线性谐振子相图研究

线性谐振子相图研究
线性谐振子相图研究

文献综述

题目:线性谐振子相图研究

姓名:

学号:

系别:物理与电子信息工程系专业:物理学

年级:

指导教师:

2009年2月7 日

文献综述

一、前言

线性谐振子是量子力学中可以精确求解的有限几个事例之一[1],其中最简单的线性谐振子是简谐振子。自然界中任何一个力学系统,只要某一个物理量在其稳定平衡点附近作微小振动,便可以用简谐振子模型来描述,例如:复摆的振动、分子的振动、晶格的振动、原子核表面振动以及辐射场的振动等。在选择适当的坐标系之后,复杂的运动往往可以分解成若干彼此独立的一维简谐振动(simple harmonic vibration )。简谐振动作为一种最简单最基本的振动,往往还是复杂运动的初步近似,是研究振动的基础。因此研究它在理论上和应用上都有重大的意义。

其中从相空间的角度来研究振动系统的力学问题如今已经成为一个研究趋势。因为相图里包含着完整的力学系统的全部信息,无须去解复杂的运动方程[2]。计算机技术软硬件的飞速发展,为此研究趋势提供了现实条件。

本论文从简谐振子的基本定义出发,在Fortran 90条件下进行数值模拟并在Origin75 软件下获得简谐振子的相图。

二、主体

2.1简谐振动的定义

定义一: 物体只在弹性力或准弹性 (线性回复力)作用下发生的运动,即动力学方程为

的运动为简谐振动[2]。

定义二: 在无外来强迫力作用下, 物体相对于平衡点的位移随时间按余弦(或正弦)规律变化即 则称物体作简谐振动式即简谐振动的表达式[3]。 —振幅;

—角频率;

—相位;

—初相位。位移随时间的变化曲线称为振动曲线。

广义定义:某个物理量随时间的变化是按正弦或余弦规律,则可称该物理量做简谐动,可用

表示 。自然界中任何一个力学系统中,只要某一个物理量在其稳定

平衡点附近作微小振动,便可以用这种简谐振子模型来描述,例如:复摆的振动、分子的振动、晶格的振动,原子核表面振动、辐射场的振动以及电磁场振动等等。

2.2简谐振动的基本特征及动力学特征

简谐振动位移随时间的变化 cos()x A t ωφ

=+2

2

2

d d x

x o t

ω

+=()cos()x t A t ωφ=+()cos()x t A t ωφ=+

物体作简谐振动时,速度为:

物体作简谐振动时,加速度为:

可见物体做简谐振动时,其速度、加速度都以同样的角频率作简谐振动,相位依次超前π/2。根据牛顿第二定律F

m a

= ,得

2

2

cos()F m a m A t m x

ωωφω==-+=-

力与位移大小成正比,符号相反,这样的力就是线性回复力。这是简谐振动的动力学特征。

2.3相空间和相迹的概念 H q P α

α

?

?=

?(1,2,3)s α=

H p q αα

??=-

?(1,2,3)s α=

以上是哈密顿正则方程[4],其中

q α

为广义坐标,q α?

为广义速度,

p α广义动量。而正则方程共

有 2S 个相互联立的一阶常微分方程组 ,对这 2S 个方程求解,即可完全确定力学系统的运动状态。在哈密顿方法里,我们引入相空间概念[2]。

相空间:是以S 个广义坐标q

α 和 S 个广义动量

p α

为变数而构成的2S 维抽象空间称为力

学系统的相空间。任一瞬时力学系统的广义坐标和广义动量确定了相空间的一个点,我们称为相点,每个相点对应于系统的一个确定状态,当时间变化时,由于系统运动,这个相点也在相空间中运动,它在相空间中描画出的一条曲线称为相迹。

对于二阶系统,比如要研究简谐振动,它的状态变量只有两个,所以简谐振动的相空间即简化为二维相平面。

相平面:对于以运动物体的位移(x )和速度(y)作为坐标参量构建的空间,就是的相平面。 相点:相平面每个点对应着系统的一个运动状态,这个点就称为相点,“相”是指物体的运动状态。

d sin()cos()

d 2

x A t A t t

π

ωωφωωφ=

=-+=++

v 2

2

2

d d cos()

d d x a A t t

t

ωωφ=

=

=-+v

相轨迹:相点随时间t 的变化在x x ?

- (公式)平面上描绘出的轨迹线,这种轨迹称为相轨迹,它表征了系统运动状态(相)的演变过程。

简而言之,相图上的每一条曲线表示在不同初始条件下,物体在相空间内的运动轨迹,曲线上的任意一点代表物体的某一运动状态。

2.4相轨迹作图方法

相轨迹的作图方法可分为:解析法和图解法。其中解析法主要针对相对比较简单的系统,比如简谐振动系统,可直接由动力学方程求出位移(

x

)与速度(x ?

)之间的关系的。用解析法

求相轨迹是比较麻烦的,特别是对非线性系统,有时可能无法求出相轨迹的解析表达式。而图解

法则主要针对不能直接由方程求出

,x x ?

关系的系统,原则上说,此法对任何非线性系统都适用。

2.4.1用解析法求解简谐振子相图方程[5]

广义定义:某个物理量随时间的变化是按正弦或余弦规律,则可称该振动为简谐振动,

可用 表示。

速度(y)

y x

?

=

2

y x x ω?

??

