数学建模椅子能在不平的地面上放稳吗教学文稿

数学建模椅子能在不平的地面上放稳吗教学文稿
数学建模椅子能在不平的地面上放稳吗教学文稿

椅子能在不平的地面上放稳吗?

把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了.下面用数学语言证明.

一、模型假设

对椅子和地面都要作一些必要的假设:

1.椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连

线呈正方形.

2.地面高度是连续变化的,沿任何方向都不会出现间断(没有像

台阶那样的情况),即地面可视为数学上的连续曲面.

3.对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅

子在任何位置至少有三只脚同时着地.

二、模型建立

示四只脚同时着地的条件、

结论.

首先用变量表示椅子的

位置,由于椅脚的连线呈正

方形,以中心为对称点,正

方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置.

其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅

脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了.椅子要

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。 (15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D 处,A、B,C、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A、B,C、D 平行。当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令 ()f θ为A、B 离地距离之和, ()g θ为C、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。 不妨设 (0)0f =,(0)0g >g (若(0)g 也为 0,则初始时刻已四条腿着地,不必再旋转),于是问题归 结为: 已知 ()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存 在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=?,显然,() h θ也是θ的连续函数,(0)(0)(0)0h f g =?<而()()()0h f g πππ=?>,由连续函数的取零值定 理,存在0θ,0 0θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有 00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 x+y+z=10;

数学建模试题(带答案)四

数学建模部分课后习题解答 1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间 距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为)(θg ,其中[] πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。 如果)0(与) 0(g f 不同时为零,不妨设.0)0(,0)0(=>g f 这时,将长方形ABCD 绕点

最新数学建模椅子能在不平的地面上放稳吗

椅子能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了.下面用数学语言证明. 一、 模型假设 对椅子和地面都要作一些必要的假设: 1. 椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形. 2. 3. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面. 4. 5. 对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地. 二、模型建立 中心问题是数学语言表 示四只脚同时着地的条件、 结论. 首先用变量表示椅子的 位置,由于椅脚的连线呈正 方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转 D '

角度θ这一变量来表示椅子的位置. 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了.椅子要挪动位置说明这个距离是位置变量的函数. 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0.当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g . 三、模型求解 将椅子旋转90?,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g .令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()000g f θθ?=,所以()()000==θθf g . 四、评 注 模型巧妙在于用一元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离.利用正方形的中心对称性及旋转90?并不

数学建模椅子平衡问题 蜗牛爬行问题 船渡河问题

1 椅子能在不平的地面上放稳得问题的拓展. 模型假设对椅子和地面应该作一些必要的假设: 1.椅子的四条腿一样长,椅脚与地面接触处可视为一个点。四脚的连线呈长方 形。 2.地面高度是连续变化的,沿任何方向都不会出现间断,即地面可视为数学上 连续曲面。 3.对于脚的间距和椅腿的长度而言,地面时相对平坦的,使椅子在任何位置至 少有三个脚同时着地。 模型构成中心问题是用数学语言把椅子的四只脚同时着地的条件和结论表示出来。 首先要用变量把椅子的位置,注意到椅脚连线呈长方形。以中心为对称点,长方形绕中心的旋转正好代表了椅子位置的改变,于是因此可以用旋转角度这一变量表示椅子的位置。在图中椅 线B’D’与X轴重合,椅子绕中 心点O轴旋转角度θ后。长方形 A’B’C’D’转至ABCD位置。用 θ(对角线与x 轴的夹角)表示 椅子位置,椅脚与地面距离为θ 的函数.A,C 两脚与地面距离之 和 ~ f (θ,),B,D 两脚与地面距 离之和 ~ g (θ) 地面为连续曲面 F (θ) , g (θ) 是连续数.椅子在任意位置至少 三只脚着地.对任意θ, f (θ ), g (θ )至少一个为0. 已知: f (θ ) , g (θ )是连 续函数 ; 对任意θ, f (θ) ? g (θ )=0 ; 且g (0)=0, f (0) > 0. 证明:存在θ0,使 f (θ0) = g (θ0) = 0. 模型求解 证明;设长方形的长为a ,宽为b。 将椅子旋转θ=2arctanb/a,对角线AC取代BD的位置。 由g(0)=0,f(0) > 0 ,知f(2arctanb/a)=0 ,g(2arctanb/a )>0.或,g (2arctanb/a )=0 (1)f(2arctanb/a)=0 ,g(2arctanb/a )=0 ,桌子能放平衡。 (2)f(2arctanb/a)=0 ,g(2arctanb/a )>0 令h(θ)= f(θ)–g(θ), 则h(0)>0和h(2arctanb/a)<0. 由 f, g的连续性知 h为连续函数, 据连续函数的基本性质, 必存在θ0 , 使 h(θ0)=0, 即f(θ0) = g(θ0) .

