1-1 信号及其描述-信号的分类与描述 25

几种简单的函数信号发生器电路图分析

几种简单的函数信号发生器电路图分析 时间:2012-01-10 15:30 作者:赛微编辑来源:赛微电子网 引言 随着模拟电路技术和电力电子技术发展,电路设计中对信号的精度、稳定性、抗干扰能力等要求进一步提高,电子行业中将一些功能进行集成到IC芯片供其他的厂家来使用。在电路设计中,我们除了正常的电源输入之外,还需要提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形来给某个电路提供输入。 这种可以提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形的电路或者仪器(函数信号发生器的种类),我们可以称之为函数信号发生器,它对电子工程师设计的整个系统来说,发挥着重要的作用,它具有各种内置信号、自定义的任意波形和脉冲能力,能帮助您验证设计,检验新的构想,从而让整个设计更具有可靠性。 本文结合几种简单的函数信号发生器电路图,并对其工作原理(函数信号发生器原理)、可以实现的功能和性能、电路特点等方面做了详细的分析,供电子发烧友参考。 程控函数信号发生器电路图 它主要由主控制器LPC2114、MAX038、D/A转换器以及八选一模拟开关CD4051LED显示、键盘、波段切换,波形处理和峰值检波等部分组成,研究了LPC2114通过D/A转换器实现对MAX038频就绪和占空比的调控方法,并给出

了在0.1Hz~20MHz内产生精确的正弦波、方波和三角波的方法。此外,它还具有可调范围大、精度高、信号稳定等特点,可以应用于各种电子测量和控制场合。 LPC2114主要通过D/A转换器TLC5618、DAC0832和八选一模拟开关CD4051对MAX038输出的波形、频率以及占空比进行控制。通过对A1和A0端的不同设置来选择不同的波形。当A1为高电平、A0为任意时,输出波形为正弦波;当A1、A0同时为低电平时,输出波形为方波;当A1为低电平、A0为高电平时,输出波形为三角波。 MAX038输出波形的幅值为2 V(P-P),最大输出电流为+20 mA,输出阻抗的典型值为0.1 Ω。可直接驱动100 Ω的负载。为了得到更大的输出幅度和驱动能力,就需要对波形信号作进一步处理,下图为一个波形输出与驱动电路。

一信号的定义及分类

第一章主要讲什么是信号,什么是系统。 首先来了解一下信号,我们平时见到的报道称为消息,消息中有意义的内容称为信息,信号是信息的载体,是信息的物理体现。简而言之,就是通过信号传递信息。我们平时见到的十字路口的红绿灯就是一种光信号,我们常见的广告牌也可以说成文字、图像信号,电视机接收的信号是一种电信号,而我们主要讨论的就是电信号,简称信号。 电信号的基本形式是随时间变化的电压或电流,通常我们用描述信号,也可以用波形来表示。需要注意的是在这门课里,“信号”与“函数”两词常相互通用。 1、信号的分类方法很多,下面是从不同的角度对信号分类: 2、按实际用途分类:电视信号,雷达信号,控制信号,通信信号,广播信号 3、按所具有的时间特性划分:确定信号和随机信号;连续信号和离散信;周期信号和非周 期信号;能量信号与功率信号;因果信号与反因果信号;实信号与复信号等等。 下面从时间角度看一下各种信号的含义: 确定信号与随机信号:顾名思义,确定性信号就是信号可以用一个确定的时间函数表示。有便可推知,而随机信号指信号不能用一个确定的时间函数加以确定,它只能用统计方法进行描述,就像在相同条件下,随机信号不能准确的重现某一数值,只能得到某值得概率。连续信号和离散信号:连续信号就是在连续时间都有定义的信号,至于值域可连续也可不连续,幅值连续为模拟信号(如图一中),否则为量化信号(如图一中)。离散时间信号是仅在一些离散的时间才有定义的信号,需要注意的是其余时间无定义(不是0)。幅值连续是取样信号(如图二),离散是数字信号(如图三)。 图一 图二图三 如图三的仅在一些离散时刻才有定义,间隔,取等间隔,离散信号:,简写为称为序列,k为序号。

