光谱仪基础知识概要

光谱仪基础知识概要
光谱仪基础知识概要

第1章衍射光栅:刻划型和全息型

衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见Diffraction Gratings Ruled & Holographic Handbook).

经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。

本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。

1.1 基础公式

在介绍基础公式前,有必要简要说明单色光和连续谱。

提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。

提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。

本书中的公式适用于空气中的情况,即m0=1。因此,l=l0=空气中的波长。

定义单位

α - (alpha) 入射角度

β - (beta) 衍射角度

k - 衍射阶数整数

定义单位

n - 刻线密度刻线数每毫米

D

V

- 分离角度

μ

- 折射率无单位

λ - 真空波长纳米

λ0 - 折射率为μ0介质中的波长

其中λ

0 = λ/μ

1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm

最基础的光栅方程如下:

(1-1)

在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角D V成为常数,由下式决定,

(1-2)

对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为:

(1-3)

假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

图 1.1 单色仪结构示意

图 1.2 摄谱仪结构示意

L

= 入射臂长度

A

L

= 波长l n处出射臂长度

B

b

=光谱面法线和光栅面法线的夹角

H

L

=光栅中心到光谱面的垂直距离

H

表1.1给出了a和b如何随分离角改变,是以图1.1中单色仪为例,在光栅刻线数1200gr/mm的,衍射波长500nm的条件下计算得到的。

表1.1 1200gr/mm光栅的一阶衍射波长500nm处入射角、衍射角随分离角DV的变化

DV αβ

0 17.458 17.458 (Littrow)

10 12.526 22.526

20 7.736 27.736

24 5.861 29.861

30 3.094 33.094

40 -1.382 38.618

50 -5.670 44.330

1.2 角色散

rad/nm (1-4)

dβ = 两个不同波长衍射后角度的差值(弧度)

dλ = 两个波长的差值(nm)

1.3 线色散

线色散定义为聚焦平面上沿光谱展开方向单位长度对应的光谱宽度,单位是nm/mm,?/mm,cm-1/mm。以两台线色散不同的光谱仪为例,其中一台将一段0.1nm宽的光谱衍射展开为1mm,而另一台则将10nm宽的光谱衍射展开为1mm。

很容易想象,精细的光谱信息更容易通过第一台光谱仪得到,而非第二台。相比于第一台的高色散,第二台光谱仪只能被称为低色散仪器。线色散指标反映了光谱仪分辨精细光谱细节的能力。

中心波长l在垂直衍射光束方向的线色散可表示为:

nm/mm (1-5)

式中L B为等效出射焦距长度,单位mm,而dx是单位间隔,单位mm。参见图1.1。

单色仪中,L B为聚焦镜到出口狭缝的距离,或者当光栅为凹面型时光栅到出口狭缝的距离。因此,线色散与cos b成正比,而与出射焦长L B、衍射级数k以及刻线密度n这些参数成反比。

对于摄谱仪而言,任一波长的线色散可通过衍射方向垂直光谱面的波长l n其色散值经倾斜角(g)的余弦修正得到。图1.2给出了“平场”摄谱仪的结构,通常它同线阵二极管配合使用。

线色散:

(1-6)

(1-7)

(1-8)

1.4 波长和衍射阶次

图1.3给出了摄谱仪中聚焦光谱面上光谱范围从200nm到1000nm的一级衍射谱。

当光栅刻槽密度n、a以及b均已知的情况下,根据式(1-1)得到:

kλ=常数 (1-9)

即当衍射级数k值变为两倍原值时, l减半。依此类推。

1.3 色散和衍射级数

以一台可产生波长范围从20nm到1000nm的连续谱光源为例,这一连续谱进入光谱仪分光后,在光谱面上波长800nm的一阶衍射位置上(参看图1.3),其他三个波长400nm、266.6nm、200nm也会出现,从而能够被探测器测得。为了仅仅对波长800nm进行测量,必须采用滤色片来消除高阶衍射。

波长范围从200nm到380nm的一阶衍射测量通常不需要滤色片,原因在于波长数值小于190nm的光均被空气吸收。但是如果光谱仪内部为真空或者填充氮气,这种情况下高阶滤色片又必不可少。

1.5 分辨“能力”

分辨能力是一个理论概念,由下式给出

(无单位) (1-10)

式中,dl为两个强度相等的光谱线之间的波长间距。因此,分辨率指标代表光谱仪甄别相邻谱线的能力。如果两条谱线谱峰之间的距离满足其

中一条谱线谱峰位于另一条谱线谱峰的最近极小值处,即认为两个谱峰被很好的分辨出来,这一规则被称为瑞利判据(“Rayleigh criterion”)。

R可进一步表示为:

(1-11)

λ = 待检测谱线的中心波长

W

= 光栅上光照射区域的宽度

g

N = 为光栅的刻槽总数

不要将分辨能力“R”这一数值量与光谱仪的分辨率或者光谱带宽这些参数混淆(参看第2章)。

理论上讲,一片刻线密度为1200gr/mm、宽度110mm的光栅,当采用它的一级衍射光时,分辨能力的数值通过计算得到R=1200×

110=132,000。因此,在波长为500nm处,光谱带宽等于

然而,实际情况中仪器的几何尺寸由式(1-1)决定。改写为k 的表达

(1-12)

光栅上刻线的总宽度W g为

,因此,(1-13)

式中,

(1-14)

将式(1-12)和(1-13)代入式(1-11)中,得到分辨能力亦可以表示为:

(1-15)

因此,光栅的分辨能力取决于:

?光栅上刻线区域的总宽度

?所关注的中心波长

?工作时的几何值(入射角、衍射角)

由于光谱带宽还取决于光谱仪的狭缝宽度以及系统的校正,因此上述情况是100%的理论情况,即系统的衍射极限 (更深入的讨论请参看第2章 )。

1.6 闪耀光栅

闪耀定义为将一段光谱的衍射最大转移到其他衍射阶次而非零阶。通过特殊设计,闪耀光栅能够实现在特定波长的最大衍射效率。因此,一片光栅的闪耀波长可以是250nm或者1mm等等,这取决于刻槽几何尺寸的选择。

闪耀光栅其刻槽断面为直角三角形,其中一个锐角为闪耀角w,如图1.4所示。然而,110°的顶角在闪耀全息光栅中同样可能出现。选择不同的顶角大小能够优化光栅的整个效率曲线。

1.6.1 Littrow条件

闪耀光栅的几何尺寸可以通过满足Littrow条件的情况下计算得到。Littrow条件是指入射光和衍射光处于自准直状态(如a=b),即入射光

.

