数学建模椅子平衡问题 蜗牛爬行问题 船渡河问题

数学建模椅子平衡问题 蜗牛爬行问题 船渡河问题
数学建模椅子平衡问题 蜗牛爬行问题 船渡河问题

1 椅子能在不平的地面上放稳得问题的拓展.

模型假设对椅子和地面应该作一些必要的假设:

1.椅子的四条腿一样长,椅脚与地面接触处可视为一个点。四脚的连线呈长方

形。

2.地面高度是连续变化的,沿任何方向都不会出现间断,即地面可视为数学上

连续曲面。

3.对于脚的间距和椅腿的长度而言,地面时相对平坦的,使椅子在任何位置至

少有三个脚同时着地。

模型构成中心问题是用数学语言把椅子的四只脚同时着地的条件和结论表示出来。

首先要用变量把椅子的位置,注意到椅脚连线呈长方形。以中心为对称点,长方形绕中心的旋转正好代表了椅子位置的改变,于是因此可以用旋转角度这一变量表示椅子的位置。在图中椅

线B’D’与X轴重合,椅子绕中

心点O轴旋转角度θ后。长方形

A’B’C’D’转至ABCD位置。用

θ(对角线与x 轴的夹角)表示

椅子位置,椅脚与地面距离为θ

的函数.A,C 两脚与地面距离之

和 ~ f (θ,),B,D 两脚与地面距

离之和 ~ g (θ)

地面为连续曲面 F (θ) , g (θ)

是连续数.椅子在任意位置至少

三只脚着地.对任意θ, f (θ ),

g (θ )至少一个为0.

已知: f (θ ) , g (θ )是连

续函数 ;

对任意θ, f (θ)

? g (θ )=0 ;

且g (0)=0, f

(0) > 0.

证明:存在θ0,使 f (θ0) = g (θ0) = 0.

模型求解

证明;设长方形的长为a ,宽为b。

将椅子旋转θ=2arctanb/a,对角线AC取代BD的位置。

由g(0)=0,f(0) > 0 ,知f(2arctanb/a)=0 ,g(2arctanb/a )>0.或,g

(2arctanb/a )=0

(1)f(2arctanb/a)=0 ,g(2arctanb/a )=0

,桌子能放平衡。

(2)f(2arctanb/a)=0 ,g(2arctanb/a )>0

令h(θ)= f(θ)–g(θ), 则h(0)>0和h(2arctanb/a)<0.

由 f, g的连续性知 h为连续函数, 据连续函数的基本性质, 必存在θ0 , 使

h(θ0)=0, 即f(θ0) = g(θ0) .

因为f(θ) ? g(θ)=0, 所以f(θ0) = g(θ0) = 0.

第一题

一根1米长的水平弹性绳子,存在A端和B端。A端固定,B端每秒钟10cm的速度水平向前延伸。假设绳子永远不会断。一只蜗牛从绳的A端开始向B端爬,蜗牛相对绳子的速度为每秒钟1cm。

假设蜗牛不知疲倦,生命永恒;现在,蜗牛爬的同时,绳子开始变长,请问:

1)蜗牛是否可以爬到B端,要多久?

2)是否蜗牛只要速度大于0,不论绳子多快,都可以爬到头?

① B点的位置随时间变化的函数

S

B

= 100 + 10t

②虫子的速度v

w 与其初始速度v

,自身的位置S

w

以及时间t的关系函数

③对②式两边依时间t从0到∞积分即

化简得

其中,初始条件为:

S w (0) = 0

即虫子在一开始的时候位

置为0

用Matlab 求解上式的一阶微分方程。 Dsolve('DS-S/(10+t)-v=0','S(0)=0') ans =

10*v*log(10+t)+v*log(10+t)*t-10*v*log(2)-10*v*log(5)+(-v*log(2)-v*log(5))*t 所以,虫子的位置S w 关于时间t 和初速度v 0的关系函数为:S w =10* v 0*log(10+t)+ v 0*log(10+t)*t-10*

v 0*log(2)-10*v 0*log(5)+(- v 0*log(2)- v 0*log(5))*t

④ 由1)式可知,要让虫子到达B 点,则有S w = S B ,即有对数方程

10* v 0*log(10+t)+ v 0*log(10+t)*t-10* v 0*log(2)-10*v 0*log(5)+(- v 0*log(2)- v 0*log(5))*t=100+10t

