v 0∈V(G),令P 0=v 0; 设P i =v 0e 1v 1e 2…e i v i 已经行遍,按下面方法从中选取e i+1: (a )e i+1与v i 相关联; (b )除非无别的边可供行遍,否则e i+1不应该为G i =G-{e 1,e 2, …, e i }中的桥(所谓桥是一条删除后使连通图不再连通的边); (c )当(b )不能再进行时,算法停止。 5.2 中国邮递员问题(CPP ) 规划模型: 设ij x 为经过边j i v v 的次数,则得如下模型。 ∑∈= E v v ij ij j i x z ?min ∑ ∑ E ∈E ∈∈=j i i k v v i v v ki ij V v x x , E ∈∈≤j i ij v v N x ,1 ..t s

5.3旅行推销员问题(TSP,货郎担问题)(NPC问题) 定义:包含图G的所有定点的路(圈)称为哈密顿路(圈),含有哈密顿圈得图称为哈密顿图。 分析:从一个哈密顿圈出发, 算法一:(哈密顿圈的充要条件:一包含所有顶点的连通子图,二每个顶点度数为2) 象求最小生成树一样,从最小权边加边,顶点度数大于3以及形成小回路的边去掉。 算法二: 算法三:

用匈牙利算法求二分图的最大匹配

用匈牙利算法求二分图的最大匹配 什么是二分图,什么是二分图的最大匹配,这些定义我就不讲了,网上随便都找得到。二分图的最大匹配有两种求法,第一种是最大流(我在此假设读者已有网络流的知识);第二种就是我现在要讲的匈牙利算法。这个算法说白了就是最大流的算法,但是它跟据二分图匹配这个问题的特点,把最大流算法做了简化,提高了效率。匈牙利算法其实很简单,但是网上搜不到什么说得清楚的文章。所以我决定要写一下。 最大流算法的核心问题就是找增广路径(augment path)。匈牙利算法也不例外,它的基本模式就是: 初始时最大匹配为空 while 找得到增广路径 do 把增广路径加入到最大匹配中去 可见和最大流算法是一样的。但是这里的增广路径就有它一定的特殊性,下面我来分析一下。 (注:匈牙利算法虽然根本上是最大流算法,但是它不需要建网络模型,所以图中不再需要源点和汇点,仅仅是一个二分图。每条边也不需要有方向。) 图1是我给出的二分图中的一个匹配:[1,5]和[2,6]。图2就是在这个匹配的基础上找到的一条增广路径:3->6->2->5->1->4。我们借由它来描述一下二分图中的增广路径的性质: (1)有奇数条边。 (2)起点在二分图的左半边,终点在右半边。 (3)路径上的点一定是一个在左半边,一个在右半边,交替出现。(其实二分图的性质就决定了这一点,因为二分图同一边的点之间没有边相连,不要忘记哦。) (4)整条路径上没有重复的点。 (5)起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。(如图1、图2所示,[1,5]和[2,6]在图1中是两对已经配好对的点;而起点3和终点4目前还没有与其它点配对。) (6)路径上的所有第奇数条边都不在原匹配中,所有第偶数条边都出现在原匹配中。(如图1、图2所示,原有的匹配是[1,5]和[2,6],这两条配匹的边在图2给出的增广路径中分边是第2和第4条边。而增广路径的第1、3、5条边都没有出现在图1给出的匹配中。) (7)最后,也是最重要的一条,把增广路径上的所有第奇数条边加入到原匹配中