信号发生器电路的焊接与调试-电路图

一、信号发生器电路安装与调试考核评分表 准考证号姓名规定时间分钟 开始时间结束时间实用时间得分 考核内容及要求配分评分标准扣分 1 元器件清点检查:在10分钟内对所有元 器件进行检测,并将不合格元器件筛选出来进 行更换,缺少的要求补发。 10 超时更换或要求补发按损坏 元件扣分,扣3分/个。 2 安装电路:按装配图进行装接,要求不装 错,不损坏元器件,无虚焊,漏焊和搭锡,元 器件排列整齐并符合工艺要求。 30 漏装,错装或虚焊、漏焊、 搭锡,扣2分/个,安装不整 齐和不符合工艺要求的扣1 分/处,损坏元件扣3分/个。 3 电源电路:接通交流电源,测量交流电压 和各直流电压+12V、-12V、V CC 、-5V。 信号发生器电路:接通+12V、-12V、V CC 、 -5V电源。测量函数信号波形:方波、正弦波、 三角波形。 20 电压测试方法不正确扣10 分,测量值有误差扣5分。 4 选择C=10uf,调节RW13、RW14、RW15, 记录方波的占空比: 1、 2、 3、 10 不会用示波观察输出信号波 形扣10分, 调节不正确扣5分, 波形记录不正确扣5分。 5 改变电容:100nf——100uf,并调节RW11, 记录正弦波输出频率f: 1、 2、 3、 10 最大不失真电压测试方法不 正确扣5分,测量值不准确 扣5分,不会计算最大不失 真功率扣5分。 6 调节RW21、RW22, 记录正弦波输出Vpp: 1、 2、 3、 10 不会测试功放电路的灵敏度 扣5分,不会计算电压放大 倍数扣5分。 7 调节电位器RW16、RW17, 记录正弦波形的失真: 1、 2、 3、 10 测量方法不正确扣5分, 测量数据每处2分,不会绘 制频响曲线扣5分 开始时间:结束时间:实用时间:

DDS信号发生器电路设计

1. 信号产生部分 1.1 频率控制字输入模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity ddsinput is port(a,b,c,clk,clr:in std_logic; q1,q2,q3,q4,q5:buffer unsigned(3 downto 0)); end ddsinput; architecture a of ddsinput is signal q:std_logic_vector(2 downto 0); begin q<=c&b&a; process(cp,q,clr) begin if clr='1'then q1<="0000";q2<="0000";q3<="0000";q4<="0000";q5<="0000"; elsif clk 'event and clk='1'then

DDS信号信号发生器电路设计 case q is when"001"=>q1<=q1+1; when"010"=>q2<=q2+1; when"011"=>q3<=q3+1; when"100"=>q4<=q4+1; when"101"=>q5<=q5+1; when others=>NULL; end case; end if; end process; end a; 1.2 相位累加器模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity xiangwei is port(m:in std_logic_vector(19 downto 0); clk,clr:in std_logic; data:out std_logic_vector(23 downto 0)); end xiangwei; architecture a of xiangwei is signal q:std_logic_vector(23 downto 0); begin process(clr,clk,m,q) begin if clr='1'then q<="000000000000000000000000"; elsif (clk'event and clk='1')then q<=q+m; end if; data<=q; end process; end a;