线和出射光线沿同一路径。在这一条件下,假定“闪耀”波长为λ

B

(1-16)

比如, 1200gr/mm光栅闪耀波长为250nm且衍射阶次为一阶时,闪耀角(w)等于8.63°。

图1.4 闪耀光栅的刻槽断面示意图,“Littrow条件”

1.6.2 效率曲线

除非特别声明,衍射光栅的效率在Littrow条件下某一已知波长处测得。

绝对效率(%)=输出能量/输出能量*100%(1-17)

相对效率(%)=光栅效率/反射效率*100%(1-18)

相对效率测量需要将反射镜表面镀膜(膜层材料与光栅表面反射膜层材料相同),并且采用与光栅相同的角度设置。

图5a和5b分别给出了闪耀刻线光栅和非闪耀全息光栅的典型效率曲线。

一般而言,闪耀光栅的效率在2/3闪耀波长处和1.8倍闪耀波长处减小为最大值的一半。

(a)刻线闪耀光栅的典型效率曲线

(b)非闪耀全息光栅的典型效率曲线

1.6.3 效率和阶次

一片闪耀光栅不仅有一阶闪耀角,而且也有高阶闪耀角。比如,一片一阶闪耀波长为600nm的光栅,同样也有二阶闪耀波长300nm,以此类推更高阶次。

高阶衍射效率通常与一阶衍射效率趋势相同。对一片一阶闪耀的光栅而言,每个阶次的最大效率值随着阶次k的增加而减小。

衍射效率也随着光栅使用时偏离Littrow条件(a≠b)程度的增加而逐渐减小。

全息光栅能够通过设计刻槽的形状来消除高阶衍射的影响。根据这一性质,通过离子刻蚀工艺制作的浅槽(laminar)光栅其效率曲线在紫外(UV)和可见(VIS)波段能够显著改善。

提示:光栅是非闪耀的并不意味着它的效率较低。参见图

1.5b,图中给出了一片1800gr/mm正弦型刻槽全息光栅的衍射效率曲线。

1.7 衍射光栅的杂散光

除被测波长外探测器接收到的其他波长(通常包括一种或者多种“杂散光”)统称为杂散光。

1.7.1 散射光

散射光可能由于下列原因造成:

?由于光学元件表面的缺陷造成的随机散射光

?由于刻划光栅刻槽时的非周期失误造成的聚焦散射光

1.7.2 鬼线

如果衍射光栅上存在周期性刻划失误,那么鬼线(并非散射光)将聚焦在衍射平面上。鬼线强度由下式给出:

(1-19)

其中,

= 鬼线强度

I

G

= 母光强度

I

P

n = 刻线强度

k = 阶次

e = 刻槽中失误的位置

鬼线在单色仪的色散平面上聚焦并成像。

全息光栅的杂散光水平一般比经典刻线光栅的1/10还要小。杂散光通常是非聚焦的,并且出现在2p 全角度各个方向。

全息光栅没有鬼线,因为它不可能出现周期性的刻划失误。因此,它是克服鬼线问题最好的解决方案。

1.8 光栅的选择

1.8.1 什么时候选择全息光栅

1.当光栅是凹面的。

2.当用到激光时,比如拉曼光谱、激光激发荧光光谱等。

3.刻线密度必须不小于1200gr/mm(最高可到6000gr/mm,尺寸可达120mm×

140mm)而且光谱范围为近紫外、可见和近红外的任何时候。

4.当光谱工作范围在紫外波段,波长小于200nm甚至到3nm时。

5.实现高分辨率的方法中,高刻线密度光栅优于高衍射阶次的低刻线密度光

栅。

6.离子刻蚀全息光栅能够适用的任何场合。

1.8.2 什么时候选择刻线光栅

1.工作波长高于1.2mm的红外波段,且无法选用离子刻蚀全息光栅。

2.需要低刻槽密度的场合,如刻槽密度小于600gr/mm。

请记住,鬼线及相应的杂散光强度正比于阶次和刻槽密度乘积的平方(式(1-19)中的n2和k2)。尽量避免使用高刻线密度或者高衍射阶次的刻线光栅。

第2章单色仪和摄谱仪

2.1 基本组成

在光源的所有波长上,单色仪和摄谱仪系统在出口平面上形成入口狭缝的像。实现这一功能有很多种配置设计,在这里仅仅讨论最常见包含平面光栅系统(PGS)和像差修正全息光栅(ACHG)系统。

定义

入射臂的长度

L

A

LB 出射臂的长度

h 入射狭缝的高度

h' 入射狭缝的像高度

a入射角

b衍射角

w 入射狭缝的宽度

w' 入射狭缝的像宽度

圆形光栅的半径

D

g

W

矩形光栅的宽度

g

矩形光栅的高度

H

g

2.2 Fastie-Ebert型配置

Fastie-Ebert型仪器主要由一片面积很大的球面反射镜和一片衍射光栅组成(参看图2.1)。

首先,反射镜的一部分收集并准直将要入射到平面光栅上的光。然后,反射镜的另一部分将衍射分光后的光线聚焦并使之在出射平面上成入口狭缝的像。

这是一类造价低廉、非常常见的设计,但是由于系统偏差如球面偏差(spherical aberration)、彗差(coma)、散光偏差(astigmatism)以及非平面焦平面等,它在离轴光线的成像质量方面能力有限。

图2.1 Fastie-Ebert 型配置

2.3 Czerny-Turner型配置

Czerny-Turner(CZ)型单色仪由两片凹面反射镜和一片平面衍射光栅组成(参看图2.2)。

虽然这两片反射镜各自的功能与Fastie-Ebert型配置中的单片球面反射镜的功能相同,如首先准直入射光线(反射镜1),然后聚焦从光栅反射的色散分离光线(反射镜2),但是Czerny-Turner型配置中反射镜的尺寸却可以根据需要改变。

采用非对称几何学,Czerny-Turner型配置能够设计实现平面光谱面以及在特定波长上良好的彗差修正。但球面偏差和散光偏差在所有波长上依然存在。

采用CZ配置,也能够设计与大通量光学相匹配的系统。

图2.2 Czerny-Turner 型配置

2.4 Czerny-Turner/Fastie-Ebert型的PGS偏差

PGS摄谱仪存在某些偏差,降低了光谱分辨率、空间分辨率以及信噪比等指标。最突出的偏差有散光偏差、彗差、球面偏差以及散焦(defocusing)。PGS仪器常常离轴使用,因此偏差在每个平面上都有所不同。本书并不打算详细回顾这些偏差的概念和细节1,但是在考虑这些偏差产生的效应时,理解光路差(OPD)的概念是很有帮助的。

本质上,光路差(OPD)是实际产生的波前和没有偏差的条件下应该得到的“参考波前”之间的差别。这一参考波前是以像为中心的球面或者成像在无穷远处时的平面。比如:

散焦是指光线在探测器表面外的另一个平面上聚焦,从而造成不清晰成像,降低了光谱带宽、空间分辨率和光信号的信噪比等参数。最常见的一个实例就是球面波前入射到图2.2中的反射镜M1上。当PGS单色仪采用一套单出口狭缝和一支光电倍增管(PMT)探测器时,散焦不会造成影响。然而,未修正的PGS仪器其聚焦面为曲面,从而采用平面线性二极管阵列时在探测器的两端会受到散焦的影响。如图2.2所示的几何修正CZ配置几乎消除了这一问题。散焦带来的OPD随数值孔径的平方改变。