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

图像匹配的主要方法分析

图像匹配的主要方法分析 在我国的图像处理中,有很多的关键技术正在不断的发展和创新之中。这些相关技术的发展在很大程度上推动了我国图像处理事业的发展。作为图像处理过程中的关键技术,图像匹配技术正在受到越来越多的关注。文章针对图像匹配的主要方法进行详细的论述,希望通过文章的阐述和分析能够为我国的图像匹配技术的发展和创新贡献微薄力量,同时也为我国图像处理技术的发展贡献力量。 标签:图像处理;图像匹配;特征匹配;方法 在我国的图像处理技术中,图像的匹配技术不仅仅是其中的重要组成部分,同时还是很多图像技术的发展创新的技术基础。例如图像技术中的立体视觉技术;图像技术中的运动分析技术以及图像技术中的数据融合技术等。通过上述内容可以看出,在我国的图像技术中,图像匹配技术具有非常广泛的应用。随着我国的相关技术不断的创新和发展,对于图像匹配技术的要求也是越来越高。这样就要求我国的图像匹配技术有更深层次的研究和发展。我国现阶段的研究主要是针对图像匹配过程中的匹配算法进行研究,希望借助研究能够更加有效的提升在实际的工作应用中的图像质量,同时也能够在很大程度上提升图像处理的图像分别率。文章的主要陈述点是通过图像匹配技术的具体方法进行优点和缺点的分析,通过分析优点和缺点来论述我国图像处理技术中的图像匹配技术的发展方向以及改进措施。近些年出现了很多的图像匹配方法,针对现阶段的新方法以及新的研究思路我们在实际的应用过程中要有一个非常清醒的选择。文章针对这一问题主要有三个内容的阐述。第一个是图像匹配技术的算法融合;第二个是图像匹配技术中的局部特征算法;最后一个是图像匹配技术中的模型匹配具体算法。 1 现阶段在世界范围内较为经典的图像匹配技术的算法 关于现阶段在世界范围内的较为经典的图像匹配技术的算法的阐述,文章主要从两个方面进行分析。第一个方面是ABS图像匹配算法。第二个方面是归一化相互关图像匹配算法。下面进行详细的论述和分析。 (1)算法一:ABS图像匹配算法。ABS图像匹配算法最主要的原理就是要使用模板的图像以及相应的匹配图像的搜索用窗口之间的转换差别来显示两者之间的关联性。图像匹配的大小在数值上等同于模板图像的窗口滑动顺序。窗口的每一次滑动都会引起模板图像的匹配计算。现阶段ABS的算法主要有三个,如下: 在选择上述三种计算方法的过程中要根据实际情况社情相应的阀值,否则会出现很高的失误率。上述的三种算法使用范围较狭窄。只使用与等待匹配的图像在模板影像的计算。 (2)算法二:归一化相互关图像匹配算法。归一化相互关的图像匹配算法在现阶段是较为经典的算法。通常专业的称法为NC算法。此计算方法主要是采

图论二分图最大匹配算法

二分图最大匹配算法 令G = (X,*,Y)是一个二分图,其中,X = {x1,x2,...xm}, Y = {y1,y2,...yn}。令M为G中的任一个匹配。 1)讲X的所有不与M的边关联的顶点标上(@),并称所有的顶点为未被扫描的。转到2)。2)如果在上一步没有新的标记加到X的顶点上,则停止。否则转到3)。 3)当存在X被标记但未被扫描的顶点时,选择一个被标记但未被扫描的X的顶点,比如,xi,用(xi)标记Y的所有顶点,这些顶点被不属于M且尚未标记的边连到xi .现在,顶点xi 是被扫描的。如果不存在被标记但未被扫描的顶点,则转到4)。 4)如果在步骤3)没有新的标记被标到Y的顶点上,则停止。否则,转到5)。 5)当存在Y被标记但未被扫描的顶点时,选择Y的一个被标记但未被扫描的顶点,比如yi,用(yi)标记X的顶点,这些顶点被属于M且尚未标记的边连到yi.现在,顶点yi是被扫描的。如果不存在被标记但未被扫描的顶点,则转到2)。 也可以叙述为: [ZZ]匈牙利算法 关键在于匈牙利算法的递归过程中有很多重复计算的节点,而且这种重复无法避免,他不能向动态规划一样找到一个“序”将递归改为递推。 算法中的几个术语说明: 1。二部图: 如果图G=(V,E)的顶点集何V可分为两个集合X,Y,且满足X∪Y = V, X∩Y=Φ,则G称为二 部图; 图G的边集用E(G)表示,点集用V(G)表示。 2。匹配: 设M是E(G)的一个子集,如果M中任意两条边在G中均不邻接,则称M是G的一个匹配。M中的 —条边的两个端点叫做在M是配对的。 3。饱和与非饱和: 若匹配M的某条边与顶点v关联,则称M饱和顶点v,并且称v是M-饱和的,否则称v 是M-不 饱和的。 4。交互道: 若M是二分图G=(V,E)的一个匹配。设从图G中的一个顶点到另一个顶点存在一条道路,这条道路是由属于M的边和不属于M的边交替出现组成的,则称这条道路为交互道。 5。可增广道路: 若一交互道的两端点为关于M非饱和顶点时,则称这条交互道是可增广道路。显然,一条边的两端点非饱和,则这条边也是可增广道路。 6。最大匹配: 如果M是一匹配,而不存在其它匹配M',使得|M'|>|M|,则称M是最大匹配。其中|M|表