第一章 信号的分类与基本特性

第一章 信号的分类与基本特性 【内容摘要】 本章主要介绍信号的基本概念、信号的分类、连续时间的基本信号、连续时间奇异信号、及特性、离散时间信号及特点和信号的基本运算。 1.1 信号的基本概念与分类 1.1.1 信号的基本概念 在日常生活和社会活动中,人们会经常谈到信号,比如,交通路口的红绿灯信号,唱歌 和说话的声音信号,无线电发射台的电磁波信号等等。因此,从物理概念上,信号是标志着某种随时间变化的信息。从数学上,信号表示一个或多个自变量的函数。在信号与系统中,我们尤其关心的是电信号。 1.1.2 信号的分类 根据信号的性质可分为:确定信号与随机信号、连续时间信号与离散时间信号、周期信号和非周期信号、能量信号和功率信号。 一、确定信号与随机信号 对应于某一确定时刻,就有某一确定数值与其对应的信号,称为确定信号。如图1-1(a )为一个线性斜波信号,在1t 时刻,对应的数值为1y ,在2t 时刻,对应的数值为2y 。确定信号往往可以用函数解析式、图表和波形来表示。 如果一个信号事先无法预测它的变化趋势,也无法预先知道其变化规律,则该信号称为随机信号,如图1-1(b )所示。在实际工作中,系统总会受到各种干扰信号的影响,这些干扰信号不仅在不同时刻的信号值是互不相关的,而且在任一时刻信号的幅值和相位都是在不断变化的。因此,从严格意义上讲,绝大多数信号都是随机信号。只不过我们在研究信号与系统时,常常忽略一些次要的干扰信号,主要研究占统治地位的信号的性质和变化趋势。本教材主要研究确定信号。 y ) (a 1 2 y ) (b 图 1-1

二、连续时间信号与离散时间信号 对任意一个信号,如果在定义域内,除有限个间断点外均有定义,则称此信号为连续时间信号。连续时间信号的自变量是连续可变的,而函数值在值域内可以是连续的,也可以是跳变的。 如图1-1(a )中所示的斜坡信号,即是一个连续时间信号。 对任意一个信号,如果自变量仅在离散时间点上有定义,称为离散时间信号。离散时间信号相邻离散时间点的间隔可以是相等的,也可以是不相等的,在这些离散时间点之外,信号无定义。 如下例函数表示的信号为一个离散时间信号。其波形图如图1-2所示 ?? ?--===, 2,11 3 ,2,1)(n n n n y 定义在等间隔离散时间点上的离散时间信号,称为序列,序列可以表示成函数形式,也可以直接列出序列值或写成序列值的集合。 在工程应用中,常常将幅值连续可变的信号称为模拟信号,将幅值连续的信号,在固定时间点上取值得到的信号称为取样信号。将幅值只能取某些固定的值,而在时间上等间隔的离散时间信号称为数字信号。 四、能量信号和功率信号 1、 能量信号 将一个电压或电流信号( )f t 加到单位电阻上,则在该电阻上产生的瞬时功率为2()f t ,在一段时间)2 ,2(τ τ-内消耗一定的能量。把该能量对时间区域取平均,即得信号在 此区间内的平均功率。 定义: 若将时间区域无限扩展,信号满足条件 ∞<=?- ∞ →dt t f E 2 2 2 )(lim ττ τ (1-1-1) 称为能量信号。即如果一个信号在无限大时间区域内信号的能量为有限值,则称该信号为能量有限信号或能量信号。 能量信号的平均功率为零。 图 1-2

信号发生器的基本原理

信号发生器的基本原理- 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率 稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后 也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡 器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其 优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器 采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。

通信信息领域常见的信号分类

1.信号参数变化过程分为: 确定性过程,变化过程可以用一个或几个时间t的确定函数来描述,比如sin(t)。 随机过程,信号参数变化过程没有一个确定的变化规律,用数学语言来说,这类事物变化的过程不可能用一个或几个时间t的确定函数来描述。就是说信号输出是随机,无法确定预测的。 2.我们常见的一些信号和噪声大都是平稳随机过程。 3.随机过程的频谱特性是用它的功率谱密度来表示的。 4能量信号:信号能量有限,信号平均功率为0的信号。一般的非周期信号,在有限区间有值的为能量信号。 功率信号:信号平均功率有限,信号总能量无限的信号。比如周期信号,常值信号,一般随机过程中的任一实现都为功率信号。 5.随机过程的任一实现都为确定的功率信号,可以求出这个确定信号的功率谱密度。但是某一实现的功率谱密度不能作为过程的功率谱密度。过程的功率谱密度应看做是任一实现的功率谱的统计平均。但是按照这个方法很难求出过程的功率谱密度。 但是平稳随机过程的功率谱密度P ξ(ω)与其自相关函数R(τ)是一对傅里叶变换关系。 6.对于确定的随机信号,如果不是非周期信号,傅里叶变换可能不收敛,只好研究其功率谱,而不是信号直接傅里叶变换。 功率信号在时间域上是无限的,所以无法直接做傅立叶变换。如果对时间T内的信号做傅立叶变换,T在趋于无穷,其实也就是得到了功率信号的频谱,其模的平方也就是功率谱了。 如果这个信号不是确定信号,而是随机信号,那功率普的计算为其自相关函数的傅立叶变换。 不过在实际实现中,通过一段随机信号的采样来计算出其自相关函数,然后做傅立叶变换得到的功率谱,其实和把它看成一段确知信号,做傅立叶变换再取模平方得到的功率谱是一样的。