彗差是PGS仪器的离轴特性导致的结果,如图2.3所示由于光线在色散平面上扭曲从而表现为谱线的扩张变形。彗差是造成光学带宽和光信号信噪比这些参数降低的原因。彗差带来的OPD随数值孔径的立方变化。在CZ配置中如图2.2所示,可以通过计算一个合适的几何尺寸从而在波长上修正彗差的影响。

图2.3 彗差效应

球面偏差是指非光学平面中心出射的光线聚焦在光学平面中心出射光线的焦点上这一情况(参看图2.4)。球面偏差导致的OPD随数值孔径的4次方变化,而且不使用非球面光学是无法修正的。

图2.4 球面偏差效应

散光偏差是离轴几何的特性。在这种情况下,平面波以一定的入射角照射在球面反射镜上(如图2.2中的反射镜M2),这时反射镜出现两个焦点:切面(tangential)焦点F t和矢面(sagittal)焦点F s。散光偏差带来的效应是入口狭缝处的点光源在出口处成垂直于色散平面的线型像(参看图

2.5),从而阻止了空间分辨率的提高并且由于狭缝高度的增加而降低了光信号的信噪比。散光偏差导致的OPD随数值孔径的平方和离轴角度的平方变化,并且不使用非球面光学是无法修正的。

图2.5 “离轴”使用凹面反射镜时的散光偏差效应

2.4.1 像差校正平面光栅

全息光栅的最新进展使得球面反射镜CZ型光谱仪中特定波长上的所有偏差能够被完全修正,并且在一个较宽的波长范围内能够最大程度地缓解偏差的影响。

2.5 凹面像差校正全息光栅

这一类型的单色仪和摄谱仪都仅仅使用一单片全息光栅,而没有其他辅助光路。

在这一类仪器中,光栅不仅分离不同波长的光,而且对入射光进行聚焦。

由于设计中仅仅采用了一个光学元件,这类仪器造价低廉、而且外形紧凑。图2.6a给出了ACHG单色仪的结构,而图2.6b给出了ACHG摄谱仪的结构。其中,焦平面的位置由下列参数来决定:

βH - 垂直光谱面方向和光栅法线方向的夹角 - 从光栅中心到光谱面的垂直距离

L

H

(a) ACHG单色仪

(b) ACHG摄谱仪

2.6 单色仪配置中计算α和β

从式(1-2)得到,

(为常数)

根据此式和式 (1-3),

(2-1)

根据式(2-1)和(1-2)能够分别决定a和b。参看表2.2中的实例。

提示:实际中,可实现的最大波长受光栅的机械旋转范围决定。这意味着光栅的刻线密度增加一倍时,相应的光谱仪光谱范围减小一半。(参看第2.14节).

2.7 单色仪的光学部分

要理解如何评价整套单色仪系统,有必要从传输光学部分开始,从光源到出射狭缝(见图2.7)。这里我们给出“不折叠”的系统示意图,以直线光路的形式展示。

航海学知识点汇总

航海学知识点汇总 第一章航海学基础知识 1.大地球体:大地水准面围成的球体 2.大地球体两个近似体:椭圆体(进行精度较高计算如定义地理坐标和制作墨卡托海图); 圆球体(简易计算如大圆航线和简易墨卡托海图) 3.地理坐标:基准线是格林经线、纬线经度:由格林经线向东或向西到该点经线,范围 (0—180);纬度:某点在地球椭圆子午线上的法线与赤道面交角,范围(0—90) 4.经差、纬差(范围都为0—180);到达点相对于起航点的方向;Dφ=φ2-φ1 Dλ=λ2- λ1N/E为正号S/W取负号;结果为正为N/E,为负则为S/W;注意如果得出经差大于180,则用360减去其绝对值,然后符号更换。 5.关于赤道、地轴和球心对称问题(关于地心对称纬度等值反向,经度相差180°) 6.关于不同坐标系修正问题:同名相加、异名相减,结果如果为负名称与原来相反。GPS 坐标系左边原点在地心。 7.方向的确定:方向是在测者地面真地平平面上确定的。测者子午圈与测者地面真地平的 交线为南北线,测者卯酉圈(东西圈)与测者地面真地平平面交线为东西线。方向的三种表示法,要会换算。(圆周、半圆周、罗经点)一个罗经点11.25°。 圆周法是以真北为起点顺时针0-360°,半圆法是以北或南为起点顺时针或逆时针0-180°;换算时最好用作图法比较直观。 8.理解真航向(真北到航向线);真方位(真北到方位线);舷角(航向线到方位线,两种 表示法)所以真方位和相对方位(舷角)只是起算点不同,目的点相同,只是相差了真北到航向线的角度,即真航向。要会换算:TB=TC+Q 或TB=TC+Q(右正左负),具体计算既可以用公式也可以用作图法解决(分别以测者和目标为中心做坐标系,连接测者与目标为方位线,便可一目了然。 9.罗经向位换算:罗经差:罗航向与真北夹角;陀螺差:陀螺北与真北夹角;磁差:磁北与 真北夹角,与时间、地区及地磁异常有关;自差:罗北与磁北夹角,与航向、船磁及磁暴有关;TC/GC/MC/CC之间换算要掌握TC=GC+ΔG=CC+ΔC=MC+VAR;MC=CC+DEV 10.关于磁差:航用海图、小比例尺海图、港泊图分别在罗经花、磁差曲线、和海图标题栏 给出。计算所求磁差=图示磁差+年差x(所求年份-测量年份)○1图示磁差取绝对值;○2年差增加取+,减少取—,若用E/W表示,则与图示磁差同名取+异名取—;○3结果为+时,所求磁差与图示磁差同名;为负时所求磁差与图示磁差异名。 11.海里定义:地球椭圆子午线上纬度1分所对应的弧长1n mile=1852.25-9.31cos2φ(m) 赤 道最短,两极最长44014—90之间实际船位落后于推算船位;44014S—44014N之间,实际船位超前于推算船位。 12.测者能见地平距离D e、物标能见地平距离D h、物标地理能见地平距离D0的区别与计算。 13.中版射程:晴天黑夜,测者眼高5米时,理论上能够看到的灯标灯光的最大距离,某灯 标射程等于该灯标光力能见距离和5米眼高地理能见距离中较小者,中版射程与眼高无关,但要是问最大可见距离就有关了。英版射程:光力射程或额定光力射程,它只与光力能见距离和气象能见度有关。如何求最大可见距离问题:○1算出物标地理能见距离D0;○2和射程比较取小者。 14.航速与航程V船不计风流;V L计风不计流;V G计风又计流,所以V船与V L比只差风, 可以判断顶风逆风;V L与V G只差流,可以判断顶流逆流。船速和计程仪改正率几种情况的测定ΔL=S L-(L2-L1)/L2-L1记住:SL是准确的对水航程。几种测船速和ΔL的测量方法(无风流、恒流、等加速流、变加速流几种情况)