图的匹配——匈牙利算法与KM算法

图的匹配 一、什么是图的匹配 1.图的定义 无向图:无向图G 是指非空有限集合V G ,和V G 中某些元素的无序对的集合E G ,构成的二元组(V G ,E G )。V G 称为G 的顶点集,其中的元素称为G 的顶点。E G 称为G 的边集,其中的元素称为G 的边。在不混淆的情况下,有时记V =V G ,E =E G 。如果V ={v 1,…,v n },那么E 中的元素e 与V 中某两个元素构成的无序对(v i ,v j )相对应,记e =v i v j ,或e =v j v i 。在分析问题时,我们通常可以用小圆圈表示顶点,用小圆圈之的连线表示边。 二分图:设G 是一个图。如果存在V G 的一个划分X ,Y ,使得G 的任何一条边的一个端点在X 中,另一个端点在Y 中,则称G 为二分图,记作G =(X ,Y ,E)。如果G 中X 的每个顶点都与Y 的每个顶点相邻,则称G 为完全二分图。 2.匹配的相关概念 设G =(V ,E)是一个图,E M ?,如果M 不含环且任意两边都不相邻,则称M 为G 的一个匹配。G 中边数最多的匹配称为G 的最大匹配。 对于图G =(V ,E),在每条边e 上赋一个实数权w(e)。设M 是G 的一个匹配。定义∑∈=m e e w M w )()(,并称之为匹配M 的权。G 中权最大的匹配称为G 的最大权匹配。如果 对一切,e ∈E ,w(e)=1,则G 的最大权匹配就是G 的最大匹配。 设M 是图G=(V ,E)的一个匹配,v i ∈V 。若v i 与M 中的边相关联,则称v i 是M 饱和点,否则称v i 为M 非饱和点。 如果G 中每个顶点都是M 饱和点,则称M 为G 的完美匹配。 设M 是G 的一个匹配,P 是G 的一条链。如果P 的边交替地一条是M 中的边,一条不是M 中的边,则称P 为M 交错链。类似地,我们可以定义G 的交错圈。易知,G 的交错圈一定是偶圈。 一条连接两个不同的M 非饱和点的M 交错链称为M 增广链。 两个集合S 1与S 2的“异或”操作S 1⊕S 2是指集合S 1⊕S 2=(S 1∩S 2)\(S 1∪S 2) 容易看出,设M 是G 的匹配,P 是G 中的M 增广链、则M ⊕P 也是G 的匹配,而且1+=⊕M P M 。 图表 1 “异或”操作 可以证明,G 中匹配M 是最大匹配当且仅当G 中没有M 增广链。