(Proteus数电仿真)序列信号发生器电路设计

实验8 序列信号发生器电路设计 一、实验目的: 1.熟悉序列信号发生器的工作原理。 2.学会序列信号发生器的设计方法。 3.熟悉掌握EDA软件工具Proteus 的设计仿真测试应用。 二、实验仪器设备: 仿真计算机及软件Proteus 。 74LS161、74LS194、74LS151 三、实验原理: 1、反馈移位型序列信号发生器 反馈移位型序列信号发生器的结构框图如右图 所示,它由移位寄存器和组合反馈网络组成, 从寄存器的某一输出端可以得到周期性的序列 码。设计按一下步骤进行: (1)确定位移寄存器位数n ,并确定移位 寄存器的M 个独立状态。 CP 将给定的序列码按照移位规律每 n 位一组,划分为M 个状态。 若M 个状态中出现重复现象,则应增加移位寄存器的位数。用n+1位再重复上述过程,直到划分为M 个独立状态为止。 (2)根据M 各不同状态列出寄存器的态序表和反馈函数表,求出反馈函数F 的表达式。 (3)检查自启动性能。 (4)画逻辑图。 2、计数型序列信号发生器 计数型序列信号发生器和组合的结构框图 如图 所示。它由计数器和组合输出网络两部分 组成,序列码从组合输出网络输出。设计 过程分为以下两步: (1)根据序列码的长度M 设计模M (2)按计数器的状态转移关系和序列码的要求组合输出网络。由于计数器的状态设置和输出序列没有直接关系,因此这种结构对于输出序列的更改比较方便,而且还能产生多组序列码。 四、计算机仿真实验内容及步骤、结果: 1、设计一个产生100111序列的反馈移位型序列信号发生器。 1、根据电路图在protuse 中搭建电路图

简化版第3章-信号的分类与描述

第3章 信号的描述方法
3.1 信号的分类 3.2 信号的时域描述 3.3信号的频域描述 3.4 随机信号的描述

在工程和科学研究中,经常要对许多客观存在的物体 或物理过程进行观测,就是为了获取有关研究对象状态 与运动等特征方面的信息。
被研究对象的信息量往往是非常丰富的,测试工作是按 一定的目的和要求,获取信号中感兴趣的、有限的某些特 定信息,而不是全部信息。
为了达到测试目的,需要研究信号的各种描述方式, 本章介绍信号基本的时域和频域描述方法。

3.1 信号的分类
信号按数学关系、取值特征、能量功率等,可以分为: 确定性信号和非确定性信号 连续信号和离散信号 能量信号和功率信号

3.1.1 分类方法一:确定性信号和随机信号

1.确定性信号:能用明确的数学关系式或图像表达
的信号称为确定性信号。
x(t)
m
A
x(t)
k
0
t
0
x (t ) A cos(
k m
t
0
)

u周期信号:经过一段时间间隔重复出现的信号,无
始无终(时域无穷)。典型的如正(余)弦信号。
数学表达:
x(t) x(t nT0 )
(n 1, 2, )
T0 = 2 / 0 =1/ f0 (0 k / m)
周期:满足上式的最小T 值。
频率:周期的倒数,f = 1/T,单位:(Hz 赫兹)
圆频率/角频率:频率乘以2 f, 即 =2 f =2 /T
实际应用中,n 通常取为正整数。