⑤ 再次使用Matlab 脚本求解上式的对数方程:

Solve('10*v*log(10+t)+v*log(10+t)*t-10*v*log(2)-10*v*log(5)+(-v*log(2)-v*log(5))*t =100+10*t','t')

ans = exp((10+v*log(10))/v)-10

⑥所以,虫子到达B 点的时间t 与其自身的初速度v 0之间的关系函数为: t==exp((10+ v 0*log(10))/ v 0)-10

⑦由此可见,只要虫子的初速度v 0>0,它总有一天能到达B 点的,再次使用Matlab 脚本体现t 与v 0的关系图: v = 0:100;

t=exp((10+v.*log(10))./v)-10; plot(v,t);

digits(10);t=vpa(exp(10+log(10))-10)

t =220254.6579

220254.6579/3600/24

ans = 2.5492

所以,虫子在两天半之后到达B点

第二题

两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从

B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500

公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客

上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?

模型假设:自然界的外界因素都不影响船的行驶速度。

模型构成:设快船的速度为V,慢船的速度为V’.船两次相遇的距离为X。

快船从A岸出发,慢船从B岸出发。则第一次相遇时,慢船距离B岸的距离为500公里,第二次相遇时,距离A岸的距离为100公里。求两岸的距离h。

模型求解:

由①②得

x=800,-600负根舍去

得 x=800

h=800+500+100=1400

即两岸的距离为1400公里。

x

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。 (15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D 处,A、B,C、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A、B,C、D 平行。当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令 ()f θ为A、B 离地距离之和, ()g θ为C、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。 不妨设 (0)0f =,(0)0g >g (若(0)g 也为 0,则初始时刻已四条腿着地,不必再旋转),于是问题归 结为: 已知 ()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存 在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=?,显然,() h θ也是θ的连续函数,(0)(0)(0)0h f g =?<而()()()0h f g πππ=?>,由连续函数的取零值定 理,存在0θ,0 0θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有 00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 x+y+z=10;

全国研究生数学建模竞赛-参赛队的参赛流程如图11所示。

全国研究生数学建模竞赛,参赛队的参赛流程如图1-1所示。图1-1 参赛队操作流程 其中: 若参赛队由培养单位缴费,则无需进行“缴费验证”操作。

1 注册报名 本章介绍参赛队如何在“全国研究生数学建模竞赛”网站中进行注册报名。 前提条件 您是本届“全国研究生数学建模竞赛”的参赛队员。 操作步骤 步骤1在浏览器地址栏中输入“全国研究生数学建模竞赛网站”网址。 网站地址:https://www.360docs.net/doc/3714650008.html,/ 支持浏览器类型:IE、Mozilla Firefox、Google浏览器 步骤2在登录区域中,选择“参赛队登录”页签,如图1-1所示。 图1-1 参赛队注册登录页面 步骤3参赛队注册。 1.单击“注册”,系统跳转至注册页面,如图1-2所示。

图1-2 注册页面 2.填写注册信息,单击“立即注册”。 3.在“注册成功”提示框中,单击“确定”完成注册。 步骤4参赛队登录网站完善参赛选手信息。 1.使用已注册账号登录数模网站。 系统进入参赛队信息管理页面,如图1-3所示。 -左侧为目录树,您可以单击选择您要操作的选项,例如“选手首页”。 -右侧展示“选手首页”页面,可查看参赛相关信息,如选手审核、缴费状态,竞赛日程安排等。

图1-3 参赛队信息维护 2.在“选手首页”单击“编辑资料”,或在左侧目录树中选择“选手资料> 编辑资料”。 系统进入选手资料上报页面,如图1-4所示。 图1-4 完成选手信息

