滚动轴承磨加工工艺流程与过程控制

预防轴承生锈的措施有哪些

预防轴承生锈的措施有哪些 在轴承使用的过程中,预防轴承生锈是一个非常重要的工作。由于轴承多半使用的材料都是钢制做成,因此,在使用轴承的过程中,需要注意清洗轴承时所用的清洗添加剂所含的成份,在预防生锈的轴承工作中,特别需要强调的一点是工序间的防锈,像轴承在热处理车间需要进行酸洗、清洗、磨削加工后,还有更多条工序。当遇到那些产品不是采用流水生产的方式时,通过一次顺序地加工完毕后就要即时的储存在中间库内,因此工序间储存的轴承套圈必须进行防锈措施。如果轴承在加工制造之后,没有得到一定的防锈措施,轴承由于空气分子以及其他酸性渗透,依旧会严重影响轴承的正常工作程序。在进行加工制造的过程期间,防锈一般采用的方法有以下几种,供大家参考 首先给大家介绍最简单的方法,淋喷式防锈,这种防锈措施管理起来比较方便,与此同时还节约了劳动力,在过去的旧社会里库用需要两个人防锈都还无法迅速有效的完成,在现在科技发达的时代里,只需要用一个人还可兼做其它工作,从防锈的效果来看表现也非常明显。被众多轴承专家称赞,得到好评。曾在2003年3月份对7002136及3620滚柱4000多粒,防锈措施进行了淋喷式防锈,结果发现将近一年多,还保持着十分光亮的样子,没有锈蚀。此外对化学品的消耗也有很大的节约,过去滚柱车间每月需消耗亚硝酸钠4000多千克,而现在只用200千克,节约近一半。正因为淋喷式防锈具有如此大的功劳。因此,经过相关厂家近几年来的试验与使用,向广大轴承使用者推荐淋喷式防锈法,最适合在中、大型、批量多、周期长的轴承半成品中得以使用。 相对与淋喷式防锈轴承的方法,采取不论是浸在防锈槽内,还是浸涂浓亚硝酸钠溶液,以及采取涂油措施,都有一定的弊端存在。例如,将轴承圈套浸在5%亚硝酸钠和0.6%碳酸钠的水溶液中,防锈效果虽然还称得上好,但这种防锈措施,需要许多防锈槽等设备,这就占用大量的空间,在管理上也很不方便。 如果采取涂浓亚硝酸钠溶液,这种方法时,由于它在操作的过程中,需要将产品清洗后,浸入含有15%-20%的亚硝酸钠和0.6%碳酸钠的溶液中,再将它堆放起来。因此,采用这种方法其防锈期较短,一般仅能保持7-14天,而且在梅雨季节,由于天气潮湿,只能保持2-3天不说,最麻烦的就是还必须重新处理一下轴承的各个零件,这就需要花费人工和金钱。 因此,经过与相关厂家共同攻关,多年的生产实践表明,对工序间防锈进行多次改进,以采用淋喷式的防锈效果比较好。最初对滚柱防锈进行试用,将半成品和成品每天用亚硝酸钠水溶液冲洗一次,3个月后抽验结果没有发现锈蚀,现在对轴承圈套半成品采用淋喷式防锈,效果亦如此。淋喷式防锈工艺比较简单,操作起来也比较便捷。因此,在进行轴承预防生锈的措施中,最好不过的选择就是淋喷式防锈方式。