信号与系统实验报告(常用信号的分类与观察)

实验一:信号得时域分析 一、实验目得 1.观察常用信号得波形特点及产生方法 2.学会使用示波器对常用波形参数得测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性得研究,其中重要得一个方面就是研究它得输入输出关系,即在一特定得输入信号下,系统对应得输出响应信号.因而对信号得研究就是对系统研究得出发点,就是对系统特性观察得基本手段与方法.在本实验中,将对常用信号与特性进行分析、研究。 信号可以表示为一个或多个变量得函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同得a取值,其波形表现为不同得形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号得参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)就是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特得运用。其信号如下图所示: 图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示:

图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t—T),其中u(t)为单位阶跃函数。其信号如下图所示: f(t) ? ……??…… 0 t 图1-6脉冲信号 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t) ………… ?0?t 图1-7方波信号 四、实验内容及主要步骤 下列实验中信号产生器得工作模式为11 1、指数信号观察 通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。用示波器测量“信号A组”得输出信号。 输出波形为:

多功能信号发生器课程设计

《电子技术课程设计》 题目:多功能信号发生器 院系:电子信息工程 专业:xxxxxxxx 班级:xxxxxx 学号:xxxxxxxx 姓名:xxx 指导教师:xxx 时间:xxxx-xx-xx

电子电路设计 ——多功能信号发生器目录 一..课程设计的目的 二课程设计任务书(包括技术指标要求) 三时间进度安排(10周~15周) a.方案选择及电路工作原理; b.单元电路设计计算、电路图及软件仿真; c.安装、调试并解决遇到的问题; d.电路性能指标测试; e.写出课程设计报告书; 四、总体方案 五、电路设计 (1)8038原理, LM318原理, (2)性能\特点及引脚 (3)电路设计,要说明原理 (4)振动频率及参数计算 六电路调试 要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试 七收获和体会

一、课程设计的目的 通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。因此,多功能信号发生器制作的集成电路收到了广泛的应用。 二、课程设计任务书(包括技术指标要求) 任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。 要求: 1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。 2.输出幅度为5V的单脉冲信号。 3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤

信号的分类

? 信号的分类 – 按信号载体的物理特性:电、光、声、磁、机械、热信号。 – 按自变量的数目:一维信号、多维信号(二维信号、三维信号等)。 ? 按信号中自变量和幅度的取值特点:连续时间(continuous time, CT )信号:自变量 时间在定义域内是连续的。如果连续时间信号的幅度在一定的动态范围内也连续取值,信号就是模拟信号(analog signal )。自然界中的信号大多数是模拟信号。 ? 离散时间(discrete time, DT )信号:自变量时间在定义域内是离散的。离散时间信号可以通过对连续时间信号的采样来获得,或信号本身就是离散时间信号。 ? 数字信号(digital signal ):时间离散,幅度量化为有限字长二进制数的信号。 ? 信号处理的根本目的: ? 从信号中提取尽可能多的有用信息;增强信号的有用分量;估计信号的特征 参数;识别信号的特性;抑制或消除不需要的甚至是有害的信号分量。 ? 为达到上述目的,需要对信号进行分析和变换、扩展和压缩、滤波、参数估计、特 性识别等加工,统称为信号处理。 ? 信号处理 ? 具体正弦序列有以下三种情况: ? (1) 2π/ ω0为整数:k=1,正弦序列是以2π/ ω0为周期的周期序列。 ? (2) 2π/ ω0是有理数:设2π/ ω0 =P/Q ,式中P 、Q 是互为素数的整数,取k=Q,那么 N=P ,则正弦序列是以P 为周期的周期序列 ? (3) 2π/ ω0是无理数:任何整数k 都不能使N 为正整数,因此,此时的正弦序列不是 周期序列。 ? 线性系统y(n) = T [ax 1(n)+bx 2(n)]=ay 1(n)+by 2(n) ? 线性时不变系统具有因果性的充分必要条件是系统的单位取样响应满 h(n)=0, n<0 ? 系统稳定的充分必要条件是系统的单位脉冲响应绝对可和 ? ? ? ? 序列的离散时间傅里叶变换的定义 ? ? ? ? ? DTFT 的周期性 ? ? 线性 ? ? ? 时移(位移)与频移 ? ? ? 序列乘以n (频域微分) ? ? 共轭序列 ()n h n ∞ =-∞ <∞∑ ) ()()j j n n X e x n e ω ω∞ -=-∞ = ∑ 1()()2j j n x n X e e d π ω ωπ ω π - = ?(2)()(), j j M n n X e x n e ω ωπ∞ -+=-∞ = ∑ 11221212()[()],()[()], [()()]()()j j j j X e DTFT x n X e DTFT x n DTFT ax n bx n aX e bX e ωω ωω ==+=+000 0([()]() [()]()j n j j n j DTFT x n n e X e DTFT e x n X e ωω ωωω---==ωω d e dX j n nx DTFT j ) ()]([=)(*)](*[ωj e X n x DTFT -=) (*)](*[ωj e X n x DTFT =-

