二分图最大匹配算法的应用及Matlab实现+++

二分图最大匹配算法的应用及Matlab实现+++
二分图最大匹配算法的应用及Matlab实现+++

一共有RecuCal.m LockMap.m BuildMatrix.m Edmonds.m GUI1.m 这几个文件,我把它们合到一块粘上去了,你再把他们分开保存就可以了.

其中前三个文件都是为建立邻接矩阵服务的,Edmonds.m是匈牙利算法的主文件,GUI1.m只是调用Edmonds.m做个界面而已。

调用关系是GUI1.m调用Edmonds.m;Edmonds.m调用BuildMatrix.m和LockMap.m ;LockMap.m调用RecuCal.m

最后运行GUI1.m就ok了

#LockMap.m

function [LMA, LMB] = LockMap(n, m)

% LOCKMAP - 求解满足条件锁并设置相应的映射

% 输入参数:n 表槽数,m 表高度数。

% 输出参数:LMA,LMB 分别为二维矩阵表示自然数到满足条件锁之间的映射。

global jiA ouB ary A B mm N

N = n; mm = m;

jiA=0; ouB=0;

A=[]; B=[];

ary = zeros(1, n);

RecuCal(n);

LMA=A; LMB=B;

[lena, n] = size(LMA);

[lenb, n] =size(LMB);

if lena>lenb

temp = LMA; LMA=LMB;LMB=temp;

temp = lena;lena=lenb;lenb=temp;

end

#RecuCal.m

function RecuCal(n)

% RECUCAL - 递归函数

global jiA ouB ary A B mm N

if n ==1

for k=1:mm

% 调用递归函数时要用到的变量所以

% 设为全局

ary(1) = k;

Max = max(ary); Min = min(ary);

num = 0; neighbor = 0;

for i=1:N

num = num + (Max-ary(i))*(ary(i)-Min);

if (i~=N)

neighbor = max(neighbor, abs(ary(i)-ary(i+1)));

end

end

if (neighbor > mm-1.5)&&(num > 0.5)

if mod(sum(ary), 2)

% 奇数,属于 A 类

jiA = jiA+1;

A(jiA,:) = ary;

else

% 偶数,属于 B 类

ouB = ouB+1;

B(ouB,:) = ary;

end

end

end

else

for k=1:mm

ary(n) = k;

RecuCal(n-1);

end

end

#BuildMatrix.m

function AB = BuildMatrix(LMA, LMB)

% BUILDMATRIX - 建立邻接矩阵,若 i 与 j 之间可以互开则 AB(i,j)=1,否则为0。AB = [];

[lena, n] = size(LMA);

[lenb, n] =size(LMB);

for i = 1:lena

for j=1:lenb

tmp = 0;

for k=1:n

tmp = tmp + abs(LMA(i,k)-LMB(j,k));

end

if tmp == 1

AB(i, j)=1;

end

end

end

#Edmonds.m

function str = Edmonds(n, m)

% EDMONDS - Edmonds 算法寻找完美匹配

str = [];

[LMA, LMB] = LockMap(n, m);

AB = BuildMatrix(LMA, LMB);

lena = length(LMA);

lenb = length(LMB);

if lena==0

disp('其中一个分组为空,

无法匹配'); %当 n=m=3 时只有偶数组无奇数组,不能完成

匹配

return;

end

MatA = zeros(1, lena);

MatB = zeros(1, lenb);

X = MatA; Y=MatB; Z=Y;

NumNoMat = 0;

% 无法匹配的点的个数

% 最初匹配,只有一个匹配

j = find(AB(1,:), 1);

MatA(1)=j; MatB(j)=1;

while length(find(MatA==0)) ~= 0

% 存在不匹配的元素

J = find(MatA==0); i = J(1);

% 第 i 个元素未被匹配

init = i; X(i)=0;

J = find(AB(i,:));

% J 为所有与 i 相邻结点

Y(J) = i; j=J(1);

while ~isempty(find(Y~=Z))

if MatB(j) ~= 0

% j 是匹配点

Z(j) = Y(j);

i = MatB(j);

X(i)=j;

J = find(AB(i,:));

Y(J)=i;

J = find(Y);

JJ = find(Z);

J = setxor(intersect(J, JJ), J);

j=J(1);

else

% j 不是匹配点

i = Y(j);

MatA(i) = j;

MatB(j) = i;

while X(i)

j = X(i);

i = Z(j);