二分图最大匹配算法的应用及Matlab实现+++

一共有RecuCal.m LockMap.m BuildMatrix.m Edmonds.m GUI1.m 这几个文件,我把它们合到一块粘上去了,你再把他们分开保存就可以了. 其中前三个文件都是为建立邻接矩阵服务的,Edmonds.m是匈牙利算法的主文件,GUI1.m只是调用Edmonds.m做个界面而已。 调用关系是GUI1.m调用Edmonds.m;Edmonds.m调用BuildMatrix.m和LockMap.m ;LockMap.m调用RecuCal.m 最后运行GUI1.m就ok了 #LockMap.m function [LMA, LMB] = LockMap(n, m) % LOCKMAP - 求解满足条件锁并设置相应的映射 % 输入参数:n 表槽数,m 表高度数。 % 输出参数:LMA,LMB 分别为二维矩阵表示自然数到满足条件锁之间的映射。 global jiA ouB ary A B mm N N = n; mm = m; jiA=0; ouB=0; A=[]; B=[]; ary = zeros(1, n); RecuCal(n); LMA=A; LMB=B; [lena, n] = size(LMA); [lenb, n] =size(LMB); if lena>lenb temp = LMA; LMA=LMB;LMB=temp; temp = lena;lena=lenb;lenb=temp; end #RecuCal.m function RecuCal(n) % RECUCAL - 递归函数 global jiA ouB ary A B mm N if n ==1 for k=1:mm % 调用递归函数时要用到的变量所以 % 设为全局 ary(1) = k; Max = max(ary); Min = min(ary); num = 0; neighbor = 0; for i=1:N num = num + (Max-ary(i))*(ary(i)-Min);

图论问题

图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。 图论与数学的关系 图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。 图论的起源 图论起源于著名的柯尼斯堡七桥问题。在柯尼斯堡的普莱格尔河上有七座桥将河中的岛及岛与河岸联结起来 问题是要从这四块陆地中任何一块开始,通过每一座桥正好一次,再回到起点。然而无数次的尝试都没有成功。欧拉在1736年解决了这个问题,他用抽像分析法将这个问题化为第一个图论问题:即把每一块陆地用一个点来代替,将每一座桥用联接相应的两个点的一条线来代替,从而相当于得到一个“图”(如下图)。 欧拉证明了这个问题没有解,并且推广了这个问题,给出了对于一个给定的图可以某种方式走遍的判定法则。这就是后

来的欧拉路径和欧拉回路。这项工作使欧拉成为图论〔及拓扑学〕的创始人。 汉密尔顿的游戏与图论 1859年,英国数学家汉密尔顿发明了一种游戏:用一个规则的实心十二面体,它的20个顶点标出世界著名的20个城市,要求游戏者找一条沿着各边通过每个顶点刚好一次的闭回路,即“绕行世界”。用图论的语言来说,游戏的目的是在十二面体的图中找出一个生成圈。这个生成圈后来被称为汉密尔顿回路。这个问题后来就叫做汉密尔顿问题。由于运筹学、计算机科学和编码理论中的很多问题都可以化为汉密尔顿问题,从而引起广泛的注意和研究。 四色猜想 在图论的历史中,还有一个最著名的问题--四色猜想。这个猜想说,在一个平面或球面上的任何地图能够只用四种颜色来着色,使得没有两个相邻的国家有相同的颜色。每个国家必须由一个单连通域构成,而两个国家相邻是指它们有一段公共的边界,而不仅仅只有一个公共点。这一问题最早于1852年由Francis Guthrie提出,最早的文字记载则现于德摩根于同一年写给哈密顿的信上。包括凯莱、肯普等在内的许多人都曾给出过错误的证明。泰特(Tait)、希伍德(Heawood)、拉姆齐和哈德维格(Hadwiger)对此问题的研究与推广引发了对嵌入具有不同亏格的曲面的图的着色问题的研究。一百多年后,四色问题仍未解决。1969年,Heinrich Heesch发表了一

maab图论程序算法大全

图论算法m a t l a b实现求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 0 11 0 17 0 0 0 0 0 8 0 0 0 0 0]; %弧容量 b=[0 4 1 0 0 0 0 0 6 1 0 2 0 3 0 0 0 0 0 2 0 0 0 0 0]; %弧上单位流量的费用 wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值 for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流 while(1)

for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图 for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路 for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;e nd if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 向赋权图中不会含负权回路, 所以不会出现k=n dvt=Inf;t=n; %进入调整过程, dvt 表示调整量 while(1) %计算调整量 if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量 elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量