2021新高考全国卷语文语法基础知识总汇

2021新高考全国卷语文语法基础知识总汇 (语素)—最小的语言单位,如:人、椅、巧克力等。 词— 最小的语法单位,有两个或两个以上语素组成。如:人民、椅子、巧克力蛋糕等。 短语— 又称词组,由两个或两个词组成。如:人民幸福、椅子破了、巧克力蛋糕很甜等。(句子)— 语段 一,词的构成可分为“单纯词”和“合成词”。 (1)单纯词 A.单音节,例如:天、地、写、看、我、啊等 B.多音节:连绵词——双声的指两个音节的声母相同的连绵词 如;参差仿佛伶俐崎岖 ——叠韵的指两个音节的“韵”相同的连绵词 如;彷徨窈窕蟑螂翩跹 ——其他的蝴蝶鸳鸯玻璃芙蓉 叠音词——由两个相同的音相叠而构成 姥姥悄悄纷纷往往 音译外来词—葡萄咖啡沙发巧克力马拉松尼古丁 (2)合成词 A.并列式—由两个意义相同相近,相关或相反的词根并列组合而成。 例:途径体制价值美好寒冷始终买卖国家干净人物 B.偏正式——前一词根修饰,限制后一词根。 例:冰箱小说火红蜡黄笔直 C.补充式——后一词根补充说明前一词根 例:提高说服延长车辆书本纸张 D.动宾式——前一词根表示动作、行为,后一词根表示支配的对象 例:司机管家动员保健达标美容 E.主谓式——前一个词根表示被陈述的事物,后一词根是陈述前一词根的,主谓名动形 例:地震霜降年轻眼热心酸自动 F.附加式——词缀+词根词根+词缀 词缀+词根:老虎老乡第一第五阿姨阿毛 词根+词缀:刀子扳子石头木头作者读者 此外还有词根和一个叠音词缀结合的:红通通的笑嘻嘻的 (3)重叠式

姐姐哥哥仅仅刚刚偏偏 二、短语 短语,也叫词组,是由词语与词语组合而成的、能够独立运用语言单位。由此可与看出短语的特征:一是由词语与词语组成,二是能够独立运用。要注意的是,短语与词语和句子有相像之处。像词语,是说有些短语具有词语的语法功能;像句子,是说短语只是书面上没有标点,口语中没有语气。比如“多么迷人的九寨沟”这是短语,可口语里加上语气,书面上加上标点,就是一句话——“多么迷人的九寨沟洼!” 短语按照结构来考察,可以分为十种:并列短语、偏正短语、动宾短语、介宾短语、补充短语、主谓短语、的字短语、兼语短语、连动短语、复指短语 [口诀]短语看结构,十种莫忧愁。并偏动介补,主的兼连复 1、并列短语:是由两个或两个以上的名词、动词或形容词并列组成的,词和词之间是平等的联合,没有轻重主次之分。 例如:雄伟壮丽、报纸杂志。民俗风情、吃喝穿戴、这个那个、和谐幸福 2、偏正短语:是由名词、动词或形容词与在他们前头起修饰作用的词组成的,名词、动词、形容词是中心语,修饰名词的词是定语,修饰动词、形容词的词是状语。定语、状语与中心语的关系是偏正关系。用()表示定语,用[]表示状语。 1)名词性偏正短语——定语+名词(或代词) ①名词、代词、动词、形容词作定语。例如: 名+名:中华情赤壁赋出师表兰亭集序荷塘月色故都的秋赤壁之 战 代+名:我们家这个人之二虫这只黄鹂那只白鹭这条纱巾那根拐 棍 动+名:发言稿止痛片美发厅调查提纲训练计划运动规律游览路 线 形+名:黑牡丹红太阳白玫瑰绿色食品经典作品优秀分子永恒 魅力 ②指示代词、数词、量词组合作定语。例如: (指+数+量)+名:这支笔这一位委员那一个书包这两个人那一年六月(数+量)+名:七根火柴一年四季一件小事一曲窦娥冤千古关汉卿 (2)动词性偏正短语——状语+动词 ①状语表示的意义 状语可以表示动作、行为的情态、时间、频率、范围、处所、对象等。例如:表示情态:努力进取认真研究大力发展倾情奉献喜闻乐见娓娓动听 表示时间:猝死马上出发立刻行动现在开始从眼前抓起于拂晓结束

(完整版)航海学基础知识

第三章 航向、方位和距离 第一节 航海上常用的度量单位 一、长度单位 1.海里(nautical mile, n mile) 1)定义海里 等于地球椭圆子午线上纬度一分所对应的弧长 简写为1n mile 或1'。 数学公式:1(1852.259.31cos 2)nmile m ?=- 赤道最短,1842.9m ,两极最长,1861.6m ;两地最大差值是18.7m 。 2)标准海里 英国为1853.18m(6080英尺); 我国采用1929年国际水文地理学会议通过的海里标准,1n mile=1852m 。 约在纬度44o14'处1n mile 的长度才等于1852m 3)航海实践中产生的误差 例:某轮沿着赤道向正东航行,每小时25n mile ,航行一天后航程是 2524=600n mile ?(按1n mile 等于1852m 计算) ,如果按赤道1 n mile 的实际长度1842.94m 计算,则船舶一天航行的距离是: 1852600603n mile 1842.94 ?≈ 由此可以看出,将1n mile 确定为1852m 后,所产生的误差只有航行距离的0.5%。若在中纬度海区航行,则所产生的误差将更小。 2.链(cable,cab) 1n mile 的十分之一为1链。链是用来测量较近距离的单位。1链=185.2m 3.米(meter,m) 国际上通用的长度度量单位。 航海上用来表示海图里的山高和水深,有时也用来度量距离。 4.拓(fathom)、英尺(foot,ft)和码(yard,yd) 旧英版海图上用英尺和拓表示水深;山高以英尺表示。 用海里、码和英尺来度量距离。 1拓=1.829m 或6 ft 、1yd=0.9144m 或3 ft 、1 ft=0.3048m 。

红外光谱分析仪基础知识全解

红外光谱分析仪基础知识 前言 (2) 第一章红外光谱法及相关仪器 (4) 一. 红外光谱概述 (4) 1. 红外光区的划分 (4) 2. 红外光谱法的特点 (5) 3. 产生红外吸收的条件 (5) 二. 红外光谱仪 (6) 1. 红外光谱仪的主要部件 (6) 2. 红外光谱仪的分类 (9) 3. 红外光谱仪各项指标的含义 (12) 三.红外光谱仪的应用 (15) 四.红外试样制备 (16) 四.红外光谱仪的新进展 (17)