MatA(i) = j;

MatB(j) = i;

end

break;

end

end

% 如果 Y==Z 则表明该点没有与之相应的匹配,即不存在完美匹配,在 MatA 中标 % 记为-1。

if isempty(find(Y~=Z, 1))

NumNoMat = NumNoMat + 1;

MatA(init) = -1;

end

X(1:lena)=0; Y(1:lenb)=0; Z=Y;

end

total = 0;

for i=1:lena

k = MatA(i);

if k<=0continue; end

% k<=0时表明匹配不存在

stra = ''; strb = '';

for j=1:n

stra = [stra, num2str(LMA(i, j)), ''];

strb = [strb, num2str(LMB(k, j)), ''];

end

str = [str, stra, '------ ', strb, 10];

total = total + 1;

end

str = [str, '匹配个数有:', num2str(total)];

#GUI1.m

function varargout = GUI1(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name',

mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @GUI1_OpeningFcn, ...

'gui_OutputFcn', @GUI1_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before GUI1 is made visible.

function GUI1_OpeningFcn(hObject, eventdata, handles, varargin) handles.output = hObject;

guidata(hObject, handles);

function varargout = GUI1_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output;

function pushbutton1_Callback(hObject, eventdata, handles)

a = get(handles.edit1, 'String');

b = get(handles.edit2, 'String');

str = Edmonds(str2num(a), str2num(b));

set(handles.edit4, 'String', str);

guidata(hObject, handles);

function edit1_Callback(hObject, eventdata, handles)

input = str2num(get(hObject, 'String'));

guidata(hObject, handles);

function edit1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit2_Callback(hObject, eventdata, handles)

input = str2num(get(hObject, 'String'));

guidata(hObject, handles);

function edit2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function slider1_Callback(hObject, eventdata, handles) function slider1_CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function text_result_Callback(hObject, eventdata, handles) function text_result_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4_Callback(hObject, eventdata, handles) function edit4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function pushbutton2_Callback(hObject, eventdata, handles) set(handles.edit4, 'String', '');

set(handles.edit1, 'String', '');

set(handles.edit2, 'String', '');

Ku二分图最大权匹配(KM算法)hn

Maigo的KM算法讲解(的确精彩) 顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立。KM 算法的正确性基于以下定理: * 若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。 这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。 初始时为了使A[i]+B[j]>=w[i,j]恒成立,令A[i]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。 我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:

两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。 两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。 X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。 X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。 现在的问题就是求d值了。为了使A[i]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于min{A[i]+B[j]-w[i,j]|Xi在交错树中,Yi不在交错树中}。 以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为 O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的slack值都减去d。

二分图匹配(匈牙利算法和KM算法)

前言: 高中时候老师讲这个就听得迷迷糊糊,有一晚花了通宵看KM的Pascal代码,大概知道过程了,后来老师说不是重点,所以忘的差不多了。都知道二分图匹配是个难点,我这周花了些时间研究了一下这两个算法,总结一下 1.基本概念 M代表匹配集合 未盖点:不与任何一条属于M的边相连的点 交错轨:属于M的边与不属于M的边交替出现的轨(链) 可增广轨:两端点是未盖点的交错轨 判断M是最大匹配的标准:M中不存在可增广轨 2.最大匹配,匈牙利算法 时间复杂度:O(|V||E|) 原理: 寻找M的可增广轨P,P包含2k+1条边,其中k条属于M,k+1条不属于M。修改M 为M&P。即这条轨进行与M进行对称差分运算。 所谓对称差分运算,就是比如X和Y都是集合,X&Y=(X并Y)-(x交Y) 有一个定理是:M&P的边数是|M|+1,因此对称差分运算扩大了M 实现: 关于这个实现,有DFS和BFS两种方法。先列出DFS的代码,带注释。这段代码来自中山大学的教材

核心部分在dfs(x),来寻找可增广轨。如果找到的话,在Hungarian()中,最大匹配数加一。这是用了刚才提到的定理。大家可以想想初始状态是什么,又是如何变化的 view plaincopy to clipboardprint?