==-

2

dy y x

dx

ω=-

2

ydy xdx

ω=-

方程两边积分得:2

22

2

2

y

x C

ω=-

+ 简谐振子相轨迹方程:

2

2

2

x y C

ω+=①

式中ω为系统初始值,C 是由初始状态决定的常量 法二:

cos()

x A t ωφ=+cos()

x A t ωφ=+d sin()

d x A t t

ωωφ=

=-+v cos()x A t ωφ

=+法一:位移(x )

222

2

2

1

x v

A

A

ω+

=

式中ω为系统初始条件,而常数

2

2020n

x x A ω +=

,它是由初始状态决定的常量。

由简谐振动系统的相图方程式①②中,可以很显然地看出简谐振动的相轨迹是为闭合的椭圆。

2.5简谐振动能量

以弹性系数为k ,质量为m 的弹簧振子为例,圆频率ω 满足

2k m ω=

2.6计算机辅助获得相图

Fortran( Formula Translation System)可谓目前计算机运算中的程序语言之父,它是第一个能将数学公式转换成计算机程序的语言。Fortran 擅长于数学函数运算,主要应用于数值分析、系统仿真及自动控制等领域。自1954年,从第一个Fortran 程序诞生到现在接近50年啦,很长一段

2

222

11sin ()

2

2

k E m m A t υωωφ=

=

+2

12

k p E E E kA

=+=

消去t

cos()

x A t ωφ=+d sin()

d x A t t

ωωφ=

=-+v 2

2

2

11cos ()

2

2

p E kx

k A t ωφ=

=

+对于简谐振子系统来说,系统的总能量与振幅A2成正比。对于系统来说,振动过程

中任意时刻机械能守恒

时间内是科学计算语言的唯一选择,期间积累的大量的正确、可靠的程序,尽管Fortran标准改了多次,但由于其向下兼容,很多程序是招值即来,来之能战,并且相比于C语言,Fortran语言的纠错功能更强大,因而可算是个易掌握的好工具。

Origin是有着强大的数据分析和绘图功能的作图软件。它的数据分析功能包括数据的排序、调整、计算、统计、频谱变换、曲线拟合等各种完善的数学分析功能,而且此软件操作简单,易于掌握。

计算机辅助获得相图的方法本质上是图解法获得相图。从简谐振子的定义出发,在Fortran 环境下编程,理论上获得无数个模拟数值,然后用这些模拟数值在Origin软件下计算机描点作图。相比与传统的图解获相图法,计算机辅助画相图效率更高,不仅能任意更改初始条件,而且所作的相图更精确[6]。

2.7用相空间研究完整系统的力学问题[11] [12] [13]

每一条相轨迹对应在一段时间内力学系统的状态变化过程。相轨迹是等能曲线,相应于一定能量的质点运动。不同相轨迹,对应于不同能量的质点运动,不同能量的相轨迹是不可能相交的。相空间的每一点称为相点,对应力学系统的一个瞬时状态。而相图中给定一个相点,实际上等于给定了一组完备的初始定值,即给出完整的动力学系统。用相空间的概念研究力学问题,实际上是从几何的方法出发研究力学。它能把力学系统的全部信息在相图上表示出来,而无须去解复杂的运动方程。

三、总结

简谐振动系统是一个可以精确求解的模型。它的动力学系统对我们来说虽然说是完全已知的,但从相图角度研究简谐振动系统,仍展现了它具大的优势——无需解复杂的运动方程,更直观更形象。本论文在Fortran 90编程环境下对简谐振子进行数值模拟,在Origin75 软件下画出相图。给定任意的初始条件,画出不同相图。

四、参考文献

[1] 刘明.线性谐振子问题研究[J].培训与研究——湖北教育学院学报,2004年9月,21(5):15-16.

[2] 陈建仁.用相空间研究完整系统的力学问题.河南教育学院学报(自然科学版) ,2004年3月,l3(1):25~27

[3] 漆安慎.杜婵英.力学[M].高等教育出版社[M].2005年6月第2版

[4] 周衍柏.理论力学教程[M].高等教育出版社,1986年3月第2版.282~330

[5] 严燕来.叶庆好.大学物理拓展与应用[M].北京:高等教育出版社,2002年12月.49~54.

[6] 杨正波.一个非线性力学问题的理论分析和数值模拟研究[J].襄樊学院学,2008年5月,第29卷(5):19~21

[7] 丁泽军.Fortran77和90/95编程入门[M].中国科技大学天文与应用物理系,2001年10月

[8] 刘卫国.FORTRAN 90 程序设计上机指导与习题选解[M].北京邮电大学出版社,2003年2

月.165-18

[9] 叶卫平.方安平.于本方.Origin 7.0科技绘图及数据分析[M].机械工业出版社,2004年1月第一版

[10] 周建平.精通Origin 7.0[M].北京航空航天大学出版社,2004年3月第一版

[11] 许雪芬.巢毅敏倒摆运动稳定性的相空间动力学分析[J].江苏油化学院学报,1999年3月,第11

卷(1):43~45

[12] 谢利民.弹簧振子运动的实际动力学分析[J].上海师范大学学报(自然科学版),2002年6月,第31卷(2):91~95

[13] 克劳斯.迈因策尔.复杂性中的思维[M].中央编译出版社.

