基本不等式在生活中的应用学生学习探究典型案例

基本不等式在生活中的应用学生学习探究典型案例

学生学习探究典型案例

学校:北京市第55中学授课教师:王京授课时间:2013.10.23 授课班级:高二(1)班组别:姓名:

题目设计:褚子豪(江婷婷小组)

1.母亲公园是鄂尔多斯最受欢迎的主题公园之一,以成吉思汗的母亲诃额仑为寓意而命名,公园以“亲情”为主题,结合民族特色,注重资源节约与利用,迅速发展成为一个大型生态乐园,为了保护绿化成果,现打算在公园中用篱笆将矩形草地围住,已知篱笆总长为720米,草坪的横、纵方向各有一条宽为该边长度10%的矩形小路穿过草坪,如图所示,篱笆必须将草坪所在的区域完全围住,即篱笆必须围住小路与草坪的分界线(不考虑转弯处的浪费情况及篱笆的宽度),请问设计师应怎样设计才能在现有资源下使草坪面积最大?

题目设计:胡雪杨(李伯涵小组)

2.“水立方”是2008年北京奥运会标志性建筑之一,它与国家体育场分列于北京城市中轴线北端的两侧,共同形成相对完整的北京历史文化名城形象,下图为水立方平面设计图,已知水立方地下部分为钢筋混凝土结构,该结构是大小相同的左右两个矩形框架,两框架面积之和为18000平方米,现地上部分要建在矩形ABCD上,已知两框架与矩形ABCD空白的宽度为10米,两框架之间的中缝空白宽度为5米,请问作为设计师应怎样设计矩形ABCD,才能使水立方占地面积最小?

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

基本不等式(导学案)

基本不等式(导学案) ab,3.4 ab,2 1、学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等 号“?”取等号的条件是:当且仅当这两个数相等 a,b2、理解利用基本不等式ab 证明不等式的方法 ,2 ab,3、进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决ab,2 一些简单的实际问题 ab,应用数形结合的思想理解不等式并从不同角度探索不等式的证明过程;ab,2 理解“当且仅当a=b时取等号”的数学内涵 1、回顾:二元一次不等式(组)与简单的线形规划问题。 2、如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案 中找出一些相等关系或不等关系吗? 1、重要不等式: 22如果a,b,R,那么a,b,2ab(当且仅当a,b时取","号) 1

a,b2、基本不等式:如果a,b是正数,那么 ,ab(当且仅当a,b时取","号).2 a,b3、我们称ab为a,b的算术平均数,称的几何平均数为a,b2 a,b224、a,b,2ab和,ab成立的条件是不同的:前者只要求a,b都是实数,2 而后者要求a,b都是正数。 1、已知x、y都是正数,求证: 223333yx(1)?2; (2)(+)(+)(+)?8. xyxyxyxy,xy 92、求(x>5)的最小值. fxx()4,,x,5 283、若x>0,y>0,且,求xy的最小值. ,,1xy 11,4、设a、b?R且a+b=1,求+的最小值 1,a1,b 1、两正数a、b的算术平均数与几何平均数成立的条件。?理解“当且仅当a=b 时取等 号”的数学内涵。 2、当两个正数之积为定值时,其和有最小值 当两个正数之和为定值时,其积有最大值 3、利用基本不等式求最值时必须满足三个条件:一正二定三相等. 4、用均值不等式解决此类问题时,应按如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 2