数学建模椅子问题

椅子能在不平的地面上放稳 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。下面用数学语言证明。 一、模型假设 对椅子和地面都要作一些必要的假设: 1、椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的 连线呈正方形。 2、地面高度是连续变化的,沿椅子的任何方向都不会出现间断 (没有像台阶那样的情况),即地面可视为数学上的连续曲面。 3、对于椅脚的间距和椅子脚的长度而言,地面是相对平坦的, 使椅子在任何位置至少有三只同时着地。 二、模型建立 示四只同时着地的条件、结 论。 首先用变量表示椅子的 位置,由于椅脚的连线呈正 方形,以中心为对称点,正 方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅

脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。椅子要挪动位置说明这个距离是位置变量的函数。 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。 三、模型求解 将椅子旋转090,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,则存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以()()000==θθf g 。 四、评 注 模型巧妙在于用已知的元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离。利用正方形的中心对称性及旋转090并不是本质的,同学们可以考虑四脚呈长方形的情形。

数学建模作业1(长方形椅子能否在不平的地面上放稳吗)

科学技术学院 上机报告 课程名称数学建模 上机项目长方形的椅子能在不平的地面上放稳吗? 专业班级)姓学号 一、问题提出 椅子(四条腿的椅脚连线呈长方形)能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几 次,就可以四脚着地,放稳了。下面用数学语言证明。 二、问题分析 该模型看似与数学与数学无关,但我们可以用数学语言给予表述,并用数学工具来 证实,经过分析,我们可以用一元变量 表示椅子的位置,用 的两个函数表示椅子四脚与地面的距离,进而把模型假设和椅脚同时着地的结论用简单、精确的数学语言表达出来,构成了这个实际问题的数学模型。 三、模型假设 为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假 设:(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形. (2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情 况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必 要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅 脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿 长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三 只脚是无法同时着地的. 符号说明 四、模型建立 (显示模型函数的构造过程) 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示

出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅 子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋 转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不 能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能 放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心 旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子 位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建 立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时 针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角 θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置. 其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C 和B,D对换了.因此,记 A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g (θ),其中θ∈[0,π],从而将原问题数学化。 数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f (θ)?g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成