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版

6 设计总结 7仪器仪表明细清单 8 参考文献 1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。

2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz 等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波UP-P≤24V,三角波UP-P=8V,正弦波UP-P>1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。 2.函数发生器总方案及原理框图

信号发生器的原理及应用

实验一信号发生器的原理及应用 一、实验目的 (1)熟悉直接数字合成双路函数信号发生器的工作原理以及面板装置及功能; (2)会运用UTG2025A型数字信号合成信号发生器产生标准信号和调制信号。 二、实验设备 (1)UTG2025A型函数/任意波形信号发生器1台; (2)UTD2102C数字存储示波器各1台。 三、实验原理 函数信号发生器是能产生多种特定时间函数波形(如正弦波、方波、三角波 等)供测试用的信号发生器。典型函数信号发生器由输入单元、内/外转换电路、 波形产生电路、频段转换器、扫频电路、占空比和频率调节电路、微处理器、A/D 转换器、直流功率放大器和计数显示器等组成,其电路原理方框图如下所示: 图1典型函数信号发生器电路原理框图 其中波形产生电路、频率调整电路、占空比调整电路、内外扫频控制电路、测频 单元电路等具体电路原理与分析见教材《电子测量技术》P67-P71页内容。 四、实验内容及步骤 4.1 产生标准信号 4.1.1 产生正弦波信号

实验内容:产生一个20MHz、峰峰值100mV、直流偏置-150mV的正弦波信号。 1 实验步骤: (1)确保仪器正确连接后,打开开关,等仪器自检回到主菜 单;(2)按【menu】→【波形】→【正弦波】,如下图所示: (3)按【menu】→【波形】→【参数】 选择【频率】、【幅度】、【直流偏移】、【相位】不同功能按钮进行设 置:可以用三种方法来输入频率值:(其他数字量输入类似) ①通过按方向键来移动选择光标,再通过多功能按钮来增加、减少频率值; ②通过多功能按钮选中再逆时针、顺时针旋转来增加、减少频率值; ③通过数字键盘输入:进入频率设置状态后,当您按下数字键盘任意一个按键后,屏幕弹出输入窗口,如下图所示: 键入数字后再分别选择不同单位。

模电课程教学设计简单函数信号发生器

模拟电子技术课程设计报告 简易函数信号发生器 姓名:李**,马** 班级:********** 学号:********** ********** 日期:2016.12.28

简易信号发生器设计 摘要: 函数信号发生器是一种能能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。现在我们通过对函数信号发生器的原理以及构成设计一个能变换出三角波、正弦波、方波的简易发生器。我们通过对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。按照设计的方案选择具体的原件,焊接出具体的实物图,并在实验室对焊接好的实物图进行调试,观察效果并与课题要求的性能指标作对比。最后分析出现误差的原因以及影响因素。 关键字: 方案确定、参数计算、调试、误差分析。 一.设计目的: 设计构成正弦波、三角波、方波函数信号发生器