轴承加工工艺

转盘轴承加工工艺流程简介 1)锻件毛坯的检查 在加工前首先了解毛坯的材质、锻后状态(一般为正回火状态,查阅锻件合格证即材质书)。其次要检查毛坯是否有叠层、裂纹等缺陷。 测量毛坯外型尺寸。测量毛坯内外径、高度尺寸、计算加工余量,较准确地估算出车削加工的分刀次数。 2)车削加工 2.1 粗车:根据车削工艺图纸进行粗车加工,切削速度、切削量严格按工艺规定执行(一般切削速度为5转/分钟。切削量为10mm~12mm)。 2.2 粗车时效:轴承零件粗车完成后,采用三点支承、平放(不允许叠放),时效时间不小于48小时后才能进行精车加工。 2.3 精车轴承零件精车时,切削速度每分钟6至8转,切削量0.3~0.5毫米。 2.4 成型精车:轴承零件最后成型精车时,为防止零件变形,须将零件固定夹紧装置松开,使零件处于无受力状态,车削速度为每分钟8转、切削量为0.2毫米。 2.5 交叉、三排滚子转盘轴承内圈特别工艺:为防止交叉、三排滚子转盘轴承内圈热处理后变形。车削加工时必须进行成对加工,即滚道背靠背加工,热处理前不进行切断,热后切断成型。 2.6 热后精车:轴承内外圈热处理后,进行精车成工序、工艺规程同2.3、2.4 3)热处理— 3.1 滚道表面淬火:轴承滚道表面中频淬火,硬度不低于55HRC,硬化层深度不小于4毫米,软带宽度小于50毫米,并在相应处作“S”标记。(有时客户要求可以渗碳、渗氮、碳氮共渗等) 3.2 热后回火处理:轴承内外圈中频淬火后需在200C度温度下48小时方可出炉。以确保内应力的消失。 4)滚、铣加工— 4.1 对有内外齿的转盘轴承,磨削加工前要进行滚铣齿工序,严格按工艺要求加工,精度等级要达到8级以上。 5)钻孔— 5.1 划线:在测量零件的外型尺寸后,按图纸规定尺寸进行划线、定位工序,各孔相互差不得大于3%0。 5.2 钻孔:对照图纸检测划线尺寸,确保尺寸正确无误后再进行钻孔工序,分体内套转盘轴承安装孔应组合加工,并使软带相间180C度各孔距误差不得大于5%0

轴承加工工艺流程附图

轴承加工工艺流程(附图) 轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类.轴承可同时承受径向负荷和轴向负荷.能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢? 轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦-—光磨—-热处理——硬磨-—初研——外观——精研 〈2>保持架(钢板)制造基本流程: 原材料——剪料——裁环--光整--成形——整形——冲铆钉孔 〈3>套圈(内圈、外圈)制造基本流程: 原材料—-锻造--退火——车削——淬火—-回火—-磨削--装配

汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是: (a)获得与产品形状相似的毛坯,从而提高金属材料利用率,节约原材料,减少机械加工量,降低成本. (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。 Gcr15SiMn退火基本工序:

在790-810℃保温2-6h, 以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是: (a)通过热处理使材料组织转变,提高材料机械性能。 (b)提高轴承内在质量(耐磨性、强韧性),从而提高轴承寿命。 对于高碳铬轴承钢Gcr15SiMn,热处理包括淬火和低温回火淬火: 加热温度:820—840(℃)保温时间: 1—2h 冷却介质:油低温回火:

轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案 1.?前言 作为整个工业基础的机械制造业,正在朝着高精度、高效率、智能化和柔性化的方向发展。磨削、超精研加工(简称“磨超加工”)往往是机械产品的终极加工环节,其机械加工的好坏直接影响到产品的质量和性能。作为机械工业基础件之一轴承的生产中,套圈的磨超加工是决定套圈零件乃至整个轴承精度的主要环节,其中滚动表面的磨超加工,则又是影响轴承寿命以及轴承减振降噪的主要环节。因此,历来磨超加工都是轴承制造技术领域的关键技术和核心技术。? 国外轴承工业,60年代已形成一个稳定的套圈磨超加工工艺流程及基本方法,即:双端面磨削——无心外圆磨削——滚道切入无心磨削——滚道超精研加工。除了结构特殊的轴承,需要附加若干工序外,大量生产的套圈均是按这一流程加工的。几十年来,工艺流程未出现根本性的变化,但是这并不意味着轴承制造技术没有发展。简要地说,60年代只是建立和发展“双端面——无心外圆——切入磨——超精研”这一工艺流程,并相应诞生了成系列的切入无心磨床和超精研机床,零件加工精度达到3~5um,单件加工时间13~18s(中小型尺寸)。70年代则主要是以应用60m/s高速磨削、控制力磨削技术及控制力磨床大量采用,以集成电路为特征的电子控制技术的数字控制技术被大量采用,从而提高了磨床及工艺的稳定性,零件加工精度达到1~3um,零件加工时间10~12s。80年代以来,工艺及设备的加工精度已不是问题,主要发展方向是在稳定质量的前提下,追求更高的效率,{TodayHot}调整更方便以及制造系统的数控化和自动化。? 2.?轴承套圈的磨削加工 在轴承生产中,磨削加工劳动量约占总劳动量的60%,所用磨床数量也占全部金属切削机床的60%左右,磨削加工的成本占整个轴承成本的15%以上。对于高精度轴承,磨削加工的这些比例更大。另外,磨削加工又是整个加工过程中最复杂,对其了解至今仍是最不充分的一个环节。这个复杂性表现在:所要求的性能指标更多、精度更高;加工成形机理更复杂,影响加工精度的因素众多;加工参数在线检测困难。因此,对于轴承生产中关键工序之一的磨削加工,如何采用新工艺,新技术,以高精度、高效率、低成本地完成磨削过程,便是磨削加工的主要任务。 2.1?高速磨削技术 高速磨削能实现现代制造技术追求的两大目标提高产品质量和劳动效率。实践证明:若将磨削速度由35m/s提高到50~60m/s时,一般生产效率可提高30%~60%,对砂轮的耐用度提高约0.7~1倍,工件表面粗糙度参数值降低50%左右。?一般磨削速度达到45m/s以上称为高速磨削。国内以我所八十年代研制的ZYS—811全自动轴承内圆磨床为代表,率先在国内轴承行业套圈磨削加工中应用高速