前言 分析仪器常使用的分析方法是光谱分析法,光谱分析法可分为吸收光谱分析法和发射光谱分析法,而吸收光谱分析法又是目前应用最广泛的一种光谱分析方法:它包括有核磁共振,X射线吸收光谱,紫外-可见吸收光谱,红外光谱,微波谱,原子吸收光谱等。但最常用的则是原子吸收光谱、紫外-可见吸收光谱和红外光谱,这些方法的最基本原理是物质(这里说物质都是指物质中的分子或原子,下同)对电磁辐射的吸收。还有拉曼光谱和荧光光谱,也是比较常用的手段,它们的原理是基于物质发射或散射电磁辐射。其实物质与电磁辐射的作用还有偏振、干涉、衍射等,由此发展而成的是另外一系列的仪器,如椭偏仪、测糖仪、偏光显微镜、X射线衍射仪等等,这些仪器都不是基于光谱分析法,不是我们介绍的重点。 吸收光谱可分为原子吸收光谱和分子吸收光谱。当电磁辐射与物质相互作用时,就会发生反射、散射、透射和吸收电磁辐射的现象,物质所以能够吸收光是由物质本身的能级状态所决定的。例如原子吸收可见光和紫外光,可以使核外电子由基态跃迁到激发态,相应于不同能级之间的跃迁都需吸收一定波长的光。因此,如有一波长连续的光照射单原子元素的蒸气(如汞蒸气、钠蒸气等),将会产生一系列的吸收谱线。由于在一般情况下原子都处于基态,通常只有能量相当于从基态跃迁到激发态的所谓主系谱线出现在原子的吸收光谱中。 而分于吸收光谱则比较复杂。它们不是分立的谱线而是许多吸收带。因为每一个分子的能量包括三部分,即分子的电子能量、振动能量和转动能量。每一种能量都是量子化的。当电子有一种能级跃迁到另一能级时,可能同时还伴有振动能级和转动能级的跃迁。应此分子吸收光谱是一系列的吸收带。通常引起原子或分子中外层价电子的跃迁需要1.5-8.0ev的能量,其相应的辐射波长在 150nm-800nm之间,这是紫外-可见吸收光谱的波长范围。引起振动跃迁或振动-转动跃迁的能量是0.05-1.2ev,相应的辐射波长在1.0-25μm之间,这是红外光谱的范围。

数据通信基本知识

数据通信基本知识 -------------------------------------------------------------------------- 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media)为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference),我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1)双绞线 双绞线(Twisted Pair)是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图1.1所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2)同轴电缆 同轴电缆(Coaxial Cable)由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2.玻璃纤维 目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维,简称光纤(Optical Fiber)或光缆(Optical Cable)。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode)或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel)是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot;联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和

RQ-1 压力容器基础知识

压力容器基础知识 第一节压力容器的定义与管辖边界 一、弄清“压力容器”的概念需要区分 >>容器 盛装、容纳物品的器皿或设备。一般具有固定形状。 如:箱、罐、坛,油轮、原油储罐 各种常压容器、压力容器等 >>压力容器 承受一定压力的封闭设备。 此处压力是容器内部的绝对压力与所处环境或外部绝对压力的压力差。 如:压力锅,汽车轮胎,压缩机气缸,深海潜水器,以及各种需要强制安全管理的压力容器(即“法规意义的压力容器”) >>法规意义的压力容器 压力差的存在会造成危险性,失效后会带来人员伤亡和/或财产损失。因此,危险性较大的压力容器需要进行强制安全管理,由此国家出台了系列法律法规和安全技术规范、标准。按照特种设备安全法的规定,采用目录管理。 目前执行: 质检总局2014.10.30公布的《特种设备目录》(2014年第114号) 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力。 大于或者等于0.1MPa(表压)的气体、液化气体和最高工作温度高于或者等于标准沸点的液体、容积大于或者等于30L且内直径(非圆形截面指截面内边界最大几何尺寸)大于或者等于150mm的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱。 二、五个要点 ·要点1:涵盖的种类(均具有单独的安全技术监察规程) 固定式压力容器示例 移动式压力容器示例

气瓶示例 氧舱示例

·要点2:压力限定 固定式容器:最高工作压力大于或者等于0.1MPa(表压) 移动式容器:最高工作压力大于或者等于0.1MPa(表压) 气瓶:公称工作压力大于或者等于0.2MPa(表压) 氧舱:未限定 所述“压力”指内压力。 ·要点3:尺寸/体积限定 固定式容器:容积大于或者等于30L且内直径大于或者等于150mm(非圆形截面指截面内边界最大几何尺寸) 移动式容器:(同上) 气瓶:压力与容积的乘积大于或者等于1.0MPa·L 氧舱:未限定 ·要点4:盛装介质限定 固定式容器:气体、液化气体和最高工作温度高于或者等于标准沸点的液体 移动式容器:(同上) 气瓶:气体、液化气体和标准沸点等于或者低于60℃液体 氧舱:未限定 要点5:同时满足 同时满足压力、介质、几何尺寸要求的固定式压力容器、移动式压力容器和气瓶,才属于“法规意义的压力容器”范畴。 未对氧舱的压力、介质、几何尺寸进行限定。 “法规意义的压力容器”通常简称为“压力容器” 三、几个概念 最高工作压力:在正常工作情况下,容器顶部可能达到的最高压力。(表压力) 最高工作温度:在正常工作情况下,容器介质的最高温度。 公称工作压力:对压缩气体,是指在基准温度(20 ℃)下,气瓶内压缩气体达到完全均匀状态时的限定压力(表压力)。对高(低)压液化气体、溶解气体、低温液化气体、混合气体的公称工作压力在“瓶规”中均有界定。 标准沸点:在一个标准大气压下(101325Pa)的沸点称为该液体的“标准沸点”,例如水的标准沸点为100℃。 液化气体:指临界温度高于等于-50 ℃的高(低)压液化气体(常温),临界温度低于-50 ℃的低温液化气体。 四、《特种设备安全监察条例》对压力容器的界定 (一)从压力、介质、几何尺寸等方面对压力容器管辖边界的界定 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压),且压力与容积的乘积大于或者等于2.5MPa·L的气体、液化气体和最高工作温度高于或者等于标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L 的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱等。 1.TSG21-2016 大固容规对固定式压力容器的界定 固定式压力容器是指安装在固定位置使用的压力容器。 本规程适用于特种设备目录所定义的、同时具备以下条件的压力容器: (1)工作压力大于或者等于0.1 MPa; (2)容积大于或者等于0.03 m3并且内直径(非圆形截面指截面内边界最大几何尺寸)

航海学基础知识(可编辑修改word版)