第二种方法BFS,来自我的学长cnhawk 核心步骤还是寻找可增广链,过程是: 1.从左的一个未匹配点开始,把所有她相连的点加入队列 2.如果在右边找到一个未匹配点,则找到可增广链 3.如果在右边找到的是一个匹配的点,则看它是从左边哪个点匹配而来的,将那个点出发的所有右边点加入队列 这么说还是不容易明白,看代码吧

基于特征的图像匹配算法毕业设计论文(含源代码)

诚信声明 本人声明: 我所呈交的本科毕业设计论文是本人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。本人完全意识到本声明的法律结果由本人承担。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 本人签名:日期:2010 年05 月20日

毕业设计(论文)任务书 设计(论文)题目: 学院:专业:班级: 学生指导教师(含职称):专业负责人: 1.设计(论文)的主要任务及目标 (1) 了解图象匹配技术的发展和应用情况,尤其是基于特征的图象匹配技术的发展和应用。 (2) 学习并掌握图像匹配方法,按要求完成算法 2.设计(论文)的基本要求和内容 (1)查阅相关中、英文文献,完成5000汉字的与设计内容有关的英文资料的翻译。(2)查阅15篇以上参考文献,其中至少5篇为外文文献,对目前国内外图象匹配技术的发展和应用进行全面综述。 (3)学习图象匹配算法,尤其是基于特征的图象匹配算法。 (4)实现并分析至少两种基于特征的图象匹配算法,并分析算法性能。 3.主要参考文献 [1]谭磊, 张桦, 薛彦斌.一种基于特征点的图像匹配算法[J].天津理工大学报,2006, 22(6),66-69. [2]甘进,王晓丹,权文.基于特征点的快速匹配算法[J].电光与控制,2009,16(2), 65-66. [3]王军,张明柱.图像匹配算法的研究进展[J].大气与环境光学学报,2007,2(1), 12-15.

算法学习:图论之二分图的最优匹配(KM算法)

二分图的最优匹配(KM算法) KM算法用来解决最大权匹配问题:在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。 基本原理 该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。 KM算法的正确性基于以下定理: 若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。 首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是 Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。 这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。 初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。 我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现: 1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。 2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。 3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。 4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。(针对之后例子中x1->y4这条边) 现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于: Min{A[i]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。 改进 以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[ i ]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y 顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的不在交错树中的Y顶点的slack值都减去d(因为:d的定义为 min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y? T }

图像匹配搜索算法

本文基于相关性分析来实现图像匹配 第一步:读取图像。 分别读取以下两幅相似的图片,显示效果如下: 第二步:选择一副图像的子区域。用户可以通过鼠标选择需要截取的图像部分,用于匹配。随机选取图片的一块区域,如下图:

第三步:使用相关性分析两幅图像 采用协方差的方式计算相关系数,分析图片的相似性。 1.协方差与相关系数的概念 对于二维随机变量(,)X Y ,除了关心它的各个分量的数学期望和方差外,还需要知道这两个分量之间的相互关系,这种关系无法从各个分量的期望和方差来说明,这就需要引进描述这两个分量之间相互关系的数字特征——协方差及相关系数。 若X Y 与相互独立,则()( )0 Y E X EX Y EY σ--???? =≠;若()()0E X EX Y EY --≠????,则表 示X 与Y 不独立,X 与Y 之间存在着一定的关系 设 (,)X Y 是二维随机变量, 则称()()E X EX Y EY --????为X 与Y 的协方差(Covariance ),记为 ()cov ,X Y 或XY σ,即 ()()()cov ,XY X Y E X EX Y EY σ==--???? 若 0X σ≠ 且0Y σ=≠,则称 XY XY X Y σρσσ== 为X 与Y 的相关系数(Correlation Coefficient )。()c o v ,X Y 是 有量纲的量,而XY ρ则是无量纲的量.协方差常用下列公式计算

()() =-? cov,X Y E XY EX EY 2.用全搜索和协方差计算截取图片与另外一幅图片的各点的相似度。c=normxcorr2(sub_I1(:,:,1),I2(:,:,1)); 第四步:找到整幅图像的偏移。 [max_c,imax]=max(abs(c(:))); [ypeak,xpeak]=ind2sub(size(c),imax(1)); [m,n]=size(sub_I1); xbegin=xpeak-n+1; ybegin=ypeak-m+1; xend=xpeak; yend=ypeak; 从原图像提取匹配到的图像 extracted_I1=I2(ybegin:yend,xbegin:xend,:); 第五步:显示匹配结果。 相关性匹配图: 找出峰值即最相似区域的中心