轴承套圈工艺改进技术专题报告1

目录 引言: (1) 一.轴承零部件加工过程中的防锈 (2) (一)轴承零部件加工中的防锈 (2) (二) 轴承零部件工序间的防锈 ................................... 3 (三)常用的中间库(制品库)的防锈方法 . (4) 二.防锈包装前的处理 (5) (一)清洗的对象 (5) (二)清洗用的介质 (6) (三)清洗工艺 (6) (四)清洁度检测与标准 (6) (五)清洗后的干燥 (7) 三.暂时性保护(封存防锈)材料 (7) (一)防锈油品 (7) (二)气相防锈材料 (7) 四.轴承润滑油 (8) 五、轴承成品防锈包装 (9) 六、轴承工厂的防锈管理 (10) 结束语 (11) 参考文献: (12)

深沟球轴承轴承内外圈磨加工工艺过程改进 作者:刘圣斌指导老师:余军合 宁波大学科学技术学院 摘要:通过改进轴承内外圈磨工工艺过程和使用的设备,可以使产品磨加工工艺过程和在制 品周转更加合理,解决了冷却水、精研油、清洗煤油交叉相混现象,降低了生产成本,降低社会劳动生产时间的同时提高了社会劳动生产率和产品质量。进一步扩大了轴承产品的竞争优势。 关键字:深沟球轴承;内圈、外圈、磨削、工艺 一、轴承介绍: 轴承是一种精度高、互换性很强的标准零件,因此,为获得高的生产效率和产品质量,常采用专用加工设备。达克公司公司专业化生产深沟球轴承,对内外圈的磨加工工艺过程进行了多次改进,提高了工效和产品质量。 1原设备及工艺存在的问题 原内、外圈磨超工艺如下: 外圈:磨端面(MB7480)→退磁、清洗→磨外径(M1080,MG10200)→支外径磨外沟道(3MZ146)→退磁、清洗→支外径超精外沟道(四轴超精机)。 内圈:磨端面(MB7480)→退磁、清洗→磨内圈挡边(M1050,MGT1050)→支内沟道磨内沟道

轴承套圈加工工艺介绍

轴承是当代机械设备中一种重要零部件,它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。滚动轴承一般由外圈、内圈、滚动体和保持架四部分组成。按滚动体的形状,滚动轴承分为球轴承和滚子轴承两大类。 虽然滚动轴承类型众多,其结构型式、公差等级、材料选用、加工方法存在差异,但其基本制造过程类似,下面小编简单介绍下轴承零件的加工工艺: 轴承制造工艺顺序 (1)轴承零件制造-轴承零件检查-轴承零件退磁、清洗、防锈—轴承装配-轴承成品检查—轴承成品退磁、清洗-轴承成品涂油包装斗成品入库。 (2)套圈是滚动轴承的重要零件,由于滚动轴承的品种繁多,使得不同类型轴承的套圈尺寸、结构、制造使用的设备、工艺方法等各不相同。又由于套圈加工工序多、工艺复杂、加工精度要求高,因此套圈的加工质量对轴承的精度、使用寿命和性能有着重要的影响。 轴承套圈工艺顺序

套圈制造的原材料为圆柱形棒料或管料,目前根据成型工艺不同,滚动轴承套圈一般有以下几种制造过程。 (1)棒料:下料-锻造-退火(或正火)-车削(冷压成型)-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配。 (2)棒料、管料:下料-冷辗成型-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配。 (3)管料:下料-车削成型-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配 (4)棒料:下料-冷(温)挤压成型-车削-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配 套圈成型方法 目前在套圈加工中成型方法主要有以下几种:锻造成型、车削成型、冷辗扩成型和冷(温)挤压成型。