实验八 非线性控制系统分析

实验八非线性控制系统分析 【实验目的】 1.掌握二阶系统的奇点在不同平衡点的性质。 2.运用Simulink构造非线性系统结构图。 3.利用Matlab绘制负倒描述函数曲线,运用非线性系统稳定判据进行稳定性分析,同 时分析交点处系统的运动状态,确定自振点。 【实验原理】 1.相平面分析法 相平面法是用图解法求解一般二阶非线性系统的精确方法。它不仅能给出系统稳定性信息和时间特性信息,还能给出系统运动轨迹的清晰图像。 设描述二阶系统自由运动的线性微分方程为 分别取和为相平面的横坐标与纵坐标,并将上列方程改写成 上式代表描述二阶系统自由运动的相轨迹各点处的斜率。从式中看出在及,即 坐标原点(0,0)处的斜率。这说明,相轨迹的斜率不能由该点的坐标值单值的确定,相平面上的这类点成为奇点。 无阻尼运动形式()对应的奇点是中心点; 欠阻尼运动形式()对应的奇点是稳定焦点; 过阻尼运动形式()对应的奇点是稳定节点; 负阻尼运动形式()对应的奇点是不稳定焦点; 负阻尼运动形式()对应的奇点是不稳定节点; 描述的二阶系统的奇点(0,0)称为鞍点,代表不稳定的平衡状态。2.描述函数法 设非线性系统经过变换和归化,可表示为非线性部分与线性部分相串联的典型反馈结构如图所示。 从图中可写出非线性系统经谐波线性化处理线性化系统的闭环频率响应为

由上式求得图中所示非线性系统特征方程为 ,还可写成 其中 称为非线性特性的负倒描述函数。若有 使上式成立,便有 或 ,对应着一个正弦周期运动。若系统扰动后,上述周期运 动经过一段时间,振幅仍能恢复为 ,则具有这种性质的周期运动,称为自激振荡。 可见自激振荡就是一种振幅能自动恢复的周期运动。周期运动解 可由特征方程式 求得,亦可通过图解法获得。 由等式在复数平面上分别绘制 曲线和 曲线。两曲线的 交点对应的参数 即为周期运动解。有几个交点就有几个周期运动解。至于该解是 否对应着自激振荡状态,取决于非线性系统稳定性分析。 【实验内容】 1. 相平面分析法 (1)二阶线性系统相平面分析不同奇点的性质 例8-1 设一个二阶对象模型为 2 2 2 ()2n n n G s s s ωξωω= ++ 绘制2,n ωζ=分别为0.5、-0.5、1. 25、0时系统的相平面图及2 4()4 G s s = -的相平面图。 图8-1 当2,0.5n ωζ==时,系统的单位阶跃响应曲线和相平面图

一维谐振子的本征值问题

摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。 在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动]1[.1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式]2[.一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一般的教材只给定了波动力学的解法]3[.自1963年,Glauber]4[等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光5[-。 学等领域]13 一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 1.矩阵力学解法 取自然平衡位置为坐标原点,并选原点为势能零点,则一维谐振子势V可表成

一维谐振子的本征值问题

一维谐振子的本征值问题 姜罗罗 赣南师范学院物理与电子信息科学系物理学专业2000级(2)班 摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。 在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动]1[.1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式]2[.一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一

般的教材只给定了波动力学的解法]3[.自1963年,Glauber ]4[等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光学等领域]135[-。 一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac 算子代数解法和Schr ?dinger 波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研 究前沿课题之一。最后从Dirac 算子代数中求解出a ?的本征态即谐振子的相干态,并由降算符a ?与升算符+a ?、光子数n 与相位φ的最小不确定关系得出相干态和压缩态。 1.矩阵力学解法 V 可 表成 2 2 1kx V x = (1) k 为刻画简谐作用力强度的参数.设谐振子质量为μ,令 μ ωk = (2) 它是经典谐振子的自然频率,则一维谐振子的Hamilton 量可表为 图1.一维谐振子势 222?2 12??x p H μωμ+= (3) 在能量H ?表象中,由于

第三章 谐振子

第三章 谐振子 一 内容提要 1 一维线性谐振子的能级与波函数 2221)(x x V μω= 2222 12??x p H μω+= ,3,2,1)2 1(=ω+=n n E n )()(222 1 x H e N x n x n n α-=ψ [其中 ! 2n N n n πα= μω = α ] 2 谐振子的升降算符 [1] 升降算符 )??(2?p i x a μω-μω=+ )??(21p i x μω-α= )??(2?p i x a μω+μω= )??(21p i x μω+α= 则 )??(2?++μω =a a x )??(2?+-μω-=a a i p [2] 升降算符的性质 11?++ψ+=ψn n n a 1?-ψ=ψn n n a 1]?,?[=+a a 二 例题讲解 1 一维谐振子如果考虑非谐振微扰项4 ' ?x H λ=,求体系能级的一级修正。 解:>+<μω λ>=<λ>==<+n a a n n x n n H n E n 42 4 ' ) 1()??()2(? 可以导出 )122(3)??(24++>=+<+n n n a a n 那么 = ) 1(n E )122()(4322++μω λn n 2 已知单摆在重力作用下能在竖直平面内摆动。求: [1] 小角度近似下,体系的能量本征值及归一化本征函数。 [2] 由于小角度近似而引起的体系基态能级的一级近似。 解:摆球平衡位置作为势能零点 摆球重力势能为 )cos 1(θ-==mgl mgh V (1) [1] 由公式 -θ+θ-=θ4 2! 41!211c o s (2)