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

基本不等式及其应用

基本不等式及其应用 一、教学分析设计 【教材分析】 人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。 基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。《考试说明》中内容为:会用基本不等式解决简单的最值问题。通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的理解并能与已有知识建立联系,掌握内容与形式的变化;相关技能已经形成,能用它来解决简单的相关问题)。 【学生分析】 从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。 从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的水平。 【目标分析】 结果性目标: 1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式; 2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形; 3、会用基本不等式解决一些简单的实际问题。 体验性目标: 1、在解决实际问题的过程中,体验基本不等式的本质是求二元的最值问题; 2、在解决实际问题中,体验“形”与“数”间的关联。 重点:创设基本不等式使用的条件。 难点:基本不等式的简单应用,以及使用过程中定值的取得。 【核心问题分析】 核心问题:在学校文化厘清过程中,拟对一块空地实行打造,现对其规划如下:将这块空地建成一个广场,在广场中间建一个长方形文化长廊,在其正中间造一个长方形景观池,并利用长廊内部左下角的那颗古树打造一条直线型景观带。请同学们按照以下要求实行数据设计: 问题1:文化长廊的周长为480米,要求文化长廊所围成的长方形面积最大,应怎样设计其长和宽? 问题2:已知景观池的容积为4800米,深为3米。已知景观池底每平米的造价是150元,池壁每平方米的造价是120元,问怎样设计,使造价最低,最低造价是多少? 问题3:设文化长廊为ABCD,现在长廊ABCD的左下角点E处有颗古树,且点E距左边AB和下边AD的D距离各为20米、10米,为保护古树,现经过古树E建造一直线型的景观带

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

生活中的不等式 练习题 1

第七章一元一次不等式 7.1生活中的不等式 【新知导读】 1、用 表示 关系的式子叫做不等式。 答:不等号,不等 2、用不等式表示: (1)x 的2倍大于x ;(2)a 与b 的差是非负数; 答:(1)2x >x ;(2)a -b ≥0 3、小明今年x 岁,小强今年y 岁,爷爷今年m 岁,小明年龄的3倍与小强年龄的6倍之和不小于爷爷年龄. 答:3x+6y ≥m 【范例点睛】 例1用不等式表示下列各数或数量关系: (1)a 的3倍与b 的51 的和不大于3; (2)2 x 是非负数; (3)x 的相反数与1的差不小于2; (4)x 与17的和比它的5倍小. 思路点拨: (1)中不大于就是小于或等于,即“≤”;(2)中的非负数就是大于等于零,即“≥”;(3)不小于就是大于或等于;(4)中关键词“小”等. 易错辨析:对“非负数”、“至多”、“至少”、“不大于”等这样的表述,未能准确使用不等式的符号,如对x ≥2和x>2认为是同一个不等式; 方法点评:用不等式表示数或数量关系,这与列代数式、列方程一样,都是将语言叙述的数量关系转化为数学式子。 例2用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C 的含量及购买这两种原料的价格如下表: 原 料 维生素及价格 甲种原料 乙种原料 维生素C(单位/千克) 600 100 原料价格(元/千克) 8 4 (1)现配制这种饮料10千克,要求至少含有4200单位的维生素C ,试写出所需甲种原料的质量x(千克)应满足的不等式. (2)如果还要求购买甲、乙两种原料的费用不超过72元,那么你能写出x(千克)应满足的另一个不等式吗? 思路点拨:先弄清题意,找出不等关系。(1)至少含有4200单位的维生素C ,所以600x +100(10-x)≥4200;(2) 费用不超过72元,所以8x +4(10-x)≤72. 易错辨析:(1)维生素C 、原料的费用来源于甲、乙两种原料;(2) 10-x 在解题中是一个整体,需加括号。 方法点评:解题时一定要搞清不等关系,以及每个数量的具体含义。 【课外链接】 数学史话:柯西不等式

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

【新教材】 新人教A版必修一 基本不等式 教案

基本不等式 1.了解基本不等式的证明过程,理解基本不等式及等号成立的条件. 2.会用基本不等式证明简单的不等式及解决简单的最大(小)值问题. 知识梳理 1.基本不等式错误!≥错误! (1)基本不等式成立的条件:a〉0,b〉0 . (2)等号成立的条件:当且仅当a=b时不等式取等号. 2.几个重要不等式 (1)a2+b2≥2ab(a,b∈R); (2)错误!+错误!≥ 2 (a,b同号); (3)ab≤(错误!)2(a,b∈R); (4)错误!≥(错误!)2。 3.基本不等式求最值 (1)两个正数的和为定值,当且仅当它们相等时,其积最大. (2)两个正数的积为定值,当且仅当它们相等时,其和最小. 利用这两个结论可以求某些函数的最值,求最值时,要注意“一正、二定、三相等”的条件. 热身练习 1.若a,b∈R,且ab〉0,则下列不等式中,恒成立的是(D) A.a2+b2>2ab B.a+b≥2错误! C。错误!+错误!〉错误! D。错误!+错误!≥2 A、C中,a=b时不成立,B中,当a与b均为负数时不成立,而对于D,利用基本不等式x+y≥2错误!(x>0,y〉0)成立,故选D. 2.已知a,b为正数,则下列不等式中不成立的是(D) A.ab≤错误! B.ab≤(错误!)2 C。错误!≥错误! D。错误!≥错误! 易知A,B成立,