(1)锻造成型通过锻造加工可以消除金属内在缺陷,改善金属组织使金属流线分布合理,金属紧密度好。锻造成型加工工艺广泛应用于轴承成型加工中,常见的锻造成型方法有:热锻加工、冷锻加工、温锻加工。 (2)冲压成型工艺是一种能提高材料利用率,提高金属组织致密性,保持金属流线性的先进工艺方法,它是一种无屑加工方法。采用冲压工艺和锻造成型工艺时,产品的精度除了受设备精度影响外,还要受成型模具精度的影响。 (3)传统的车削成型技术是使用专用车床,采用集中工序法完成成型加工。一些外形复杂、精度要求高的产品正越来越多地采用数控车削成型技术。 轴承加工油的选用 轴承配件除在使用热锻工艺时通常都会根据工艺的不同选用适合的金属加工油以提高工件精度和加工效率。

金属切削液的基本知识

金属切削的基本知识 切削液的配比 (1)苏打水 苏打(无水碳酸钠):1% 亚硝酸钠:0.25%---0.6% 水:余量 将上述物质,加以3---4倍质量的热水(水温40---50度),搅拌3---5分钟,再加入剩余质量的水,再搅拌5分钟。 优点:冷却性能好,防腐蚀作用,良好的洗涤性,成本低 (2)乳化液 取1.5%---2.5%左右的乳化油,先用少量的温水融化,然后倒入储有足量水的水箱中即可。但要求有较高的防锈,防腐蚀性能时,加入苏打和亚硝酸钠各0.2%左右。 优点:具有良好的冷却性能和润滑性能,有防腐蚀作用。 常用刀具材料有碳素工具钢、合金工具钢、高速钢、硬质合金等。 (1) 碳素工具钢(如T10、T12A)及合金工具钢(如9SiCr)特点是淬火硬度较高,价廉。但耐热性能较差,淬火时易产生变形,通常只用于手工工具及形状较简单、切削速度较低的刀具。 (2) 高速钢高速钢是含有较多W、Mo、Cr、V 等元素的高合金工具钢。高速钢具有较高的硬度(热处理硬度可达HRC62-67)和耐热性(切削温度可达500-600°C)。它可以加工铁碳合金、非铁金属、高温合金等广泛的材料。高速钢具有高的强度和韧性,抗冲击振动的能力较强,适宜制造各类刀具。但因耐热温度较硬质合金低,故不能用于高速切削。常用牌号分别是W18Cr4V和W6Mo5Cr4V2等。 (3) 硬质合金硬质合金是在高温下烧结而成的粉末冶金制品。具有较的硬度(70~175HRC),能耐850℃~1000℃的高温,具有良好的耐磨性和耐热性以及高硬度。因而其切削速度比高速钢刀锯提高2到3倍,主要用于高速切削,但其强度、韧性和工艺性不如高速钢,因此通常将硬质合金焊接或机械夹固在刀体(刀柄)上使用(如硬质合金车刀)。常用的硬质合金有钨钴类(YG类)、钨钛钴类(YT类)和钨钛钽(铌)类硬质合金(YW类)三类。 ① 钨钴类硬质合金(YG类) YG类硬质合金主要由WC和Co组成, YG类硬质合金的抗弯强度和冲击韧性较好,不易崩刃,很适宜切削切屑呈崩碎状的铸铁等脆性材料。常用的牌号有YG3、YG6、YG8等。其中数字表示Co含量的百分比,Co含量少者,较脆、较耐磨。YG8用于粗加工,YG6和YG3用于半精加工和精加工。 ②钨钛钴类硬质合金(YT类) YT类硬质合金主要由WC、TiC和Co组成,它里面加入了碳