非线性控制系统分析

3描述函数法一.本质非线性特性的谐波线性化 1.谐波线性化具有本质非线性的非线性元件在正弦输入作用下在其非正弦周期函数的输出响应中假设只有基波分量有意义从而将本质非线性特性在这种假设下视为线性特性的一种近似 3.应用描述函数法分析非线性系统的前提 a 非线性特性具有奇对称心 b非线性系统具有图a所时的典型结构 c非线性部分输出xt中的基波分量最强 d非线性部分Gs的低通滤波效应较好 b非线性特性的描述函数的求取方法二.典型非线性特性的描述函数 1饱和特性的描述函数 2死区特性描述函数 3间隙特性的描述函数 1 引言第七章非线性控制系统分析非线性指元件或环节的静特性不是按线性规律变化非线性系统如果一个控制系统包含一个或一个以上具有非线性静特性的元件或环节则称这类系统为非线性系统其特性不能用线性微分方程来描述一.控制系统中的典型非线性特性下面介绍的这些特性中一些是组成控制系统的元件所固有的如饱和特性死区特性和滞环特性等这些特性一般来说对控制系统的性能是不利的另一些特性则是为了改善系统的性能而人为加入的如继电器特性变增益特性在控制系统中加入这类特性一般来说能使系统具有比线性系统更为优良的动态特性非线性系统分析饱和特性 2死区特性危害使系统输出信号在相位上产生滞后从而降低系统的相对稳定性使系统产生自持振荡危害使系统输出信号在相位上产生滞后从而降低系统的相对稳定性使系统产生自持振荡 4继电器特性功能改善系统性能的切换元件 4继电器特性特点使系统在大误差信号时具有较大的增益从而使系统响应迅速而在小误差信号时具有较小的增益从而提高系统的相对稳定性同时抑制高频低振幅噪声提高系统响应控制信号的准确度本

§3.2线性谐振子

§3.2 线性谐振子 重点: 谐振子模型的意义能量波函数的特征与经典情况的区别 (3.2-1) 其中是弹性系数为k的谐振子作简谐振动的角频率。 经典力学中线性谐振子的哈密顿函数为 (3.2-2) 故在量子力学中,线性谐振子的哈密顿算符为 由于U(x)与时间无关,故为定态。 线性谐振子的定态薛定谔方程为 (3.2-4)为了简化,引入无量纲的变量 (3.2-5) (3.2-6) (3.2-7)

则方程(3.2-4)可改写成 (3.2-8) 我们令方程(3.2-8)的一般解为 (3.2-9)所满足的方程 得到H (3.2-10) (3.2-11) 代入(3.2-7)中,可求得线性谐振子的能级 (3.2-12)n=0, 1, 2,…, 由此得下面结论: (1)线性谐振子能是只能取分立值(图3.4),好能量是量子化的, ,这与普朗 (2)谐振子的能级是均匀分布的,相邻两能级间隔 克假设一致。 (3)谐振子的基态(n=0)能量为 (3.2-13)称为零点能,零点能的存在,是量子力学的一个重要结果,这是旧量子论中所没有的。 对应于不同的n或不同的。

(3.2-14) ,它可以用下列式子表示 方程(3.2-14)的解是厄密多项式 (3.2-15)脚标n表示多项式的最高次幂。 下面列出前面n项厄密多项式: (3.2-16)由(3.2-9)式,对应能量E n的波函数是 (3.2-17a)或 (3.2-14b) 这函数称厄密函数,式中N n为归一化常数。由归一化条件 经计算得(见附录1)(3.2-18)归一化后的前三个波函数如下: (3.2-19)

等函数是x的偶函数,即 从上面各式容易看出, 我们称这些波函数具有偶宇称,而 我们称这些波函数具有奇宇称。 (三)与经典比较 经典和量子谐振子的能级与分布几率 上图中横坐标代表振子的位置,抛物线代有势能曲线,En是量子化的能级,虚曲线代表 波函数 ,实曲线代表几率分布,由图可以看出:当n=0时,波函数。除了 有n个节点,即有n个根。 类推,因此波函数 只在于绕平均值迅速振荡而已。下图中实线是n=11时的几率分布,虚线代表经典谐振子位置几率分布。

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

线性谐振子的不同解法比较

线性谐振子的不同解法比较 关键词:一维谐振子;能量本征值;波函数 摘 要:一维线性谐振子作为量子力学中的基础模型,它的解决方法具有多样性并随着科学工作者的努力和对数学理论的应用的不断深入(如群论和群表示理论),谐振子的解法将会最优化,并会对多维谐振子以及耦合谐振子等复合问题 [1] 的解决起着重要的帮助作 用。在这里我们将分别从表象理论(包括坐标表象、动量表象、能量表象和占有数表象),以及矩阵力学、宇称等角度出发求解一维线性谐振子,并作出适当的比较。 中国分类号:(140物理学) 文献标识码:A 文章编号: Comparison with Several Different Methods on the Solutions of One-dimensional Linear Harmonic Oscillator Key words: one-dimensional linear harmonic oscillator; eigenvalue of energy and wavefunction Abstract: One-dimensional linear harmonic oscillator as a basic model in quantum mechanics, there are more and more solutions to it with the increasing development of the theory of mathematics. It will serve the different problems of multidimensional and coupled harmonic oscillator. We will respectively solve one-dimensional linear harmonic oscillator from the theory of presentative, matrix mechanics and parity respectively. 1. 引言 谐振子的模型在量子力学,量子光学以及固体物理等学科领域都有着广泛的应用。本文我们将建立最简单一维线性谐振子作为模型并用不同的方法处理。设一维谐振子的质量为m,其圆频率为ω,势函数为, 22()1 2 x V m x ω= , 则其Hamilton 量 [2] 为 1 2221 22 p H m x m ω=+ (1.1) 收稿日期:2015-03-30 作者简介:李德远(1990年生),男,本科学生,物理学 我们也可以采用自然坐标系(即 1ωμ===)[3],能量单位为ω,长 。则(1)又可写作 221122H p x = + (1.2) 我们知道经典力学到量子力学的转变,满足量子化条件 [4] ??[,]x p i =[5] , 在自然坐标下又可写作 ??[,]x p i = (1.3) 2. 在坐标表象中的解法 写出在x 表象中的Schrodinger 方程 22 () 22()()2 1 22 x x x d m x E m dx ψωψψ- +=(2.1)