3.在编辑页面如实填写队长、第一队员、第二队员信息。 4.单击“提交信息”,提交竞赛报名。 请如实填写选手信息,参赛选手信息审核通过后不能再编辑,如需修改请联系所在培养单位的负责 老师。 ----结束 后续处理 参赛队完成参赛信息提交后,需等待培养单位审核。审核通过,才完成参赛报名。 参赛队可在“选手中心 > 选手首页”菜单下查看资料审核状态: ●审核前: ●审核通过: ●未审核通过: 未审核通过,参赛队可单击“编辑资料”进入“参赛选手资料上报”页面,修改参赛选 手信息后重新提交审批。

数学建模试题(带答案)四

数学建模部分课后习题解答 1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间 距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为)(θg ,其中[] πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。 如果)0(与) 0(g f 不同时为零,不妨设.0)0(,0)0(=>g f 这时,将长方形ABCD 绕点

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

最新数学建模椅子能在不平的地面上放稳吗

椅子能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了.下面用数学语言证明. 一、 模型假设 对椅子和地面都要作一些必要的假设: 1. 椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形. 2. 3. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面. 4. 5. 对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地. 二、模型建立 中心问题是数学语言表 示四只脚同时着地的条件、 结论. 首先用变量表示椅子的 位置,由于椅脚的连线呈正 方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转 D '

角度θ这一变量来表示椅子的位置. 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了.椅子要挪动位置说明这个距离是位置变量的函数. 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0.当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g . 三、模型求解 将椅子旋转90?,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g .令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()000g f θθ?=,所以()()000==θθf g . 四、评 注 模型巧妙在于用一元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离.利用正方形的中心对称性及旋转90?并不

椅子能在不平的地面上放稳吗

椅子能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。下面用数学语言证明。 一、模型假设 对椅子和地面都要作一些必要的假设: 1、椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的 连线呈正方形。 2、地面高度是连续变化的,沿任何方向都不会出现间断(没有 像台阶那样的情况),即地面可视为数学上的连续曲面。 3、对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使 椅子在任何位置至少有三只脚同时着地。 二、模型建立 示四只脚同时着地的条件、 结论。 首先用变量表示椅子的 位置,由于椅脚的连线呈正 方形,以中心为对称点,正 方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅

脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。椅子要挪动位置说明这个距离是位置变量的函数。 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。 三、模型求解 将椅子旋转090,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。令()()()θθθf g h -=,则()()02,00<>πh h ,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以()()000==θθf g 。 四、评 注 模型巧妙在于用已元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离。利用正方形的中心对称性及旋转090并不是本质的,同学们可以考虑四脚呈长方形的情形。

美国大学生数学建模竞赛组队和比赛流程

数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率。 三个人的分工可以分为这几个方面: 数学员:学习过很多数模相关的方法、知识,无论是对实际问题还是数学理论都有着比较敏感的思维能力,知道一个问题该怎样一步步经过化简而变为数学问题,而在数学上又有哪些相关的方法能够求解,他可以不能熟练地编程,但是要精通算法,能够一定程度上帮助程序员想算法,总之,数学员要做到的是能够把一个问题清晰地用数学关系定义,然后给出求解的方向; 程序员:负责实现数学员的想法,因为作为数学员,要完成大部分的模型建立工作,因此调试程序这类工作就必须交给程序员来分担了,一些程序细节程序员必须非常明白,需要出图,出数据的地方必须能够非常迅速地给出;ACM的参赛选手是个不错的选择,他们的程序调试能力能够节约大量的时间,提高在有限时间内工作的工作效率; 写手:在全文的写作中,数学员负责搭建模型的框架结构,程序员负责计算结果并与数学员讨论,进而形成模型部分的全部内容,而写手要做的。就是在此基础之上,将所有的图表,文字以一定的结构形式予以表达,注意写手时刻要从评委,也就是论文阅读者的角度考虑问题,在全文中形成一个完整地逻辑框架。同时要做好排版的工作,最终能够把数学员建立的模型和程序员算出的结果以最清晰的方式体现在论文中。一个好的写手能够清晰地分辨出模型中重要和次要的部分,这样对成文是有非常大的意义的。因为论文是评委能够唯一看到的成果,所以写手的水平直接决定了获奖的高低,重要性也不言而喻了。 三个人至少都能够擅长一方面的工作,同时相互之间也有交叉,这样,不至于在任何一个环节卡壳而没有人能够解决。因为每一项工作的工作量都比较庞大,因此,在准备的过程中就应该按照这个分工去准备而不要想着通吃。这样才真正达到了团队协作的效果。 比赛流程:对于比赛流程,在三天的国赛里,我们应该用这样一种安排方式:第一天:定题+资