二分图匹配

二分图匹配 1.最大匹配(hdu1068) Girls and Boys Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6410 Accepted Submission(s): 2888 Problem Description the second year of the university somebody started a study on the romantic relations between the students. The relation “romantically involved” is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been “romantically involved”. The result of the program is the number of students in such a set. The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description: the number of students the description of each student, in the following format student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ... or student_identifier:(0) The student_identifier is an integer number between 0 and n-1, for n subjects. For each given data set, the program should write to standard output a line containing the result. Sample Input 7 0: (3) 4 5 6 1: (2) 4 6 2: (0) 3: (0) 4: (2) 0 1 5: (1) 0 6: (2) 0 1 3

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

用匈牙利算法求二分图的最大匹配

用匈牙利算法求二分图的最大匹配 什么是二分图,什么是二分图的最大匹配,这些定义我就不讲了,网上随便都找得到。二分图的最大匹配有两种求法,第一种是最大流(我在此假设读者已有网络流的知识);第二种就是我现在要讲的匈牙利算法。这个算法说白了就是最大流的算法,但是它跟据二分图匹配这个问题的特点,把最大流算法做了简化,提高了效率。匈牙利算法其实很简单,但是网上搜不到什么说得清楚的文章。所以我决定要写一下。 最大流算法的核心问题就是找增广路径(augment path)。匈牙利算法也不例外,它的基本模式就是: 初始时最大匹配为空 while 找得到增广路径 do 把增广路径加入到最大匹配中去 可见和最大流算法是一样的。但是这里的增广路径就有它一定的特殊性,下面我来分析一下。 (注:匈牙利算法虽然根本上是最大流算法,但是它不需要建网络模型,所以图中不再需要源点和汇点,仅仅是一个二分图。每条边也不需要有方向。) 图1是我给出的二分图中的一个匹配:[1,5]和[2,6]。图2就是在这个匹配的基础上找到的一条增广路径:3->6->2->5->1->4。我们借由它来描述一下二分图中的增广路径的性质: (1)有奇数条边。 (2)起点在二分图的左半边,终点在右半边。 (3)路径上的点一定是一个在左半边,一个在右半边,交替出现。(其实二分图的性质就决定了这一点,因为二分图同一边的点之间没有边相连,不要忘记哦。) (4)整条路径上没有重复的点。 (5)起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。(如图1、图2所示,[1,5]和[2,6]在图1中是两对已经配好对的点;而起点3和终点4目前还没有与其它点配对。) (6)路径上的所有第奇数条边都不在原匹配中,所有第偶数条边都出现在原匹配中。(如图1、图2所示,原有的匹配是[1,5]和[2,6],这两条配匹的边在图2给出的增广路径中分边是第2和第4条边。而增广路径的第1、3、5条边都没有出现在图1给出的匹配中。) (7)最后,也是最重要的一条,把增广路径上的所有第奇数条边加入到原匹配中

图像匹配的主要方法分析

图像匹配的主要方法分析 在我国的图像处理中,有很多的关键技术正在不断的发展和创新之中。这些相关技术的发展在很大程度上推动了我国图像处理事业的发展。作为图像处理过程中的关键技术,图像匹配技术正在受到越来越多的关注。文章针对图像匹配的主要方法进行详细的论述,希望通过文章的阐述和分析能够为我国的图像匹配技术的发展和创新贡献微薄力量,同时也为我国图像处理技术的发展贡献力量。 标签:图像处理;图像匹配;特征匹配;方法 在我国的图像处理技术中,图像的匹配技术不仅仅是其中的重要组成部分,同时还是很多图像技术的发展创新的技术基础。例如图像技术中的立体视觉技术;图像技术中的运动分析技术以及图像技术中的数据融合技术等。通过上述内容可以看出,在我国的图像技术中,图像匹配技术具有非常广泛的应用。随着我国的相关技术不断的创新和发展,对于图像匹配技术的要求也是越来越高。这样就要求我国的图像匹配技术有更深层次的研究和发展。我国现阶段的研究主要是针对图像匹配过程中的匹配算法进行研究,希望借助研究能够更加有效的提升在实际的工作应用中的图像质量,同时也能够在很大程度上提升图像处理的图像分别率。文章的主要陈述点是通过图像匹配技术的具体方法进行优点和缺点的分析,通过分析优点和缺点来论述我国图像处理技术中的图像匹配技术的发展方向以及改进措施。近些年出现了很多的图像匹配方法,针对现阶段的新方法以及新的研究思路我们在实际的应用过程中要有一个非常清醒的选择。文章针对这一问题主要有三个内容的阐述。第一个是图像匹配技术的算法融合;第二个是图像匹配技术中的局部特征算法;最后一个是图像匹配技术中的模型匹配具体算法。 1 现阶段在世界范围内较为经典的图像匹配技术的算法 关于现阶段在世界范围内的较为经典的图像匹配技术的算法的阐述,文章主要从两个方面进行分析。第一个方面是ABS图像匹配算法。第二个方面是归一化相互关图像匹配算法。下面进行详细的论述和分析。 (1)算法一:ABS图像匹配算法。ABS图像匹配算法最主要的原理就是要使用模板的图像以及相应的匹配图像的搜索用窗口之间的转换差别来显示两者之间的关联性。图像匹配的大小在数值上等同于模板图像的窗口滑动顺序。窗口的每一次滑动都会引起模板图像的匹配计算。现阶段ABS的算法主要有三个,如下: 在选择上述三种计算方法的过程中要根据实际情况社情相应的阀值,否则会出现很高的失误率。上述的三种算法使用范围较狭窄。只使用与等待匹配的图像在模板影像的计算。 (2)算法二:归一化相互关图像匹配算法。归一化相互关的图像匹配算法在现阶段是较为经典的算法。通常专业的称法为NC算法。此计算方法主要是采