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。 2 经典力学中的一维谐振子 在经典力学中基本方程以牛顿定律为基础,研究质点位移随时间变化的规

用Feynman传播函数求解一维谐振子的尝试

用Feynman传播函数求解一维谐振子的尝试 本文旨在结合《高等量子力学》课上关于Feynman传播函数的知识,以及参考侯伯元教授编著的《路径积分与量子物理导引》的知识,尝试用路径积分的方法来求解一维谐振子的问题。 直接引用课上推导的结果,Feynman传播子为: ()() 12 212 11 ,,exp 22 j j j j j j j x x m m x t x t i V x i εε πεε + ++ ?? ?? - ?? ?? ???? =-+O ?? ? ? ?? ???? ?? ?? ??(1)式子中,令1 j j t t ε+ ≡- ,并已采用自然单位制, 1 =。 式(1)中,有 ()() 2 1 2 j j j j x x m L t V x ε + - ?? ≡- ? ??(2)是拉氏量。考虑一维谐振子,其拉氏量为: 222 22 m m L x x ω =- (3)那么,Feynman传播子为 ()()() 12 22 212 11 ,,exp 222 j j j j j j x x m m D x x i x x i ω εεε πεε + ++ ?? ?? - ?? ?? ???? =--+O ?? ? ? ?? ???? ?? ?? ??(4)令 2 00 12, 222 m m a b ωε εε ?? ?? =-= ?? ? ?? ?? ?? 则,式(4)改写为: ()() {}() 1 2 22 10101 ,,exp2 2 j j j j j j m D x x i a x x b x x i εε πε +++ ???? =--?+O ??? ?? ??(5)而对于Feynman传播函数有, ()()() {} ,;,exp f i t F f f i i t D x t x t D x t i L t dt =?? ?? ?? (6)

在坐标表象中处理一维线性谐振子问题

初中物理 题目:在坐标表象中处理一维线性谐振子问题 作者单位:响水滩乡中心学校 作者姓名:宁国强 2012年9月28日

在坐标表象中处理一维线性谐振子问题 响水滩中心学校 宁国强 摘 要:本文阐述了在坐标表象中处理一维线性谐振子问题的方法和思路,阐述了一般表象的概念。 关键词:一维线性谐振子;坐标表象; 一、 能量本征值、本征函数的求解 取自然平衡位置为坐标原点,并选原点为势能零点,则一维线性谐振子的势能为 221()2V x x μω= (1) 其中μ是谐振子的质量,ω是经典谐振子的自然频率。一维谐振子的哈密顿函数为 222122 p H x μωμ=+ (2) 体系的能量本征方程(亦即不含时Schr ?dinger 方程)为 ()()222221?22d x x E x dx μωψψμ??-+= ??? h (3) 严格的谐振子势是一个无限深势阱(如图1所示),粒子只存在束缚态,即起波函数应满足以下条件: ()0x x ψ→∞ ???→ (4) 将方程(3)无量纲化,为此,令

x ξα==, α= λ=2E ω h (5) (3)式可改写为 () 2220d d ψλξψξ+-= (6) 这是一个变系数二阶常微分方程。为了求解它,我们先看ψ在ξ→±∞时的渐进行为。当ξ????很大时,λ与2ξ相比可以略去,因而在ξ→±∞ 时,方程(6)可近似表示为 2220d d ψξψξ -= (7) ξ→±∞时, 它的渐近解为2/2~e ξψ±。因为波函数的标准条件要求当ξ→±∞时ψ应为有限,所以2/2e ξψ:不满足边界条件(4)式,应弃之。波函数指数上只能取负号,即2/2e ξψ-:。方程(6)在ξ为有限处的 根据以上讨论,可令方程(6)在ξ为有限处的解有如下形式: ()()2 2Ae H ξψξξ-= (8) 式中A 为归一化系数,(8)代入(6)式,得 ()22210d H dH H d d ξλξξ -+-= (9) 用级数解法,即把H 展开成ξ的幂级数来求这个方程的解。这个级数必须只含有有限项,才能在ξ→±∞ 时使()ψξ为有限,而级数只含有限项的条件是λ 为奇数:21n λ=+,()0,1,2n =L L 。代入(5)中的第三式,可得一维线性谐振子的能级为 12n E n ω??=+ ?? ?h , ()0,1,2n =L L (10) 因此,线性谐振子的能量只取分立值(如图2所示),两相邻能级间的间隔为ωh ,这与普朗克关于能量是量子化的假设相符合。