轴承工序防锈

精密轴承工序间防锈新工艺 锈--金属的腐蚀,对机械制造带来了巨大的损失,尤其是精密的零件如轴承产品等,产生了锈蚀,不但影响精度和表面粗糙度,而且降低了使用寿命,甚至报废而不能使用。 轴承防锈工作是一项重要的工作,特别是工序间的防锈,像轴承在热处理车间经过酸洗、清洗、磨削加工后,还有许多道工序。当产品不是采用流水生产时,一次顺序地加工完毕就要储存在中间库内,因此工序间储存的轴承套圈必须进行防锈。 传统防锈方法及其不足 轴承工序间防锈一般采用的方法有以下几种: 1.浸在防锈槽内 将轴承圈套浸在5%亚硝酸钠和0.6%碳酸钠的水溶液中,防锈效果尚好,但要许多防锈槽等设备,占用大量的空间,管理也不方便。 2.浸涂浓亚硝酸钠溶液 将产品清洗后,浸入含有15%-20%的亚硝酸钠和0.6%碳酸钠的溶液中,再将它堆放起来。采用这种方法其防锈期较短,一般仅能保持7-14天,而且在梅雨季节,由于天气潮湿,只能保持2-3天 就必须重新处理,需要花费人工和金钱。 3.涂油 像成品一样涂上防锈油。这一方法必须在执行下一工序前进行清洗,比较麻烦。 新防锈工艺方法介绍 经过与相关厂家共同攻关,多年的生产实践表明,对工序间防锈进行多次改进,以采用淋喷式的防锈效果比较好。最初对滚柱防锈进行试用,将半成品和成品每天用亚硝酸钠水溶液冲洗一次,3个月后抽验结果没有发现锈蚀,现在对轴承圈套半成品采用淋喷式防锈,效果亦如此。淋喷式防锈工艺比较简单,其方法如下: 1.设备的购建 根据半成品储存多少,建立一个中间库,地面用水泥地坪,中间可设置一条走道,约1.5m,用来通行轴承套圈的小车。在通道的末端放一个存放亚硝酸钠水溶液水池,溶液配方为5%-10%亚硝酸钠加上0.6%碳酸钠,并在地面上做好回水沟,而后将轴承套圈堆放在两旁地板上,每堆轴承套圈之间留着0.6m的走道。可讲中间库设计为64m2左右,其亚硝酸钠水溶液水池为1m3。 2.工艺方法

轴承加工工艺流程附图

轴承加工工艺流程附图 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

轴承加工工艺流程(附图)轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类。轴承可同时承受径向负荷和轴向负荷。能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦——光磨——热处理——硬磨——初研——外观——精研 <2>保持架(钢板)制造基本流程: 原材料——剪料——裁环——光整——成形——整形——冲铆钉孔 <3>套圈(内圈、外圈)制造基本流程: 原材料——锻造——退火——车削——淬火——回火——磨削——装配 汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是:

(a)获得与产品形状相似的毛坯,从而提高金属材料利用率,节约原材料,减少机械加工量,降低成本。 (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。 Gcr15SiMn退火基本工序: 在790—810℃保温2-6h,以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是:

一种特大型轴承套圈毛坯的加工工艺

(10)申请公布号 CN 102489637 A (43)申请公布日 2012.06.13C N 102489637 A *CN102489637A* (21)申请号 201110363369.5 (22)申请日 2011.11.16 B21H 1/06(2006.01) (71)申请人洛阳LYC 轴承有限公司 地址471039 河南省洛阳市涧西区建设路 96号 (72)发明人王明礼 李昭昆 端木培兰 孙小东 尤蕾蕾 陈翠丽 焦景明 刘汇河 (74)专利代理机构洛阳明律专利代理事务所 41118 代理人智宏亮 (54)发明名称 一种特大型轴承套圈毛坯的加工工艺 (57)摘要 本发明属于工件加工工艺领域,尤其涉及一 种特大型轴承套圈毛坯的加工工艺,采用常规的 冶炼和浇注工艺浇注成单件圆形铸环件,然后直 接将圆形铸环件辗扩加工成轴承套圈的毛坯,辗 扩成型工序中的辗扩比大于2;再对辗扩成型工 序得到的轴承套圈毛坯进行正火、调质热处理,获 得能够符合技术要求的特大型轴承套圈毛坯。本 发明提出的加工工艺与现行轴承环型锻件加工 工艺相比,减少了锻造(或轧制)成棒料—锯切下 料—料段加热—锻造—镦饼—扩孔—二次加热等 加工工序,可以大幅度地降低生产成本,所生产的 特大型轴承套圈毛坯的力学性能完全能够满足特 大型轴承套圈的技术要求。 (51)Int.Cl. 权利要求书1页 说明书5页 (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 1 页 说明书 5 页