对于C ,因为a 2+b 2≥2ab ,所以2(a 2+b 2)≥(a +b )2, 所以错误!≥(错误!)2,所以错误!≥错误!,故C 成立. 对于D,取a =4,b =1,代入可知,不等式不成立,故D 不成立. 由以上分析可知,应选D. 3.周长为60的矩形面积的最大值为(A) A .225 B .450 C .500 D .900 设矩形的长为x ,宽为y , 则2(x +y )=60,所以x +y =30, 所以S =xy ≤(x +y 2)2 =225,即S max =225. 当且仅当x =y =15时取“=",故选A 。 4.设函数f (x )=2x +错误!-1(x <0),则f (x )(A) A .有最大值 B .有最小值 C .是增函数 D .是减函数 f (x )=-[(-2x )+(-错误!)]-1≤-2错误!-1, 当且仅当x =-错误!时,等号成立, 所以函数f (x )有最大值,所以选A 。 5.(2017·山东卷)若直线x a +错误!=1(a >0,b 〉0)过点(1,2),则2a +b 的最小值为 8 。 因为直线错误!+错误!=1(a >0,b 〉0)过点(1,2), 所以1a +错误!=1, 所以2a +b =(2a +b )(错误!+错误!)=4+错误!+错误!≥4+2错误!=8, 当且仅当b a =4a b ,即a =2,b =4时,等号成立. 故2a +b 的最小值为8. 利用基本不等式判断大小关系 下列不等式一定成立的是

基本不等式及其应用

2 第二节基本不等式及其应用 考纲解读 a + b I — 了解基本不等式 ab (a ,b ?R )的证明过程. 2 会用基本不等式解决简单的最大(小)值问题 利用基本不等式证明不等式 . 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多 章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断 ,求取值范围问题? 本专题知识的考查综合性较强 ,解答题一般为较难题目,每年分值为5 8分. 知识点精讲 1.几个重要的不等式 (1)a 2 启 0(a € R ),需 兰 0(a 兰 0), a 3 0(a w R ). ④重要不等式串:-ab < 1 1 2 -+- 厶 a b 调和平均值 乞几何平均值 乞算数平均值 乞平方平均值(注意等号成立的条件). 2?均值定理 已知 x ,y ?二 R X + V c s 2 (1)如果X y = S (定值),则xy 乞( )2 (当且仅当“ x = y ”时取“ 2 4 大值”. (2)如果xy = p (定值),则x ■ y _ 2、, xy 二2 p (当且仅当“ x = y ”时取“ =”)?即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证 . a 2 + b 2 1. 2 . (2)基本不等式:如果 a b a,b R ,则 2 ..ab (当且仅当“ a =b ”时取 ”). 1 特例:a 0,a 2; a (3)其他变形: a b 「 (a, b 同号). b a 2 2 (a +b ) 2 ①a b (沟通两和a b 与两平方和 2 2 (沟通两积ab 与两平方和a 2 b 2的不等关系式) ②ab 4 2 2 a - b 的不等关系式) 2 a + b ③ab 乞( )2 (沟通两积ab 与两和a b 的不等关系式) 2 2 (a ,b R )即 a 2 b ”).即“和为定值,积有最