图论二分图最大匹配算法

二分图最大匹配算法 令G = (X,*,Y)是一个二分图,其中,X = {x1,x2,...xm}, Y = {y1,y2,...yn}。令M为G中的任一个匹配。 1)讲X的所有不与M的边关联的顶点标上(@),并称所有的顶点为未被扫描的。转到2)。2)如果在上一步没有新的标记加到X的顶点上,则停止。否则转到3)。 3)当存在X被标记但未被扫描的顶点时,选择一个被标记但未被扫描的X的顶点,比如,xi,用(xi)标记Y的所有顶点,这些顶点被不属于M且尚未标记的边连到xi .现在,顶点xi 是被扫描的。如果不存在被标记但未被扫描的顶点,则转到4)。 4)如果在步骤3)没有新的标记被标到Y的顶点上,则停止。否则,转到5)。 5)当存在Y被标记但未被扫描的顶点时,选择Y的一个被标记但未被扫描的顶点,比如yi,用(yi)标记X的顶点,这些顶点被属于M且尚未标记的边连到yi.现在,顶点yi是被扫描的。如果不存在被标记但未被扫描的顶点,则转到2)。 也可以叙述为: [ZZ]匈牙利算法 关键在于匈牙利算法的递归过程中有很多重复计算的节点,而且这种重复无法避免,他不能向动态规划一样找到一个“序”将递归改为递推。 算法中的几个术语说明: 1。二部图: 如果图G=(V,E)的顶点集何V可分为两个集合X,Y,且满足X∪Y = V, X∩Y=Φ,则G称为二 部图; 图G的边集用E(G)表示,点集用V(G)表示。 2。匹配: 设M是E(G)的一个子集,如果M中任意两条边在G中均不邻接,则称M是G的一个匹配。M中的 —条边的两个端点叫做在M是配对的。 3。饱和与非饱和: 若匹配M的某条边与顶点v关联,则称M饱和顶点v,并且称v是M-饱和的,否则称v 是M-不 饱和的。 4。交互道: 若M是二分图G=(V,E)的一个匹配。设从图G中的一个顶点到另一个顶点存在一条道路,这条道路是由属于M的边和不属于M的边交替出现组成的,则称这条道路为交互道。 5。可增广道路: 若一交互道的两端点为关于M非饱和顶点时,则称这条交互道是可增广道路。显然,一条边的两端点非饱和,则这条边也是可增广道路。 6。最大匹配: 如果M是一匹配,而不存在其它匹配M',使得|M'|>|M|,则称M是最大匹配。其中|M|表