图论及其算法

《图论及其算法》 --最短路问题 学院:通信学院 姓名:周旋 学号: S110131133 指导老师:陈六新

摘要 图论是数学的一个分支,它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这些图形通常用来描述某些事物之间的特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有的关系。通过对《图论及其应用》中最短路问题的深入学习,本文利用Dijkstra算法来解决日常生活中寻找最短路的问题。同时也是对本学期学习知识的巩固。 关键词:最短路径 Dijkstra算法迭代

Abstract Graph theory is a branch of mathematics, it studies the object of picture. Graph theory graph is given by the number of points and lines connecting the two points of the graphic form. These graphics are often used to describe a specific relationship between certain things. And with the point on behalf of things, with the line connecting the two points that have a corresponding relationship between two things. Through the "Graph Theory and Its Applications," in-depth study of the shortest path problem. In this paper, we use The Dijkstra's algorithm not only to solve everyday life to find the shortest path problem, but also for the consolidation of the semester to learn the knowledge. Keyword: shortest path Dijkstra's algorithm Iteration

图论经典问题

常见问题: 1、图论的历史 图论以图为研究对象的数学分支。图论中的图指的是一些点以及连接这些点的线的总体。通常用点代表事物,用连接两点的线代表事物间的关系。图论则是研究事物对象在上述表示法中具有的特征与性质的学科。 在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。例如,国家用点表示,有外交关系的国家用线连接代表这两个国家的点,于是世界各国之间的外交关系就被一个图形描述出来了。另外我们常用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。 事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。由此经数学抽象产生了图的概念。研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。 图论的产生和发展经历了二百多年的历史,大体上可分为三个阶段: 第一阶段是从1736年到19世纪中叶。当时的图论问题是盛行的迷宫问题和游戏问题。最有代表性的工作是著名数学家L.Euler于1736年解决的哥尼斯堡七桥问题(Konigsberg Seven Bridges Problem)。 东普鲁士的哥尼斯堡城(现今是俄罗斯的加里宁格勒,在波罗的海南岸)位于普雷格尔(Pregel)河的两岸,河中有一个岛,于是城市被河的分支和岛分成了四个部分,各部分通过7座桥彼此相通。如同德国其他城市的居民一样,该城的居民喜欢在星期日绕城散步。于是产生了这样一个问题:从四部分陆地任一块出发,按什么样的路线能做到每座桥经过一次且仅一次返回出发点。这就是有名的哥尼斯堡七桥问题。 哥尼斯堡七桥问题看起来不复杂,因此立刻吸引所有人的注意,但是实际上很难解决。 瑞士数学家(Leonhard Euler)在1736年发表的“哥尼斯堡七桥问题”的文章中解决了这个问题。这篇论文被公认为是图论历史上的第一篇论文,Euler也因此被誉为图论之父。 欧拉把七桥问题抽象成数学问题---一笔画问题,并给出一笔画问题的判别准则,从而判定七桥问题不存在解。Euler是这样解决这个问题的:将四块陆地表示成四个点,桥看成是对应结点之间的连线,则哥尼斯堡七桥问题就变成了:从A,B,C,D任一点出发,通过每边一次且仅一次返回原出发点的路线(回路)是否存在?Euler证明这样的回路是不存在的。 第二阶段是从19世纪中叶到1936年。图论主要研究一些游戏问题:迷宫问题、博弈问题、棋盘上马的行走线路问题。一些图论中的著名问题如四色问题(1852年)和Hamilton环游世界问题(1856年)也大量出现。同时出现了以图为工具去解决其它领域中一些问题的成果。1847年德国的克希霍夫(G.R.Kirchoff)将树

相关文档
最新文档