数学模型的定义

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

长方形椅子能否在不平的地面上放稳吗

长方形椅子能否在不平的地面上放稳吗? 【问题提出】 日常生活中有这样的现象:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,一般都可以使四只脚同时着地.试从数学的角度加以解释. 【模型假设】 为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假设: (1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形. (2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件. (3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的. 【建立模型】 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来. 首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形. 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题. 如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置. 其次,把椅脚是否着地用数学形式表示出来. 我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数. 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记

椅子能在不平的地面上放稳吗

椅子能在不平的地面上放稳吗? 模型假设 对椅子和地面都要作一些必要的假设: 1、椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形。 2、地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面。 3、对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 假设1显然是合理的。假设2相当于给出了椅子能放稳的条件,因为如果地面高度不连续,譬如在有台阶的地方是无法使四只脚同时着地的。至于假设3是要排除这样的情况:地面上与椅脚间距和椅脚长度的尺寸大小相当的范围内,出现深沟或凸峰(即连续变化的),致使三只脚无法同时着地。 模型建立 中心问题是数学语言表示四只脚同时着地的条件、结论。 首先用变量表示椅子的位置,由于椅脚的连线呈正方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。椅子要挪动位置说明这个距离是位置变量的函数。 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。 模型求解 将椅子旋转0 90,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。 令()()()h f g θθθ=-,则()()02,00<>πh h ,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以 ()()000==θθf g 。 四、模型的进一步讨论 Ⅰ.考虑椅子四脚呈长方形的情形 设A 、B 两脚与地面之和为()θf ,C 、D 两脚与地面距离之和为()θg ,θ为AC 连线与x 轴正向的夹角(如图2所示)。显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、 ()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同 C ' D '

数学建模竞赛中常用软件的操作

数学建模竞赛中常用软件的操作本节主要介绍数学建模竞赛中常用软件MATLAB和Lingo的一些基本操作。 一、Desktop简介 在桌面双击MA TLABb图标,或双击安装目录C:\Program Files\MATLAB\R2012a\bin下的MA TLAB文件。启动后默认界面如下图。 图1 Desktop操作桌面的外貌 1. Command Window 该窗口是进行MATLAB各种操作的主要窗口。在该窗内可以输入各类指令、函数、表达式;显示除了图形外所有的运算结果,错误时,给出相关出错提示。 指令输入完后只有按回车键【Enter】才能执行;如果输入的指令不含赋值号,计算结果被赋于默认的变量ans。 变量名和函数名对大小写敏感,变量第一个字符必须是英文字母,最多包含63个字符(英文、数字和下划线),不能包括空格、标点、运算符;不能使MA TLAB的关键词和自用的变量名(eps,pi等)函数名(sin,exp等)、文件夹名(rwt,toolbox等)。 在Matlab中有一些固定变量,例如 (1) ans:在没有定义变量名时,系统默认变量名为ans; (2) eps:容许误差,非常小的数; (3) pi:即圆周率 ; (4) i, j:虚数单位;

(5) inf:表示正无穷大,由1/0运算产生; (6) NaN(Not A Number):表示不定值,由inf/inf或0/0运算产生; (7) nargin:函数的输入变量数目; (8) nargout:函数的输出变量数目。 在MA TLAB中,控制流关键字if, for, end等用蓝色字体表示;输入指令中的非控制指令、数字显示为黑色字体;字符串显示为紫色字体;注释为绿色字体;警告信息为红色字体。 2 工作空间浏览器 工作空间(Workspace)窗口用于浏览MATLAB中的变量。在工作空间窗口内,用户可以方便地查看、编辑存储的数据变量。 表1 工作空间浏览器主要功能及其操作方法 工作空间常用的管理指令有: (1)who及whos:查询指令 (2)clear:清除工作空间中的所有变量 clear var1 var2:清除工作空间中的变量var1和var2 (3)saveFileName :把全部内存变量保存为Filename.mat文件