椅子放平稳问题-数学建模

椅子放平稳问题 所谓数学模型是指对于一个实际问题,为了特定目的,作出必要的简化假设,根据问题的内在规律,运用适当的数学工具,得到的一个数学结构 . 建立及求解数学模型的过程就是数学建模. 下面例子是一个简单的数学建模问题. 问题:四条腿一样长的椅子一定能在不平的地面上放平稳吗? 1.模型假设 (文字转化为数学语言) (1) 椅子四条腿一样长,椅子脚与地面的接触处视为一个点,四脚连线呈正方形; (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有台阶那样的情况),即视地面为数学上的连续曲面; (3) 地面起伏不是很大,椅子在任何位置至少有三只脚同时着地. 2.模型建立 (运用数学语言把条件和结论表现出来) 设椅脚的连线为正方形 ABCD ,对角线 AC 与 x 轴重合,坐标原点 O 在椅子中心,当椅子绕 O 点旋转后,对角线 AC 变为 A'C',A'C'与 x 轴的夹角为θ. 由于正方形的中心对称性,只要设两个距离函数就行了,记 A 、C 两脚与地面距离之和为 )(θf ,B 、D 两脚与地面距离之和为 )(θg .显然0)(≥θf 、0)(≥θg 。 因此椅子和地面的距离之和可令)()()(θθθg f h +=。由假设(2),)(x f 、)(x g 为连续函数,因此)(θh 也是连续函数;由假设(3),得:0)()(=θθg f 。则该问题归结为: 已知连续函数0)(≥θf 、0)(≥θg 且0)()(=θθg f ,至少存在一个0θ,使得: 0)()(00==θθg f 3.模型求解 (找出0θ) 证明:不妨设,0)0(>f 则0)0(=g 令2π θ=(即旋转o 90,对角线AC 和BD 互换)。则有0)2 (,0)2(>=π πg f

数学建模习题答案

数学建模部分课后习题解答 中国地质大学 能源学院 华文静 1。在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地.为了保证这一点,要求对于椅脚的间距 和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的. 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题. 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来.当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形A BCD是对称中心图形,绕其对称中心O沿逆时针方向旋转180度后,长方形位置不变,但A ,C 和B,D 对换了。因此,记A,B 两脚与地面竖直距离之和为)(θf ,C ,D两脚之和为 )(θg ,其中[]πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。

数学建模陈东彦版课后答案

第一部分 练习与思考题 2.9- 3.7 3.6-5.14 4.1-7.1 4.4-7.3 5.9-11.1 5.1-9.1 6.5-4.7 6.10-4.14 第1章 建立数学模型 1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页) 1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n 名商人带n 名随从过河,船每次能渡k 人过河,试讨论商人们能安全过河时,n 与k 应满足什么关系。(商人们安全过河问题见姜启源《数学模型》第7页) 1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。问人、狗、鸡、米怎样过河? 1.4 有3对夫妻过河,船至多载两人,条件是任一女子不能在其丈夫不在的情况下与其他的男子在一起。问怎样过河? 1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元? 1.6 某城市的Logistic 模型为 2610 251 251N N dt dN ?-=,如果不考虑该市的流动人口的影响以及非正常死亡。设该市1990 年人口总数为8000000人,试求该市在未来的人口总数。当∞→t 时发生什么情况。 1.7 假设人口增长服从这样规律:时刻t 的人口为)(t x ,最大允许人口为m x ,t 到t t ?+时间内人口数量与)(t x x m -成正 比。试建立模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进行比较。 1.8 一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时间? 1.9 你在十层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下几个楼层? 1.10 居民的用水来自一个由远处水库供水的水塔,水库的水来自降雨和流入的河流。水库的水可以通过河床的渗透和水面的蒸发流失。如果要你建立一个数学模型来预测任何时刻水塔的水位,你需要哪些信息?

数学建模椅子能在不平的地面上放稳吗

椅子能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了.下面用数学语言证明. 一、 模型假设 对椅子和地面都要作一些必要的假设: 1. 椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形. 2. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面. 3. 对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地. 二、模型建立 中心问题是数学语言表 示四只脚同时着地的条件、结论. 首先用变量表示椅子的 位置,由于椅脚的连线呈正方形,以中心为 对称点,正方形绕中心的旋转正好代表了椅 子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置. 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了.椅子要挪动位置说明这个距离是位置变量的函数. 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0.当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题:

命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g . 三、模型求解 将椅子旋转90?,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g .令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()000g f θθ?=,所以()()000==θθf g . 四、评 注 模型巧妙在于用一元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离.利用正方形的中心对称性及旋转90?并不是本质的,同学们可以考虑四脚呈长方形的情形.

相关文档
最新文档