图的匹配——匈牙利算法与KM算法

图的匹配 一、什么是图的匹配 1.图的定义 无向图:无向图G 是指非空有限集合V G ,和V G 中某些元素的无序对的集合E G ,构成的二元组(V G ,E G )。V G 称为G 的顶点集,其中的元素称为G 的顶点。E G 称为G 的边集,其中的元素称为G 的边。在不混淆的情况下,有时记V =V G ,E =E G 。如果V ={v 1,…,v n },那么E 中的元素e 与V 中某两个元素构成的无序对(v i ,v j )相对应,记e =v i v j ,或e =v j v i 。在分析问题时,我们通常可以用小圆圈表示顶点,用小圆圈之的连线表示边。 二分图:设G 是一个图。如果存在V G 的一个划分X ,Y ,使得G 的任何一条边的一个端点在X 中,另一个端点在Y 中,则称G 为二分图,记作G =(X ,Y ,E)。如果G 中X 的每个顶点都与Y 的每个顶点相邻,则称G 为完全二分图。 2.匹配的相关概念 设G =(V ,E)是一个图,E M ?,如果M 不含环且任意两边都不相邻,则称M 为G 的一个匹配。G 中边数最多的匹配称为G 的最大匹配。 对于图G =(V ,E),在每条边e 上赋一个实数权w(e)。设M 是G 的一个匹配。定义∑∈=m e e w M w )()(,并称之为匹配M 的权。G 中权最大的匹配称为G 的最大权匹配。如果 对一切,e ∈E ,w(e)=1,则G 的最大权匹配就是G 的最大匹配。 设M 是图G=(V ,E)的一个匹配,v i ∈V 。若v i 与M 中的边相关联,则称v i 是M 饱和点,否则称v i 为M 非饱和点。 如果G 中每个顶点都是M 饱和点,则称M 为G 的完美匹配。 设M 是G 的一个匹配,P 是G 的一条链。如果P 的边交替地一条是M 中的边,一条不是M 中的边,则称P 为M 交错链。类似地,我们可以定义G 的交错圈。易知,G 的交错圈一定是偶圈。 一条连接两个不同的M 非饱和点的M 交错链称为M 增广链。 两个集合S 1与S 2的“异或”操作S 1⊕S 2是指集合S 1⊕S 2=(S 1∩S 2)\(S 1∪S 2) 容易看出,设M 是G 的匹配,P 是G 中的M 增广链、则M ⊕P 也是G 的匹配,而且1+=⊕M P M 。 图表 1 “异或”操作 可以证明,G 中匹配M 是最大匹配当且仅当G 中没有M 增广链。

二分图最大匹配算法的应用及Matlab实现+++

一共有RecuCal.m LockMap.m BuildMatrix.m Edmonds.m GUI1.m 这几个文件,我把它们合到一块粘上去了,你再把他们分开保存就可以了. 其中前三个文件都是为建立邻接矩阵服务的,Edmonds.m是匈牙利算法的主文件,GUI1.m只是调用Edmonds.m做个界面而已。 调用关系是GUI1.m调用Edmonds.m;Edmonds.m调用BuildMatrix.m和LockMap.m ;LockMap.m调用RecuCal.m 最后运行GUI1.m就ok了 #LockMap.m function [LMA, LMB] = LockMap(n, m) % LOCKMAP - 求解满足条件锁并设置相应的映射 % 输入参数:n 表槽数,m 表高度数。 % 输出参数:LMA,LMB 分别为二维矩阵表示自然数到满足条件锁之间的映射。 global jiA ouB ary A B mm N N = n; mm = m; jiA=0; ouB=0; A=[]; B=[]; ary = zeros(1, n); RecuCal(n); LMA=A; LMB=B; [lena, n] = size(LMA); [lenb, n] =size(LMB); if lena>lenb temp = LMA; LMA=LMB;LMB=temp; temp = lena;lena=lenb;lenb=temp; end #RecuCal.m function RecuCal(n) % RECUCAL - 递归函数 global jiA ouB ary A B mm N if n ==1 for k=1:mm % 调用递归函数时要用到的变量所以 % 设为全局 ary(1) = k; Max = max(ary); Min = min(ary); num = 0; neighbor = 0; for i=1:N num = num + (Max-ary(i))*(ary(i)-Min);

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

计算方法及其MATLAB实现第二章作业

作者:夏云木子 1、 >> syms re(x) re(y) re(z) >> input('计算相对误差:'),re(x)=10/1991,re(y)=0.0001/1.991,re(y)=0.0000001/0.0001991 所以可知re(y)最小,即y精度最高 2、 >> format short,A=sqrt(2) >> format short e,B=sqrt(2) >> format short g,C=sqrt(2)

>> format long,D=sqrt(2) >> format long e,E=sqrt(2) >> format long g,F=sqrt(2) >> format bank,H=sqrt(2) >> format hex,I=sqrt(2) >> format +,J=sqrt(2) >> format,K=sqrt(2)