新人教版高中数学《基本不等式》导学案

基本不等式 1.掌握基本不等式,能借助几何图形说明基本不等式的意义. 2.能够利用基本不等式求最大(小)值. 3.利用基本不等式求最值时要注意“一正二定三相等”. 下图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.在正方形ABCD中有4个全等的直角三角形,设直角三角形的两条直角边 长分别为a,b,那么正方形的边长为. 问题1:上述情境中,正方形的面积为,4个直角三角形的面积的和,由于4个直角三角形的面积之和不大于正方形的面积,于是就可以得到一个不等式:,我们称之为重要不等式,即对于任意实数a,b,都有,当且仅当时,等号成立. 我们也可以通过作差法来证明:- =(a-b)2≥0, 所以,当且仅当a=b时取等号. 问题2:基本不等式 若a,b∈(0,+∞),则,当且仅当时,等号成立. 问题3:对于基本不等式,请尝试从其他角度予以解释. (1)基本不等式的几何解释: 在直角三角形中,直角三角形斜边上的斜边上的.在圆中,半径不小于半弦长. (2)如果把看作正数a、b的,看作正数a、b 的,那么该定理可以叙述为:两个正数的不小于它们的. (3)在数学中,我们称为a、b的,称为a、b 的.因此,两个正数的不小于它们的.

问题4:由基本不等式我们可以得出求最值的结论: (1)已知x,y∈(0,+∞),若积x·y=p(定值),则和x+y有最 值,当且仅当x=y时,取“=”. (2)已知x,y∈(0,+∞),若和x+y=s(定值),则积x·y有最 值,当且仅当x=y时,取“=”. 即“积为常数,;和为常数,”. 概括为:一正二定三相等四最值. 利用基本不等式求最值 的最小值. (1)已知x>,求函数y=4x-2+ - (2)已知正数a,b满足ab=a+b+3,求ab的取值范围. 利用基本不等式证明不等式 已知x、y都是正数,求证:(x+y)(x2+y2)(x3+y3)≥8x3y3. 单调性与基本不等式 设函数f(x)=x+,x∈[0,+∞). (1)当a=2时,求函数f(x)的最小值; (2)当02)在x=a处取最小值,则实数a的值为(). -

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

29基本不等式学案

3.4.1基本不等式:2 b a a b +≤ 学案作者:张春燕 一、教学目标 1. 使学生了解基本不等式的代数、几何背景及基本不等式的证明. 2. 感知与基本不等式相近的一些不等式的证明和几何背景. 3. 初步了解用分析法证明不等式,培养学生分析问题能力和逻辑思维能力. 二、教学重点,难点 重点:理解掌握基本不等式,并能借助几何图形说明基本不等式的意义. 难点:利用基本不等式推导一些与其相似的不等式,关键是对基本不等式的理解与掌握. 三、问题导学 问题1:我们把“风车”造型抽象成图3.4-2,在正方形ABCD 中有四个全等的直角三角形,设直角三角形边长为a ,b ,则正方形的边长为_____________面积为_____________. 问题2:那四个直角三角形的面积和为_____________. 问题3:根据四个三角形的面积和正方形的面积,可得到一个不等式:2 2 b a +_____ab 2, 什么时候这两部分面积相等呢? 问题4:证明不等式:2 2b a +≥ab 2. 问题5:特别地,如果a>0, b>0, 则b a +≥ab 2 , 2b a ab +≤,其中2 b a +叫正数a, b 的算术平均数,ab 叫正数a, b 的几何平均数. 问题6:课本98P 探究给出基本不等式的几何解释. 四、探究交流(基本不等式的应用) 已知x, y 都是正数,求证: ① 如果积xy 是定值P ,那么当x=y 时,和x+y 有最小值P 2. ② 如果和x+y 是定值S ,那么当x=y 时,积xy 有最大值24 1S . 证明: 总结:“和定积最大,积定和最小”. 注:应用基本不等式须注意三点: ① 各项或各因式为正. ② 和或积为定值.