第三章航向、方位和距离 第一节航海上常用的度量单位 一、长度单位 1.海里(nautical mile, n mile) 1)定义海里 等于地球椭圆子午线上纬度一分所对应的弧长 简写为 1n mile 或 1'。 数学公式:1nmile = (1852.25 - 9.31cos 2)m 赤道最短,1842.9m,两极最长,1861.6m;两地最大差值是 18.7m。 2)标准海里 英国为 1853.18m(6080 英尺); 我国采用 1929 年国际水文地理学会议通过的海里标准,1n mile=1852m。 约在纬度 44o14'处 1n mile 的长度才等于 1852m 3)航海实践中产生的误差 例:某轮沿着赤道向正东航行,每小时 25n mile,航行一天后航程是25? 24=600n mile (按1n mile 等于 1852m 计算),如果按赤道 1 n mile 的实际长度1842.94m 计算,则船舶一天航行的距离是: 1852 ? 600 ≈ 603n mile 1842.94 由此可以看出,将1n mile 确定为1852m 后,所产生的误差只有航行距离的 0.5%。若在中纬度海区航行,则所产生的误差将更小。 2.链(cable,cab) 1n mile 的十分之一为 1 链。链是用来测量较近距离的单位。1 链=185.2m 3.米(meter,m) 国际上通用的长度度量单位。 航海上用来表示海图里的ft高和水深,有时也用来度量距离。 4.拓(fathom)、英尺(foot,ft)和码(yard,yd) 旧英版海图上用英尺和拓表示水深;ft高以英尺表示。 用海里、码和英尺来度量距离。 1 拓=1.829m 或 6 ft、1yd=0.9144m 或 3 ft、1 ft=0.3048m。 目前英版的拓制海图正被米制海图(metric chart)所代替 5.公里(kilometer,km) 用于海图上表示两个陆标间较远的距离单位。1km=1000m。

通信原理基础知识整理

通信常识:波特率、数据传输速率与带宽的相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为:Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最大数据传输速率(或码元速率)与信道带宽、信噪比(信号噪声功率比)之间的关系,以比特每秒(bps)的形式给出一个链路速度的上限。

2020高考语文基础知识考点汇总

知识·积累 专题一现代汉语普通话字音的识记(字音) 多音字及其读音识记 一、常见多音字及其读音 有两个或两个以上读音的字叫多音字。 A 阿①ā阿婆阿姨②ē阿附阿胶 腌①ā腌臜②yān腌肉 挨①āi挨个儿挨近②ái挨打挨说 拗①ào拗口②niù执拗③ǎo拗断 B 扒①bā扒开扒车②pá扒手扒糕 把①bǎ把握把持把柄②bà茶壶把儿花把儿 膀①bǎng臂膀②páng膀胱③bàng吊膀子④pāng膀肿 蚌①bàng蚌壳②Bèng蚌埠 薄①báo薄饼②bó单薄稀薄薄情薄礼③bò薄荷 堡①bǎo碉堡堡垒②bǔ堡子③pù十里堡 暴①bào暴露②pù(同“曝”) 背①bèi脊背背景②bēi背包背债 奔①bēn奔跑奔波②bèn投奔 臂①bì手臂臂膀②bei胳臂 辟①bì复辟②pì开辟 扁①biǎn扁担②piān扁舟 1 / 130

便①biàn方便便利便宜从事②pián便宜 骠①biāo黄骠马②piào骠勇 屏①bǐng屏息屏气②píng屏风③bīng屏营 剥①bō(书面组词)剥削(xuē)②bāo(口语单用)剥皮 泊①bó淡泊停泊②pō湖泊 伯①bó老伯伯父②bǎi大伯子(丈夫的哥哥) 簸①bǒ颠簸②bò簸箕 卜①bo萝卜②bǔ占卜 C 参①cān参观参加②cēn参差③shēn海参人参 藏①cáng矿藏②zàng宝藏 曾①céng曾经不曾未曾②zēng曾孙曾祖 差①chā(书面语)偏差差错②chà(口语)差点儿③cī参差④chāi差遣差事出差交差 刹①chà刹那②shā刹车 禅①chán禅师②shàn禅让封禅 场①chǎng场合冷场②cháng场院一场雨 朝①cháo朝代朝阳(向着太阳) ②zhāo朝夕朝阳(早晨的太阳) 嘲①cháo嘲讽嘲笑②zhāo嘲哳 车①chē车马车辆②jū(象棋棋子的一种)弃车保帅 称①chèn称心对称②chēng称呼称道 乘①chéng乘车乘机②shèng史乘千乘之国 盛①chéng盛饭盛器②shèng盛产盛开盛况盛名 澄①chéng(书面语)澄清(弄清楚认识、问题等) ②dèng(口语)澄清(使杂质沉淀,液体变清) 匙①chí汤匙②shi钥匙 冲①chōng冲锋冲击②chòng冲床冲劲儿 2 / 130

光谱基础知识解读

太阳光光谱 紫外线谱带:波长280-400nm之间,其特点是穿透性强,可使人体皮肤黑色素沉积,颜色加深,过度的紫外线曝晒会导致皮肤癌,可导致地毯、窗帘、织物及家具油漆褪色。 可见光谱带:波长380~780nm之间,其特点是肉眼可以看见的唯一光谱,可见光波段进一步可以分为不同的颜色(赤橙黄绿蓝靛紫七色),对人体没有直接伤害。 红外光谱带:波长700~2400nm之间,其特点是我们可以直接感受到阳光“不可见”的热量,所含能量最大,所以热量也高。 各波段的远近红外线构成了太阳能的53%,紫外线占3%,可见光占44%。 元素光谱简介 如果物质是以单原子的形式而存在,关键看该原子的电子激发能了。如果在可见光的某个范围内,并且吸收某一部分光线,那它就显剩下的部分的光线的颜色。如该原子的电子激发能非常低,可以吸收任意的光线,该原子就是黑色的,如果该原子的电子激发能非常高。不能吸收任何光线,它就是白色的。如果它能吸收短波部分的光线,那它就是红色或黄色的。 具体的元素光谱:红色代表硫元素,蓝色代表氧元素,而绿色代表氢元素。 元素燃烧发出的光谱 燃烧所发出的光色根据不同的元素发出不同的光谱,每一种元素燃烧时都发出多条光谱,这种光通过三梭镜或光栅后会在屏障上显现出多条亮线,也就是说只发出有限的几种频率的光,这就是这种元素的光谱。其中会有一条或几条最亮的线,这几条最亮的线决定了在人眼中所看到的颜色。 观察光谱的方法 连续光谱的光线在通过含某种元素的气体时在光谱带上会出现多条暗线,这些暗线刚好与这种元素的光谱线位置相同,强度刚好相反,(光谱线越强的位置暗线越明显)这就是元素的吸收光谱。天文学家就是利用吸收光谱来查明遥远的恒星大气和星云中所含的元素,观察恒星红移或蓝移也要利用吸收光谱。 观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱 原子决定明线光谱 实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构。 吸收光谱 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,