一维量子谐振子的概率分布

一维量子谐振子的概率分布 摘要:线性谐振子问题作为一种普遍的模型,所以在经典力学中和量子力学中都受到很大关注。并且谐振子包括很多类型,我们就先研究量子谐振子的问题。量子谐振子是很多复杂物理模型的基础,量子谐振子在前几个量子态时,概率密度与经典情况相差较多,随着量子数的增加,随之相似性也会增加。可以通过使用数学软件将量子谐振子的概率分布绘制成图像,从而得出一维量子谐振子的概率分布。 关键词:经典谐振子 一维量子谐振子 波函数 量子谐振子概率分布 1.引言: 谐振子的振动是一种很常见的物理模型,它在很多方面得到应用。谐振子大体可分为经典力学和量子力学两部分,谐振在运动学就是简谐振动,这样的振动是物体在某一位置附近往复偏离该振动中心位置,在这样的振动方式下,物体所受到的力的大小总是与它偏离平衡位置的大小成正比关系,并且物体总是受到指向平衡位置的力。谐振子具有周期运动的物理特征,一些复杂的物理基础可以运用谐振子运动来解决。 通过对经典谐振子的研究,得到经典谐振子的函数关系式。再利用量子力学中的不确定关系得到量子谐振子的能量最低点,即平衡位置,最后得到谐振子的波函数,从而得到了谐振子的概率。随着量子数的增加,利用软件Mathematica 绘制一维量子谐振子的概率分布。再和经典的线性谐振子来作比较,得到经典谐振子的关系。 2.经典一维谐振子: 首先让我们谐振子在物理中是非常常见的模型,我们很早就已经接触过 ,并且有了一定的了解。下面来讨论一维弹性力的一维简谐振子。例如:质量为m 的物体放在光滑的桌面上,在其水平的方向上受到一个弹簧作用,在某一位置处质点所受力的大小为零,则把这一点叫做平衡位置。弹簧的劲度系数为k ,物体m 在弹簧弹性力的作用下沿弹簧方向运动,作用于质点的力和质点距离平衡位置的位移成正比,这样受力的质点就是一个典型的一维简谐振子。大家都知道,质量为m 的质点在做简谐振动的过程中用x 来表示质点便偏移平衡位置的距离,也就是质点的位置,也是弹簧的伸长或压缩的量。当x 很小时,质点受力为F ,则力F 和x 之间的线性关系为kx F -=,并且可知弹簧的弹性力是线性回复力,弹簧振子

非线性控制系统分析样本

第八章非线性控制系统分析 教学目的: 经过学习本章, 使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。 教学要求: (1) 认识非线性系统区别于线性系统的运动过程特点. (2) 掌握描述函数法和相平面法的特点及应用范围. (3) 明确函数的定义及相关概念, 熟悉典型非线性的妙描述和负倒描述函数特 性, 掌握用描述函数法分析非线性系统的稳定性和分析自振, 计算自振参数的方法. 教学课时: 12 学时 教学重点: (1) 非线性的相关概念. (2) 典型系统的相平面表示. (3) 典型非线性系统的描述函数形式. 教学难点: 非线性系统的描述函数求法; 利用负倒数法分析系统稳定性. 本章学时: 12 学时 主要内容: 非线性系统的概述 8.1 描述函数法 8.2 相平面法分析线性控制系统 8.3 8.4利用非线性特性改进系统的控制性能 8.1 非线性系统的概述 8.1.1 非线性模型

㈠组成 -------- x ------ 非线性环节----------- 线性环节---------- 组成: 非线性环节+线性环节 ㈡. 分类 ①从输入输出关系上分: 单值非线性 非单值非线性 1,从形状特性上分: 饱和 死区 回环 继电器 ㈢特点 稳定性与结构, 初始条件有关; 响应 ㈣分析方法 注意: 不能用叠加原理 1. 非线性常微分方程没有同意的求解方法, 只有同意求近似解的方法: a. 稳定性(时域, 频域) : 由李亚普洛夫第二法和波波夫法判断 b. 时域响应: 相平面法(实际限于二阶非线性系统)较精确, 因高阶作用 太复杂 描述函数法:近似性,高阶系统也很方便 研究非线性系统并不需求得其时域响应的精确解,而重要关心其时域响应的性质,

线性谐振子相图研究

文献综述 题目:线性谐振子相图研究 姓名: 学号: 系别:物理与电子信息工程系专业:物理学 年级: 指导教师: 2009年2月7 日

文献综述 一、前言 线性谐振子是量子力学中可以精确求解的有限几个事例之一[1],其中最简单的线性谐振子是简谐振子。自然界中任何一个力学系统,只要某一个物理量在其稳定平衡点附近作微小振动,便可以用简谐振子模型来描述,例如:复摆的振动、分子的振动、晶格的振动、原子核表面振动以及辐射场的振动等。在选择适当的坐标系之后,复杂的运动往往可以分解成若干彼此独立的一维简谐振动(simple harmonic vibration )。简谐振动作为一种最简单最基本的振动,往往还是复杂运动的初步近似,是研究振动的基础。因此研究它在理论上和应用上都有重大的意义。 其中从相空间的角度来研究振动系统的力学问题如今已经成为一个研究趋势。因为相图里包含着完整的力学系统的全部信息,无须去解复杂的运动方程[2]。计算机技术软硬件的飞速发展,为此研究趋势提供了现实条件。 本论文从简谐振子的基本定义出发,在Fortran 90条件下进行数值模拟并在Origin75 软件下获得简谐振子的相图。 二、主体 2.1简谐振动的定义 定义一: 物体只在弹性力或准弹性 (线性回复力)作用下发生的运动,即动力学方程为 的运动为简谐振动[2]。 定义二: 在无外来强迫力作用下, 物体相对于平衡点的位移随时间按余弦(或正弦)规律变化即 则称物体作简谐振动式即简谐振动的表达式[3]。 —振幅; —角频率; —相位; —初相位。位移随时间的变化曲线称为振动曲线。 广义定义:某个物理量随时间的变化是按正弦或余弦规律,则可称该物理量做简谐动,可用 表示 。自然界中任何一个力学系统中,只要某一个物理量在其稳定 平衡点附近作微小振动,便可以用这种简谐振子模型来描述,例如:复摆的振动、分子的振动、晶格的振动,原子核表面振动、辐射场的振动以及电磁场振动等等。 2.2简谐振动的基本特征及动力学特征 简谐振动位移随时间的变化 cos()x A t ωφ =+2 2 2 d d x x o t ω +=()cos()x t A t ωφ=+()cos()x t A t ωφ=+