在不平地面上把椅子放稳的充分必要条件

数学的实践与认识 MATHEMATICS IN PRACTICE AND THEORY 1999 Vol.29 No.3 P.62-65 在不平地面上把椅子放稳的 充分必要条件 赵彦晖 摘 要:把椅子放在不平的地面上,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地、放稳.本文指出,当且仅当椅子的四脚共圆时,才能在一般不平的地面上放稳,并对此建立了数学模型,给出了理论上的证明. 关键词:椅子:不平地面;放稳;充分必要条件;数学模型 The Sufficient and Necessary Condition to Make a Chair Steady on Uneven Ground Zhao Yanhui (Xi′an Univ. of Arch. & Tech., Xi′an 710055) Abstract:Under normal conditions, it is impossible to make a chair Steady on uneven ground. In this paper, a mathematical model on this question is established, and it is proved that a sufficient and necessary conditon to make the chair Steady on uneven ground is four feet of the chair is on the common circle. Keywords:Chair, Uneven Ground, Stendy, Sufficient and Necessary Condition, Mathematical Model▲ 在不平的地面上能否把椅子放稳问题已在文[1]、[2]中作过介绍,但这些文献中都只就四脚连线呈正方形(或长方形)的椅子进行讨论.众所周知,我们日常生活中所遇到的椅子大都是四脚连线呈等腰梯形的椅子,那么,对这样的椅子甚至四脚连线为任意四边形的椅子是否也能在不平的地面上放稳?文[1]、[2]中并未讨论,也没有作出任何结论.对此,本文进行了全面的讨论,给出了完整的结论,使问题得到了圆满的解决. 1 模型假设 首先讨论四脚共圆的椅子,对此,我们作如下的必要假设: 假设1 椅子四条腿一样长,椅脚与地面接触处可视为一个点,椅子四脚连线为圆内接四边形 即椅子四个脚共面且共圆. 假设2 地面高度是连续变化的,即地面可视为数学上的连续曲面. 假设3 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地. 上述假设显然是合理的[1]. 2 模型建立 将椅子放在地面上任一位置,并使至少三只脚同时着地.这时以椅子四脚共圆的圆心O为原点,四脚所在的平面为xoy坐标面,并使椅脚之一(如椅脚A)在x轴的正半轴上建立平面坐标系,如图1.

数学建模椅子问题

椅子能在不平的地面上放稳 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。下面用数学语言证明。 一、模型假设 对椅子和地面都要作一些必要的假设: 1、椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的 连线呈正方形。 2、地面高度是连续变化的,沿椅子的任何方向都不会出现间断 (没有像台阶那样的情况),即地面可视为数学上的连续曲面。 3、对于椅脚的间距和椅子脚的长度而言,地面是相对平坦的, 使椅子在任何位置至少有三只同时着地。 二、模型建立 示四只同时着地的条件、结 论。 首先用变量表示椅子的 位置,由于椅脚的连线呈正 方形,以中心为对称点,正 方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅

脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。椅子要挪动位置说明这个距离是位置变量的函数。 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。 三、模型求解 将椅子旋转090,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,则存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以()()000==θθf g 。 四、评 注 模型巧妙在于用已知的元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离。利用正方形的中心对称性及旋转090并不是本质的,同学们可以考虑四脚呈长方形的情形。