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

不等式最最简单应用题习题

一. 解下列不等式,并在数轴上表示出它们的解集. 1.8223-<+x x 2. )1(5)32(2+<+x x 3.x x 4923+≥- 4 . 223125+<-+x x 5. 3 1222+≥+x x 6. )2(3)]2(2[3-->--x x x x 二.不等式应用题 根据实际问题列不等式并求解,主要有以下环节: ⑴ 审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意 的值;⑹作答。 2.某车间有20名工人,要求一天加工120个零件,问:平均每人一天至少加工多少个零件? 3. 某车间有20名工人,要求一天加工113个零件,问:平均每人一天至少加工多少个零件? 5. 一个工程队要求在8天内至少要挖土600m 3,求:平均每天至少要挖土多少m 3? 6. 一个工程队原定在8天内至少要挖土600m 3,在前两天一共完成了150 m 3,由于整个工程 调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m 3? 7. 某种商品进价150元,标价200元,但销量较小。为了促销,商场决定打折销售,若为 了保证利润率不底于20%,那么至多打几折?如果设商场将该商品打x 折,则可列出不等式为: 。 8. 甲现有存款600元,乙现有存款2000元,从本月起甲每月存500元,乙每月存200元。 问几个月后甲的存款开始超过乙的存款额?

9. 某市科学知识竞赛的预赛共20道选择题,答对一道得10分,答错或不答扣5分,总分 不少于80分者就通过了预赛而进入决赛,若小王通过了预赛,那么他至少答对几道题? 10.某公园门票的价格是每位20元,20人以上(含20人)的团体票8折优惠.现有18位游客 春游,如果他们买20人的团体票,那么比买普通票便宜多少钱?至少要有多少人去该公园,买团体票反而合算呢? 11,有一个两位数,其个位数字比十位数字大2,如果这个数大于20小于40,求这个两位数.

基本不等式公开课教案

基本不等式 2 a b + 授课人:祁玉瑞授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2a b +≤ 的证明过程。 难点:2a b +≤ 等号成立条件。 三、教学过程

1.课题导入 2a b ab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和 是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就 得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.得到结论:一般的,如果 ) ""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为222)(2b a ab b a -=-+

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

人教版高中数学必修五学案6:3.4 基本不等式:√ab≤(a b)_2(一)

3.4 基本不等式:2a b ab +≤ (一) 学习目标: 1.了解代数与几何两方面背景,用数形结合的思想理解基本不等式. 2.掌握从不同角度探索基本不等式的方法. 3.从基本不等式的证明过程中进一步体会不等式证明的常用思路. 合作学习 一、设计问题,创设情境 第24届国际数学家大会于2002年在北京召开,右面是大会的会标,其中的图案大家见过吗?在此图中有哪些几何图形?你能发现图形中隐含的不等关系吗?若我们设图中直角三角形的直角边分别为x ,y ,你能用x ,y 表示四个直角三角形的面积和吗?你能用x ,y 表示大正方形的面积吗?根据图形,比较四个直角三角形的面积和与大正方形的面积的不等关系,写出不等式. 二、信息交流,揭示规律 问题1:当四个直角三角形边长可以变化时,四个直角三角形的面积和与大正方形的面积有没有可能相等?相等时,图形产生了怎样的变化? x ,y 有什么关系? 问题2:以上结论我们是在几何图形中的面积关系获得的.同学们能否运用代数的方法对这个结论进行证明?

问题3:同学们对结论中的“当且仅当”如何理解?如果我们使用两个正数a,b分别代替x2,y2,那么,以上结论我们可以写成什么形式? 问题4:对这个结论,我们能否进行证明? 问题5:结论(1)我们是在赵爽弦图中发现的,那么,我们能不能找到结论(2)的几何解释呢?同学们来看这个问题:如图AB是圆O的直径,点C是线段AB(除A、B外)上任意一点,过点C作垂直于AB的弦DE,连接AD,BD.试以a,b表示CD,OD的长度并比较两者的大小. 问题6:什么时候等号成立?做出怎样的解释呢? 问题7:对于一个公式,我们首先要观察结构、进行记忆。同学们观察基本不等式两边,你想到了原来学过的哪些知识? 三、运用规律,解决问题

相关文档
最新文档