非线性控制系统分析样本

第八章非线性控制系统分析 教学目的 : 经过学习本章, 使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。 教学要求: (1)认识非线性系统区别于线性系统的运动过程特点. (2)掌握描述函数法和相平面法的特点及应用范围. (3)明确函数的定义及相关概念,熟悉典型非线性的妙描述和负倒描述函数 特性,掌握用描述函数法分析非线性系统的稳定性和分析自振,计算自振参数的方法. 教学课时: 12学时 教学重点: (1) 非线性的相关概念. (2) 典型系统的相平面表示. (3) 典型非线性系统的描述函数形式. 教学难点: 非线性系统的描述函数求法; 利用负倒数法分析系统稳定性. 本章学时: 12学时 主要内容: 8.1 非线性系统的概述 8.2 描述函数法 8.3 相平面法分析线性控制系统 8.4 利用非线性特性改进系统的控制性能

8.1非线性系统的概述 8.1.1 非线性模型 ㈠组成 ---------x-------非线性环节---------线性环节------------ 组成: 非线性环节+线性环节 ㈡. 分类 ①从输入输出关系上分: 单值非线性 非单值非线性 1,从形状特性上分: 饱和 死区 回环 继电器 ㈢特点 稳定性与结构, 初始条件有关 ; 响应 ㈣分析方法 注意: 不能用叠加原理 1. 非线性常微分方程没有同意的求解方法, 只有同意求近似解的方法: a. 稳定性( 时域, 频域) : 由李亚普洛夫第二法和波波夫法判断 b. 时域响应: 相平面法( 实际限于二阶非线性系统) 较精确, 因高阶作用

太复杂 描述函数法: 近似性, 高阶系统也很方便 研究非线性系统并不需求得其时域响应的精确解, 而重要关心其时域响应的性质, 如: 稳定性, 自激震荡等问题, 决定它的稳定性范围, 自激震荡的条件, 震荡幅度与频率等。 2,死区继电器: f(e) +m -△e 3 4.滞环特性( 间隙) -m

自动控制原理-第8章 非线性控制系统

8 非线性控制系统 前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。 8.1非线性控制系统概述 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。 图8-1 伺服电动机特性 8.1.1控制系统中的典型非线性特性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。 8.1.1.1饱和非线性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。如图8-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特

非线性控制系统分析

实验八非线性控制系统分析 实验目的 1.掌握二阶系统的奇点在不同平衡点的性质。 2.运用Simulink构造非线性系统结构图。 3.利用Matlab绘制负倒描述函数曲线,运用非线性系统稳定判据进行稳定性分析,同时分析交 点处系统的运动状态,确定自振点。 实验原理 1.相平面分析法 相平面法是用图解法求解一般二阶非线性系统的精确方法。它不仅能给出系统稳定 性信息和时间特性信息,还能给出系统运动轨迹的清晰图像。 设描述二阶系统自由运动的线性微分方程为 片+ 2冲+承=0 分别取和为相平面的横坐标与纵坐标,并将上列方程改写成 dx _24/ +曲H 上式代表描述二阶系统自由运动的相轨迹各点处的斜率。从式中看出在’「及—,即坐标原点(0,0)处的斜率灯‘以_门。这说明,相轨迹的斜率不能由该点的坐标值单值的确定,相平面上的这类点成为奇点。 无阻尼运动形式(二--)对应的奇点是中心点; 欠阻尼运动形式(「上」)对应的奇点是稳定焦点; 过阻尼运动形式(―-)对应的奇点是稳定节点; 负阻尼运动形式(:=二)对应的奇点是不稳定焦点; 负阻尼运动形式-)对应的奇点是不稳定节点; ■-描述的二阶系统的奇点(0,0)称为鞍点,代表不稳定的平衡状态。 2.描述函数法 设非线性系统经过变换和归化,可表示为非线性部分「与线性部分,相串联的典型反馈结构如图所示。

从图中可写出非线性系统经谐波线性化处理线性化系统的闭环频率响应为 ROM 由上式求得图中所示非线性系统特征方程为■- ,还可写成 呛曲)=- ….或4丁 丁,对应着一个正弦周期运动。若系统扰动后,上述周期运 动经过一段时 间,振幅仍能恢复为 A 二:,则具有这种性质的周期运动,称为自激振荡。 可见自激振荡就是一种振幅能自动恢复的周期运动。周期运动解 A 二:可由特征方程式 求得,亦可通过图解法获得。 由等式 宀小在复数平面上分别绘制|」 曲线和;, 曲线。两曲线的 交点对应的参数即为周期运动解。有几个交点就有几个周期运动解。至于该解是 否对应着自激振荡状态,取决于非线性系统稳定性分析。 实验内容 1?相平面分析法 (1)二阶线性系统相平面分析不同奇点的性质 例8-1设一个二阶对象模型为 绘制、=2, 分别为0.5、-0.5、1.25、0时系统的相平面图及G (s )= 的相平面图 s 一4 num-4; den=[l 2 4]; daiup (d^n): h j d]=tfZss (num^ den): [巧 x, t]=st*p 〔包 b, Cj d); subplot (2, 1, 1); plot (t,r );grid; subplot (2. 1,2); plot (X (:, 2),x(\ 1)) ; grid 其中称为非线性特性的负倒描述函数。若有 工使上式成立,便有 G(s)二 s 2 2、s