数学建模椅子平衡问题 蜗牛爬行问题 船渡河问题

1 椅子能在不平的地面上放稳得问题的拓展. 模型假设对椅子和地面应该作一些必要的假设: 1.椅子的四条腿一样长,椅脚与地面接触处可视为一个点。四脚的连线呈长方 形。 2.地面高度是连续变化的,沿任何方向都不会出现间断,即地面可视为数学上 连续曲面。 3.对于脚的间距和椅腿的长度而言,地面时相对平坦的,使椅子在任何位置至 少有三个脚同时着地。 模型构成中心问题是用数学语言把椅子的四只脚同时着地的条件和结论表示出来。 首先要用变量把椅子的位置,注意到椅脚连线呈长方形。以中心为对称点,长方形绕中心的旋转正好代表了椅子位置的改变,于是因此可以用旋转角度这一变量表示椅子的位置。在图中椅 线B’D’与X轴重合,椅子绕中 心点O轴旋转角度θ后。长方形 A’B’C’D’转至ABCD位置。用 θ(对角线与x 轴的夹角)表示 椅子位置,椅脚与地面距离为θ 的函数.A,C 两脚与地面距离之 和 ~ f (θ,),B,D 两脚与地面距 离之和 ~ g (θ) 地面为连续曲面 F (θ) , g (θ) 是连续数.椅子在任意位置至少 三只脚着地.对任意θ, f (θ ), g (θ )至少一个为0. 已知: f (θ ) , g (θ )是连 续函数 ; 对任意θ, f (θ) ? g (θ )=0 ; 且g (0)=0, f (0) > 0. 证明:存在θ0,使 f (θ0) = g (θ0) = 0. 模型求解 证明;设长方形的长为a ,宽为b。 将椅子旋转θ=2arctanb/a,对角线AC取代BD的位置。 由g(0)=0,f(0) > 0 ,知f(2arctanb/a)=0 ,g(2arctanb/a )>0.或,g (2arctanb/a )=0 (1)f(2arctanb/a)=0 ,g(2arctanb/a )=0 ,桌子能放平衡。 (2)f(2arctanb/a)=0 ,g(2arctanb/a )>0 令h(θ)= f(θ)–g(θ), 则h(0)>0和h(2arctanb/a)<0. 由 f, g的连续性知 h为连续函数, 据连续函数的基本性质, 必存在θ0 , 使 h(θ0)=0, 即f(θ0) = g(θ0) .

椅子放平稳问题-数学建模

椅子放平稳问题 所谓数学模型是指对于一个实际问题,为了特定目的,作出必要的简化假设,根据问题的内在规律,运用适当的数学工具,得到的一个数学结构 . 建立及求解数学模型的过程就是数学建模. 下面例子是一个简单的数学建模问题. 问题:四条腿一样长的椅子一定能在不平的地面上放平稳吗? 1.模型假设 (文字转化为数学语言) (1) 椅子四条腿一样长,椅子脚与地面的接触处视为一个点,四脚连线呈正方形; (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有台阶那样的情况),即视地面为数学上的连续曲面; (3) 地面起伏不是很大,椅子在任何位置至少有三只脚同时着地. 2.模型建立 (运用数学语言把条件和结论表现出来) 设椅脚的连线为正方形 ABCD ,对角线 AC 与 x 轴重合,坐标原点 O 在椅子中心,当椅子绕 O 点旋转后,对角线 AC 变为 A'C',A'C'与 x 轴的夹角为θ. 由于正方形的中心对称性,只要设两个距离函数就行了,记 A 、C 两脚与地面距离之和为 )(θf ,B 、D 两脚与地面距离之和为 )(θg .显然0)(≥θf 、0)(≥θg 。 因此椅子和地面的距离之和可令)()()(θθθg f h +=。由假设(2),)(x f 、)(x g 为连续函数,因此)(θh 也是连续函数;由假设(3),得:0)()(=θθg f 。则该问题归结为: 已知连续函数0)(≥θf 、0)(≥θg 且0)()(=θθg f ,至少存在一个0θ,使得: 0)()(00==θθg f 3.模型求解 (找出0θ) 证明:不妨设,0)0(>f 则0)0(=g 令2π θ=(即旋转o 90,对角线AC 和BD 互换)。则有0)2 (,0)2(>=π πg f