3、 >> syms A >> A=[sqrt(3) exp(7);sin(5) log(4)];vpa(pi*A,6) 4、1/6251-1/6252=1/6251*6252 5、(1)1/(1+3x)-(1-x)/(1+x)=x*(3*x-1)/[(1+3*x)*(1+x)] (2) sqrt(x+1/x)-sqrt(x-1/x)=2/x/[sqrt(x-1/x)+sqrt(x+1/x)] (3) log10(x1)-log(x2)=log10(x1/x2) (4) [1-cos(2*x)]/x =x^2/factorial(2)-x^4/factorial(4)+x^6/factorial(6)-…

电话拨号数图的匹配算法研究和高效实现

电话拨号数图的匹配算法研究和高效实现 摘要:该文首先对拨号数图匹配的规则语法进行了分类讲解,通过对规则语法的分析,给出了数图匹配的算法分析,并以伪代码的形式进行了算法实现。整个算法过程包含规则预处理和拨号匹配两个过程,该文对算法实现的流程图进行了详细的描述。 关键词:voip;数图(digitmap);超越匹配(over matched)中图分类号:tp312 文献标识码:a 文章编号:1009-3044(2013)04-0807-04 research & efficient implementation of digitmap matching algorithm wang xiao-lan (electromechanical department, suzhou institute of trade&commerce, suzhou 215009, china) abstract: the digitmap matching rules was classified and discussed in this paper. by analyzing the rules, the digitmap matching algorithm is illustrated and implemented in the form of pseudo-code. the whole process of algorithm holds two phases: rules preprocessing and digit matching. further more, this paper described in details the flow chart of implementation of the algorithm. key words: voip; digitmap; over matched 网络技术与多媒体技术的发展,促进了通信技术的综合化、数字

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

Ku二分图最大权匹配(KM算法)hn

Kuhn-Munkres 算法
Maigo 的 KM 算法讲解(的确精彩)
KM 算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转 化为求完备匹配的问题的。设顶点 Xi 的顶标为 A[i],
顶点 Yi 的顶标为 B[i],顶点 Xi 与 Yj 之间的边权为 w[i,j]。在算法执行过程中 的任一时刻,对于任一条边(i,j), A[i]+B[j]>=w[i,j]始终成立。KM 算法的正确 性基于以下定理: * 若由二分图中所有满足 A[i]+B[j]=w[i,j]的边(i,j)构成的子图 (称做相等子 图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。 这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相 等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相 等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配 一定是二分图的最大权匹配。 初始时为了使 A[i]+B[j]>=w[i,j]恒成立,令 A[i]为所有与顶点 Xi 关联的边 的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改 顶标以使扩大相等子图,直到相等子图具有完备匹配为止。 我们求当前相等子图的完备匹配失败了,是因为对于某个 X 顶点,我们 找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点 全部是 X 顶点。现在我们把交错树中 X 顶点的顶标全都减小某个值 d,Y 顶 点的顶标全都增加同一个值 d,那么我们会发现:

两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于 相等子图,现在仍属于相等子图。 两端都不在交错树中的边(i,j),A[i]和 B[j]都没有变化。也就是说,它原来属于 (或不属于)相等子图,现在仍属于(或不属于)相等子图。 X 端不在交错树中,Y 端在交错树中的边(i,j),它的 A[i]+B[j]的值有所增大。 它原来不属于相等子图,现在仍不属于相等子图。 X 端在交错树中,Y 端不在交错树中的边(i,j),它的 A[i]+B[j]的值有所减小。 也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子 图得到了扩大。 现在的问题就是求 d 值了。为了使 A[i]+B[j]>=w[i,j]始终成立,且至少有 一条边进入相等子图,d 应该等于 min{A[i]+B[j]-w[i,j]|Xi 在交错树中,Yi 不在 交错树中}。 以上就是 KM 算法的基本思路。但是朴素的实现方法,时间复杂度为 O(n4)——需要找 O(n)次增广路,每次增广最多需要修改 O(n)次顶标,每次 修改顶标时由于要枚举边来求 d 值,复杂度为 O(n2)。实际上 KM 算法的复 杂度是可以做到 O(n3)的。我们给每个 Y 顶点一个“松弛量”函数 slack,每次 开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如 果它不在相等子图中, 则让 slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。 这样, 在修改顶标时,取所有不在交错树中的 Y 顶点的 slack 值中的最小值作为 d 值即可。但还要注意一点:修改顶标后,要把所有的 slack 值都减去 d。

相关文档
最新文档