二.函数发生器总方案: 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101 全部采用晶体管), 也可以采用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与RC振荡电路的方式形成正弦波—方波—三角波函数发生器的设计方法。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过比较器,整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生正弦波—方波—三角波,再调整方波的占空比进而实现产生锯齿波的电路设计方法,本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产转换电路,比较器输出的方波经积分器得到三角波,三角波到锯齿波的变换电路主要由调节占空比来完成。 三. 设计任务与实验原理 实际任务: 所选为题目2:函数信号发生器

常见信号分类和观察实验

计算机与信息工程学院实验报告 一、实验目的 1. 了解连续信号、离散信号的波形特点; 2. 掌握连续信号、离散信号的Matlab 实现; 3. 熟悉Matlab 中plot、stem 等函数的应用; 4. 掌握利用matlab 函数表示常见信号波形。 二、实验仪器或设备 有matlab软件的计算机一台 三、实验原理 信号可以表示为一个或多个变量的函数,在信号与系统这门课程里仅对一维信号 进行研究,自变量为时间。因此狭义的讲信号是随时间变化的物理量,信号的本质是 时间的函数。对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系 统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常见信号 和特性进行分析、研究。其中包括:正弦信号、指数信号和复指数信号、sinc 函数、 单位阶跃信号、单位冲激信号等。 四、实验步骤及实验结果(包括主要步骤、代码分析等) 1、%正弦信号A cos(ω 0t +φ ) 和A sin(ω 0t + φ ) 分别用Matlab内部函数cos和sin表 示,调用形式为: y = A * cos(ω 0 *t + phi) 和y = A * sin(ω 0 *t + phi) 。例如:A=1.5; w0=2*pi; phi=pi/6; n=0:40; f=0.1; arg= w0*f*n+phi; y=A*sin(arg); stem(n,y); axis([0 40 -2 2]); grid; title('正弦序列'); xlabel('时间序号n'); ylabel('振幅');

函数信号发生器的设计电路

北华航天工业学院 《电子技术》 课程设计报告 报告题目:信号发生器设计电路作

容摘要 本方案主要用集成运放LM324和UA741等元器件设计组成一个简易函数信号发生器。该函数信号发生器主要由迟滞比较器、积分器电路、二阶RC 有源低通滤波器电路等三部份组成。 迟滞比较器电路形成方波,经积分器电路输出三角波,再经二阶RC有源低通滤波器电路形成正弦波,通过电源实现1~12V可调,经过电位器实现频率调节。由此构成了一个简易的函数信号发生器。 本实验主要通过使用Multisim、protel软件等完成电路的软件设计。 关键字:集成运放方波三角波正弦波 目录 一、概述 (1) 二、方案设计与论证 (2) 1.方案一 (2) 2.方案二 (2) 三、单元电路设计与分析 (2) 1.迟滞比较器 3 2.积分器 (3) 3.低通滤波器 (3) 四、总原理图及元器件清单 (4) 五、结论 (6) 六、心得体会 (6) 七、参考文献 (6)

一、概述 通过集成运放构成迟滞比较器、积分器和低通滤波电路,依次分别输出方波、三角波、正弦波。通过调节电压源或滑动变阻器,可改变波形的幅值和频率。 二、方案设计与论证 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。 1.方案一 采用分立器件实现电路组成,主要的部件有双运放uA741运算放大器、电压比较器、积分运算电路、二阶低通滤波电路、选择开关、电位器和一些电容、电阻组成。该方案由三级单元电路组成的,第一级单元可以产生方波,第二级可以产生三角波,第三级可以产生正弦波。 2.方案二 采用集成电路实现,主要部件有高速运算放大器LM318、单片函数发生器模块5G8038、选择开关、电位器和一些电容、电阻组成。该方案通过调节不同电位器可调节函数发生器输出振荡频率大小、占空比、正弦波信号的失真,可产生精度较高的方波、三角波、正弦波,且具有较高的温度稳定性和频率稳定