椅子能否放稳

1 椅子在不平的地面上能放稳吗 (一)问题的分析与假设 由三点构成一个平面可知,通常情况下,在不平的地面椅子是三只脚着地,如果要达到放稳的要求,必须是四只椅脚同时着地。问题中,椅子四脚呈长方形,在以下建模过程中,为方便讨论,我们作出以下假设: (1)椅子的四条腿一样长,椅脚与地面点接触,四角连线呈矩形; (2)地面高度连续变化,可视为数学上的连续曲面; (3)地面相对平坦,使椅子在任意位置至少三只脚同时着地。(二)模型的建立与求解 问题的解决,是通过建立直角坐标系,利用矩形的对角线平分且相等,以AC所在直线作为X轴,以垂至于AC的直线作为为Y轴,以矩形的中心点为原点建立直角坐标系。如图所示: 错误! 用对角线AC与X轴的夹角α表示椅子当前的位置,此时,可设椅脚与地面的距离是α的函数。椅子的四脚与地面应有四个距离的函数,但由于矩形的对称性,对角上的两点距离之和可用一个函数表示。设A,C两脚与地面的距离之和为,B,D两脚与地面的距离之和为。 已知地面是连续曲面,椅子可在任意位置至少三只脚着地,把已知条件转化为数学问题为已知,是连续函数,即α为任意值,·=0总成立;且。现只需证明存在α0,使。

现给出证明方法: 开始α=0,将椅子旋转角度大小为∠AOB=a,此时对角线AC和BD互换。由,知,。 令, 则有。 因为,为连续函数,所以也为连续函数,根据连续函数的基本性质,必存在α0使=0,即,又因为·=0,所以可得,证毕。 由证明的结果看,在不平的平面上,椅子呈矩形四脚距离地面的距离能同时为零,即椅子能在不平的地面放平稳。 若椅子的四脚呈等腰梯形,同理可证这样的椅子也能在不平的地面上放稳。

数学建模作业1(长方形椅子能否在不平的地面上放稳吗)

科学技术学院 上机报告 课程名称数学建模 上机项目长方形的椅子能在不平的地面上放稳吗? 专业班级)姓学号 一、问题提出 椅子(四条腿的椅脚连线呈长方形)能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几 次,就可以四脚着地,放稳了。下面用数学语言证明。 二、问题分析 该模型看似与数学与数学无关,但我们可以用数学语言给予表述,并用数学工具来 证实,经过分析,我们可以用一元变量 表示椅子的位置,用 的两个函数表示椅子四脚与地面的距离,进而把模型假设和椅脚同时着地的结论用简单、精确的数学语言表达出来,构成了这个实际问题的数学模型。 三、模型假设 为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假 设:(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形. (2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情 况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必 要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅 脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿 长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三 只脚是无法同时着地的. 符号说明 四、模型建立 (显示模型函数的构造过程) 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示

出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅 子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋 转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不 能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能 放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心 旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子 位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建 立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时 针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角 θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置. 其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C 和B,D对换了.因此,记 A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g (θ),其中θ∈[0,π],从而将原问题数学化。 数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f (θ)?g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成

数学建模竞赛策划书

数学建模竞赛 策 划 书 主办单位:广西机电职业技术学院校团委 承办单位:广西机电职业技术学院数学建模协会 活动时间:2014年5月1日

目录 一.数学建模协会简介 数学建模协会作为一个参加竞赛兼有学术理论性的社团,本着以学术为主,深入钻研的原则,以”创新意识,团队精神,重在参与,公平竞争”为指导思想,已”将平常所学的抽象的数学知识应用到实践或生活中,将平常所学的电脑知识趣味化为特色,以集中对数学建模有兴趣的同学,引导他们学习应用数学领域内各方面知识,培养他们运用理论解决实际问题的能力和团队合作精神,激发他们去学习从未接触过的知识,培养他们动手动脑的积极性,提高学生程序设计和应用计算机解决实际问题的能力,使他们在协会中得到更好的锻炼与发展,挖掘学生中的数学建模人才,为参加更高层次数学建模竞赛选拔精英的目的. 近十年来,大学生数学建模竞赛在培养学子的创新精神,实践能力,团队精神的同时,逐渐成为各高校教学能力的重要评测指标..我们坚信,数学建模协会在团委的关心支持和自身的不懈努力下,一定年选拔和培养更多的数学建模人才,让我院学生在高层次数学建模竞赛中取得更好的成绩. 二.数模背景 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、

交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 三.数学建模的定义 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数

相关文档
最新文档