非线性控制系统的相平面分析法讲解

7-5 非线性控制系统的相平面分析法 相平面法在分析非线性系统时是很有用处的。但是,我们在介绍非线性系统的分析方法之前,先讨论一下相平面法在分析线性二阶系统中的应用是很有好处的。因为许多非线性元件特性一般都可分段用线性方程来表示,所以非线性控制系统也可以用分段线性系统来近似。 一、线性控制系统的相平面分析 1、阶跃响应 设线性二阶控制系统如图7-38所示。若系统开始处于平衡状态。试求 系统在阶跃函数)(1)(0t R t r ?= 作用下,在e e -平面上的相轨迹。 建立系统微分方程式,由图示系统可得 Ke c c T =+ 因为c r e -=,代入上式得 r r T Ke e e T +=++ (7-31) 对于->?=0),(1)(0t t R t r 时,0)()(==t r t r 因此上式可写成 0=++Ke e e T (7-32) 方程(7-32)与(7-22)式相仿。因为假设系统开始处于平衡状态,所以误差信号的初始条 件是0)0(R e =和0)0(=e 。e e -平面上的相轨迹起始于)0,(0R 点,而收敛于原点(系统的奇点)。当系统特征方程的根是共轭复数根,并且位于左半平面时,其相轨迹如图7-39(a) 所示。根据e e -平面上的相轨迹就可方便的求得c c -平面上系统输出的相轨迹,如图7-39(b)所示。由图7-39可见,欠阻尼情况下系统的最大超调量P σ及系统在稳态时的误差 为零。因为e e -平面相轨迹最终到原点,即奇点;所以在c c -平面上相轨迹最终到达0R c =的稳态值,则奇点坐标为)0,(0R 。 2、斜坡响应 对于斜坡输入t V t r 0)(=;当0>t 时,)(t r 的导数0)(V t r = 及0)(=t r 。因此,方程(7-31)可以写成 0V Ke e e T =++ 或 0)(0 =-++K V e K e e T 令v e K V e =-0,代入上式,则有 0V Ke e e T =++ννν (7-33) 在v v e e -平面上,方程(7-33)给出了相平面图与在e e -平面上方程(7-32)给出的相平面图是相同的。 应当指出,特征方程式的根确定了奇点的性质,在v v e e -平面上的奇点的位置是坐标原点,而在e e -平面上奇点坐标为)0,(0K V 点。又因为我们假设系统初始状态为平衡状态。

非线性控制系统的分析

第8章 非线性控制系统的分析 重点与难点 一、基本概念 1. 线性与非线性系统的联系与区别 控制系统在不同程度上都存在着非线性。有些系统可以在工作点附近把它线性化,然后按线性系统来处理(如三级管放大器电路),但当系统含有本征非线性特性(如死区特性、继电器特性等)时,就不能用线性化的方法处理。死区特性将使系统出现较大的稳态误差。饱和特性将降低系统的超调量,有时还会引起稳定振荡。间隙特性可使系统的振荡加剧,静差也会增大,有时会使系统不稳定。继电器特性会出现低速爬行、蠕动及响应不平滑等现象。 与线性系统相比,非线性系统与线性系统的本质差别可以概括为以下三点: (1)线性系统可以使用叠加原理,而非线性系统不能使用叠加原理; (2)线性系统的稳定性与初值、输入无关,而非线性系统的稳定性与初值、输入有关; (3)线性系统可以写出通解形式,而非线性系统无法写出通解形式。 2. 相平面分析法 以x ,x 为坐标的平面就叫相平面,系统的某一状态对应于相平面上的一点。相平面上的点随时间变化的轨迹叫相轨迹。 对应于二阶线性定常系统的相轨迹,可以对非线性系统进行分析,这种分析方法称为相平面分析法。 二阶线性定常系统的相轨迹如表8-1所示。 3. 极限环 非线性系统存在着稳定的振荡状态,在相平面图上可表示为一个孤立的封闭相轨迹。所有附近的相轨迹都渐近地趋向这个封闭的相轨迹,或离开该封闭的相轨迹,该相轨迹称为极限环。极限环分为稳定和不稳定等四种形式,如表8-2所示。 非线性系统可能没有极限环,也可能存在多个极限环。在相平面图形上,一个稳定的极限环就对应于一个自振状态。 4. 相平面做图法I —等倾线法 令dx x d a / =,即),(x x f a =。对于a 的不同取值,由),(x x f a =可得到x 与x 的不同关系式,而且在曲线),(x x f a =上,均具有相同的斜率a 。给出一组a ,就可近似

第七章非线性控制系统分析

291 第7章 非线性控制系统分析 非线性系统的形式和种类繁多,在构成控制系统的环节中,有一个或一个以上的环节具有非线性特性时,这种控制系统就属于非线性控制系统。本章所说的非线性环节是指输入、输出间的静特性不满足线性关系的环节。对于非线性控制系统,目前还没有通用的分析设计方法,这里主要介绍工程上常用的相平面分析法和描述函数法。 7.1 非线性控制系统概述 7.1.1 非线性现象的普遍性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。 7.1.2 控制系统中的典型非线性特性 在实际控制系统中所遇到的非线性特性是各式各样的。常见的典型非线性特性有下述几种: 1.饱和非线性特性 实际放大器只能在一定的输入范围内保持输出和输入之间的 线性关系;当输入超出该范围时,其输出则保持为一个常值。这 种特性称为饱和非线性特性,如图7-1所示,其中a x a <<-的 区域是线性范围,线性范围以外的区域是饱和区。许多元件的 图7-1 饱和非线性

292 运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特性以限制过载。 2.不灵敏区(死区)非线性特性 一般的测量元件、执行机构都存在不灵敏区。例如某些检测元件对于小于某值的输入量不敏感;某些执行机构接受到的输入信号比较小时不会动作,只有在输入信号大到一定程度以后才会有输出。这种只有在输入量超过一定值后才有输出的特性称为不灵敏区非线性特性,如图7-2所示。其中,?<

相关文档
最新文档