(完整word版)信号的种类及其对应的标准

信号的种类及其对应的标准(个人整理) (2012-06-17 20:45:30) 分类:硬件类 标签: 信号 种类 标准 ttl cmos lvttl ecl lvds cml 一.TTL 1.定义 全称Transistor-Transistor Logic,即BJT-BJT逻辑门电路,是数字电子技术中常用的一种逻辑门电路。TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于

逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术,TTL电路是电流控制器件。TTL输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。 2.功耗 TTL门电路的功耗比较大,约为十毫瓦,在输出信号发生跳变时,TTL 门电路会产生数值较大的尖峰电流,引起较大的动态功耗。 3.速度 TTL门门电路的速度较高,高于CMOS门电路,影响TTL门电路工作速度的因素是电路内部管子的开关特性,电路结构及内部的各电阻阻值。电阻数值越大,工作速度越低,管子的开关时间越长,门的工作速度越低。门的速度主要体现在输出波形相对于输入波形上有传输的时延T PD,假设空载的功耗为P,则速度-功耗积=T PD*P,这是器件性能的一个重要的指标,其值越小则表明其器件的性能越好 4.其他 TTL门电路中输入端负载特性:悬空时相当于输入端接高电平。因为这是可以看做是输入端接一个无穷大的电阻;在门电路输入端串联10K电阻后再输入低电平,输入端出现的是高电平而不是低电平。因为TTL门电路的输出段负载特性,只有在输入端接的串联电阻小于

信号发生器的基本原理

信号发生器的基本原理 - 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。 信号发生器的分类与用途 信号发生器按传统工作频段分类,有超低频信号发生器、低频信号发生器、高频信号发生器、微波信号发生器。 超低频信号发生器一般是指工作频率下潜到0.1Hz以下的信号发生器,一般用于专业上的特殊用途。低频信号发生器一般是指工作频率主要在1Hz~1MHz的信号发生器,多用于音

基于51单片机的信号发生器 完整电路程序

基于51单片机的低频信号发生器设计 曹晖 0945531215 电子信息工程二班 摘要 本文以STC89C51单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相 结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯 形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。本文介绍了波形的生成原理、硬件电路和软件部分的设计原理。本系统可以产生最高频率798.6HZ的波形。该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点。 关键词:低频信号发生器;单片机;D /A转换;

1 1.设计任务 1.设计题目:基于51单片机的信号发生器的设计与实现 2.任务与要求: 设计一个由单片机控制的信号发生器。运用单片机系统控制产生多种波形,这些波形包括方波、三角波、锯齿波、正弦波等。信号发生器所产生的波形的频率、幅度均可调节。并可通过软件任意改变信号的波形。 3.基本要求: 1).产生三种以上波形。如正弦波、三角波、矩形波等。 2).最大频率不低于500Hz。并且频率可按一定规律调节,如周期按1T,2T,3T,4T 或1T,2T,4T,8T变化。 3).幅度可调,峰峰值在0——5V之间变化。 2.系统概述 2.1设计方案 2.1.1总体方案: 采用AT89C51单片机和DAC0832数模转换器生成波形,加上一个低通滤波器,生成的波形比较纯净。它的特点是可产生任意波形,频率容易调节,频率能达到设计的500HZ以上。性能高,在低频范围内稳定性好、操作方便、体积小、耗电少。既可满足基本要求又能充分发挥其优势,电路简单,易控制,性价比高,所以采用该方案. 2.1.2改变幅度方案: 将输出电压通过一个运算放大器的放大。这样还有个优点是幅度连续可调。既可满足基本要求,并且电路也挺简单。 2.2工作原理 数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得所需要的波形。89C51单片机本身就是一个完整的微型计算机,具有组成微型计算机的各部分部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将89C51再配置键盘及、数模转换及波形输出、放大电路等部分,即可构成所需的波形发生器,其信号发生器构成如下图所示。系统框图

相关文档
最新文档