2021年高考语文必考知识点汇总

2021年高考语文必考知识点汇总 整理了一些常考常用知识,这些知识看似简单,却很容易在关键时刻混淆。 1. 文化常识 初唐四杰:王勃、杨炯、卢照邻、骆宾王。 三国:魏、蜀、吴。 “四大古典名著”:《红楼梦》、《三国演义》、《水浒》、《西游记》。 “四大民间传说”:《牛郎织女》、《梁山伯与祝英台》、《孟姜女》、《白蛇传》。 世界四大短篇小说巨匠:契诃夫、莫泊桑、马克·吐温、欧·亨利。 苏轼的散文代表北宋散文的最高成就,其诗与黄庭坚并称“苏黄”。 马致远的散曲代表作《天净沙·秋思》,被誉为“秋思之祖”。曹雪芹“披阅十载,增删五次”创作了我国古典小说中最伟大的现实主义作品《红楼梦》(又称《石头记》),它问世后

就广为流传,深受人们喜爱,还出现了专门研究该书的一门学问——“红学”,“红学”现已成为世界文学研究中的重要课题。 鲁迅是中国现代文学的奠基人,陈毅被称为“元帅诗人”;臧克家因诗作多为农村题材,有“泥土诗人”之称; 田间被闻一多誉为“时代的鼓手”(擂鼓诗人)。 岁寒三友:松、竹、梅。 花中四君子:梅、兰、竹、菊。 文人四友:琴、棋、书、画。 文房四宝:笔、墨、纸、砚。 四库全书:经、史、子、集。 《诗经》“六义”指:风、雅、颂(分类)、赋、比、兴(表现手法)。 唐诗、宋词、元曲、明清小说。 桂冠、鳌头、榜首、问鼎、夺魁:第一。 三纲五常:“三纲”:父为子纲、君为臣纲、夫为妻纲;“五常”:仁、义、礼、智、信。

“四书”“五经”是儒家的主要经典:“四书”即《论语》《孟子》《中庸》《大学》;“五经”指《诗》《书》《礼》《易》《春秋》。 三皇:天皇、地皇、人皇或伏羲、女娲、神农; 五帝:黄帝、颛顼、帝喾、唐尧、虞舜。 五金:金、银、铜、铁、锡。 五味:酸、甜、苦、辣、咸。 五行:金、木、水、火、土。 “永字八法”是说“永”字具有:点、横、竖、撇、捺、折、钩、提八种笔画。 古代的学校有庠、序、太学等名称,明清时最高学府为国子监。 三教九流:“三教”:儒教、佛教、道教;“九流”:儒家、道家、阴阳家、法家、名家、墨家、纵横家、杂家、农家。古代科举考试(从隋代至明清): A、童生试,也叫“童试”,应试者不分年龄大小都称童生,合格后取得生员(秀才、相公)资格,这样才能参加科举考试。

航海学(下)重点知识复习进程

航海学(下)重点知识

航海学(下)易错点总结 7潮汐与潮流 7.1潮汐 7.1.1潮汐不等现象 周日不等: 在同一太阳日所发生的两次高潮或两次低潮的潮高以及相邻的高、低潮的时间间隔不相等。 成因:月赤纬≠0°且地理纬度ψ≠0°。赤纬越大周日不等越明显。分点潮无周日不等,回归潮周日不等最显著。 现象:一天一次高潮与一次低潮的条件ψ≥90°-Dec 半月不等 成因:月引潮力与太阳引潮力合力的变化;日、月与地球相互位置关系不同;月相不同。 现象:大潮和小潮 潮汐半月变化规律:潮差的变化是以半个太阴月为周期(约14.5天)。 太阳的赤纬不等于0时,也会发生潮汐的周日不等现象。 视差不等: 由地球和月球距离变化(注意:不是相对位置的变化)而产生的潮汐不等的现象。 周期:一个恒星月(约27.3天) 太阳潮中也存在视差不等现象。 周期:一个回归年(约365.24日) 简言之,视差不等是由于日、月、地三者空间距离的变化。 7.1.2潮汐类型 半日潮型:一个太阴日内出现两次高潮和两次低潮,前一次高潮和低潮的潮差与后一次高潮和低潮的潮差大致相同,涨潮过程和落潮过程的时间也几乎相等(6小时12.5分)。 我国渤海、东海、黄海的多数地点为半日潮型,如大沽、青岛、厦门等。 全日潮型:一个太阴日内只有一次高潮和一次低潮。 如南海汕头、渤海秦皇岛等。南海的北部湾是世界上典型的全日潮海区。

混合潮型:一月内有些日子出现两次高潮和两次低潮,但两次高潮和低潮的潮差相差较大,涨潮过程和落潮过程的时间也不等;而另一些日子则出现一次高潮和一次低潮。 我国南海多数地点属混合潮型。如榆林港,十五天出现全日潮,其余日子为不规则的半日潮,潮差较大。 从各地的潮汐观测曲线可以看出,无论是涨、落潮时,还是潮高、潮差都呈现出周期性的变化,根据潮汐涨落的周期和潮差的情况,可以把潮汐大体分为如下的4种类型: 正规半日潮:在一个太阴日(约24时50分)内,有两次高潮和两次低潮,从高潮到低潮和从低潮到高潮的潮差几乎相等,这类潮汐就叫做正规半日潮。 不正规半日潮:在一个朔望月中的大多数日子里,每个太阴日内一般可有两次高潮和两次低潮;但有少数日子(当月赤纬较大的时候),第二次高潮很小,半日潮特征就不显著,这类潮汐就叫做不正规半日潮。 正规日潮:在一个太阴日内只有一次高潮和一次低潮,像这样的一种潮汐就叫正规日潮,或称正规全日潮。 不正规日潮:这类潮汐在一个朔望月中的大多数日子里具有日潮型的特征,但有少数日子(当月赤纬接近零的时候)则具有半日潮的特征。 7.1.3《潮汐表》与潮汐推算 7.1.3.1英版《潮汐表》与潮汐推算 主港索引:印于各卷最前页,按港名字母顺序排列,给出所在页数。 地理索引:印在各卷书末,主、附港名称按照字母顺序排列,如系主港则用黑体字印刷港名,主、附港都给出编号,以便用此编号在第Ⅱ部分中查取该附港的有关资料。 各卷范围: 第一卷:英国和爱尔兰(包括欧洲水道各港)(包括一些主要港口的逐时预报) 第二卷:欧洲(不包括英国和爱尔兰)、地中海和大西洋 第三卷:印度洋和南中国海(包括潮流表) 第四卷:太平洋(包括潮流表)

光谱仪基础知识

第1章衍射光栅:刻划型和全息型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见Diffraction Gratings Ruled & Holographic Handbook). 经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。 本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。 1.1 基础公式 在介绍基础公式前,有必要简要说明单色光和连续谱。 提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。 提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。 本书中的公式适用于空气中的情况,即m0=1。因此,l=l0=空气中的波长。 定义单位 α - (alpha) 入射角度 β - (beta) 衍射角度 k - 衍射阶数整数

定义单位 n - 刻线密度刻线数每毫米 D V - 分离角度 μ - 折射率无单位 λ - 真空波长纳米 λ0 - 折射率为μ0介质中的波长 其中λ 0 = λ/μ 1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm 最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角D V成为常数,由下式决定, (1-2) 对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为: (1-3) 假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

高考语文基础知识整理

高考语文基础知识整理 【篇一:高考语文基础知识整理】 语文知识点涵盖高考语文对于语文基础知识、古诗文阅读、现代文阅读与写作的考察内容 包括多音字、成语、古诗词阅读等高考语文常考考点 帮助考生从语文知识点的角度进行高考语文复习 从而达到更好的语文复习效果 【篇二:高考语文基础知识整理】 高考语文成语易错五百个汇总2017年02月27日2017年上海高考语文试卷结构2017年02月24日2017年浙江高考语文试卷结构2017年02月24日2017年天津高考语文试卷结构2017年02月24日2017年北京高考语文试卷结构2017年02月24日2017年江苏高考语文试卷结构2017年02月24日2017年海南高考语文试卷结构2017年02月24日2017年高考全国卷1语文试卷结构2017年02月24日2017年高考全国卷3语文试卷结构2017年02月24日2017年高考全国卷2语文试卷结构2017年02月24日2017年四川高考语文试卷结构2017年02月24日2017年贵州高考语文试卷结构2017年02月24日2017年广西高考语文试卷结构2017年02月24日2017年云南高考语文试卷结构2017年02月24日2017年重庆高考语文试卷结构2017年02月24日2017年陕西高考语文试卷结构2017年02月24日2017年西藏高考语文试卷结构2017年02月24日2017年新疆高考语文试卷结构2017年02月24日2017年宁夏高考语文试卷结构2017年02月24日2017年辽宁高考语文试卷结构2017年02月24日2017年吉林高考语文试卷结构2017年02月24日2017年黑龙江高考语文试卷结构2017年02月24日2017年内蒙古高考语文试卷结构2017年02月24日2017年青海高考语文试卷结构2017年02月24日2017年甘肃高考语文试卷结构2017年02月24日2017年福建高考语文试卷结构2017年02月24日2017年安徽高考语文试卷结构2017年02月24日2017年广东高考语文试卷结构2017年02月24日2017年湖北高考语文试卷结构2017年02月24日2017年湖南高考语文试卷结构2017年02月24日2017年江西高考语文试卷结构2017年02月24日2017年山西高考语文试卷结构2017年02月24日2017年河北高考语文试卷结构2017年02月24日 【篇三:高考语文基础知识整理】

光谱仪基础知识概要

光谱仪基础知识概要 第1章衍射光栅:刻划型和全息型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见& ). 经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。 本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。 1.1 基础公式 在介绍基础公式前,有必要简要说明单色光和连续谱。 提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。 提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1的谱线组成的线状谱。 本书中的公式适用于空气中的情况,即m0=1。因此,0=空气中的波长。 定义单位 α - () 入射角度 β - () 衍射角度 k - 衍射阶数整数 n - 刻线密度刻线数每毫米 - 分离角度

光谱仪基础知识概要 定义单位 μ0 - 折射率无单位 λ - 真空波长纳米 λ0 - 折射率为μ0介质中的波长 其中λ0 = λ/μ0 1 = 10-6 ; 1 = 10-3 ; 1 A = 10-7 最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角成为常数,由下式决定, (1-2) 对于一个给定的波长l ,如需求得a和b ,光栅方程(1-1)可改写为: (1-3) 假定值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

数据通信基本知识03794

数据通信基本知识 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media) 为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference) ,我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1) 双绞线 双绞线(Twisted Pair) 是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图 1.1 所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2) 同轴电缆 同轴电缆(Coaxial Cable) 由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2. 玻璃纤维目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维, 简称光纤(Optical Fiber) 或光缆(Optical Cable) 。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode) 或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel) 是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot; 联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和 无线信道,也可按传输数据类型的不同分为数字信道和模拟信道。信道容量(Channel

高考必备:高考语文文学常识汇总.pdf

高考必备:2011年高考语文文学常识汇总 一、中国古代文学 (一)、先秦文学 1、上古神话 中国古代神话名篇有:女娲补天、后羿射日、精卫填海、(盘古)开天辟地、黄帝战蚩(chī)尤、刘安《淮南子》等。 2、先秦散文 A、儒家经典“四书”指《论语》《孟子》《大学》《中庸》。 “五经”指《诗经》《尚书》《礼记》《易经》《春秋》“六经”又称六艺(《乐》) B、历史散文。《左传》(编年体) 《战国策》(国别体) 《国语》(国别体) “春秋三传”《左传》《谷梁传》《公羊传》 C、诸子百家散文著名的有: ①老子,李耳,字聃(dān),道家学派创始人,著有《道德经》。 ②孔子名丘,字仲尼。是儒家学派创始人,《论语》是孔子弟子记载孔子和他的学生言行的书。(《季氏》《荷》) ③墨子名翟(dí),墨家学派创始人。《墨子》53篇。 ④孟子名轲,字子舆。儒家学派继承者。《孟子》是孟子学生记录孟子言行的书。(《得道多助,失道寡助》《生于忧患,死于安乐》《庄暴见孟子》《鱼我所欲也》。) ⑤庄子,名周,战国道家著《庄子》。(《庖丁解牛》) ⑥荀子,战国儒家,著《荀子》32篇。(《劝学》) ⑦韩非子,法家。著《韩非子》。(《扁鹊见蔡桓公》《五蠹》《智子疑邻》。) ⑧《吕氏春秋》又称《吕览》,是秦相吕不韦和他的门客的集体创作。(《察今》) ⑨李斯的代表作是散文《谏逐客书》。 3、先秦诗歌 A、《诗经》。《诗经》是我国第一部诗歌总集,共305篇。分风、雅、颂三类、风是民歌,雅是乐歌,颂是祭歌。诗经的表现手法是比、兴、赋。“比”即比喻,以彼物比此的。“兴”先言他物以引起所咏之词,“赋”直陈其事。 B、《楚辞》。西汉学者刘向把屈原宋玉等人的作品编辑成书,定名为《楚辞》。屈原(前340?-前277?)名平,我国伟大爱国主义诗人、曾在楚国任左徒三闾大夫等职。代表作是《离骚》《九歌》《九章》。 (二)、两汉文学 A、两汉散文 ①贾谊,世称贾生。又称贾长沙,贾太傅。著《新书》十卷。《过秦论》、《论积贮疏》是他的代表作。 ②司马迁,字子长,伟大的史学家、文学家。著《史记》首创“纪传体”,分为本纪、世家、列传、表、书。鲁迅称《史记》为“史家之绝唱,无韵之离骚”。 ③班固的《汉书》、刘向编订的《战国策》都名垂史册。 B、乐府民歌和赋。 1、乐府民歌:乐,民乐。府,官府。乐府原为汉代音乐机关所搜集的诗。《孔雀东南飞》 2、赋是我国古代韵文和散文的综合体。 司马相如的《子虚赋》《上林赋》。贾谊的《吊屈原赋》都很有名。 (三)、魏晋南北朝文学

相关文档
最新文档