1/1页 1.一种轴承套圈毛坯的加工工艺,其特征在于:采用常规的冶炼和浇注工艺浇注成单件圆形铸环件,然后直接将圆形铸环件辗扩加工成轴承套圈的毛坯;再对辗扩成型工序得到的轴承套圈毛坯进行正火、调质热处理,获得能够符合技术要求的特大型轴承套圈毛坯。 2.按照权利1所述的一种轴承套圈毛坯的加工工艺,其特征在于:所述的圆形铸环件辗扩加工中,辗扩比应大于2。 3.按照权利1所述的一种轴承套圈毛坯的加工工艺,其特征在于:所述的轴承套圈毛坯正火工序,采用现有42CrMo 钢常规的正火工艺;工件升温到650℃,保温1h ,再升温到870℃,保温8h 后出炉风冷。 4.按照权利1所述的一种轴承套圈毛坯的加工工艺,其特征在于:所述的轴承套圈毛坯调质热处理工序,采用现有42CrMo 钢常规的调质工艺;工件升温到650℃,保温1h ,再升到840℃,保温2.5h 后出炉淬入PAG 水剂中淬火后在2小时内进行回火,工件在回火炉中升温到580℃,保温6小时出炉空冷。权 利 要 求 书CN 102489637 A

滚动轴承套圈加工工艺

滚动轴承(深沟球轴承)套圈的热处理工艺一.选择零件

二.零件的服役条件及性能要求 滚动轴承的机械及工作环境千差万别,套圈要在拉伸、冲击、压缩、剪切、弯曲等交变复杂应力状态下长期工作。一般情况下,套圈的主要破坏形式是在交变应力作用下的疲劳剥落以及摩擦磨损,裂纹压痕锈蚀。所以,这就要求套圈具有高的抗塑性变形的能力,较少的摩擦磨损,良好的尺寸精度及稳定性和较长的接触疲劳寿命。 综上所诉,要求套圈要有1)高的接触疲劳强度2)高的耐磨性3)高的弹性极限4)适宜的硬度5)一定的韧性6)良好的尺寸稳定性7)良好的防锈能力8)良好的工艺性能 三.材料选择 套圈的材料选择一般有6种GCr4 ,GCr15 ,GCr15SiMn ,GCr15SiMo ,GCr18Mo 在这里我们选用的是GCr15,因为我们此次制造的是小尺寸套圈,GCr15SiMn和℃℃GCr15SiMo一般是用来制造壁厚的大轴承的套圈。GCr15SiMn一般用来制造壁厚在15mm~35mm的轴承的套圈。GCr15SiMo一般用来制造壁厚大于35mm的大型和特大型轴承的套圈。GCr4是限制淬透性轴承钢,各方面性能较好。GCr18Mo的淬透性比较高,性能优越,但价格较高。GCr15是高碳铬轴承钢的代表钢种,综合性能良好,淬火和回火后具有高而均匀的硬度,良好的耐磨性能和高的接触疲劳寿命,热加工变形性能和削

切加工性能均良好,但焊接性差,对白点形成较敏感,有回火脆性倾向,价格相对便宜。 四.加工工艺 棒料→锻制→正火→球化退火→车削加工→去应力退火→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 1.正火 正火的目的 (1)消除网状碳化物及线条状组织 (2)返修退火的不合格品 (3)为满足特殊性能的需要 (4)为退火做组织准备 加热温度 正火加热温度主要依据正火目的和正火前组织状态来决定。此处正火主要是为了消除或减少粗大网状碳化物,所以正火温度选在930~950℃之间。如果一次正火不能消除粗大网状碳化物,可以以相同温度二次正火。 保温时间 保温时间在40min~60min 冷却速度 正火冷却过程中如果冷却速度过慢非但不能改善组织,还会再次析出网状碳化物;冷却速度过大,将会出现大量马氏体组织及裂纹。所以本材料正火冷却速不应该小于50℃/min。 冷却方法 (1)分散空冷 (2)强制吹风 (3)喷雾冷却 (4)乳化液中(70~100℃)或油中循环冷却 (5)70~80℃水中冷却 2.球化退火 球化退火目的 (1)获得均匀分布的细粒状珠光体,为后续加工提供组织准备。 (2)降低硬度,改善削切加工性能。 (3)提高塑性,利于冷冲压加工。

端面磨削加工工艺

一技术条件及检查方法 磨削套圈端面的技术条件有:套圈宽度尺寸,套圈宽度变动量(V Bs或V Cs),端面直线性,套圈平面度,表面粗糙度,外观(包括烧伤),残磁等,其容许偏差均规定在工序间技术条件和其它技术条件之中。 检查套圈宽度尺寸和宽度变动量均可在G904,G905仪器上用标准件比较测量(图7-35)测量时,表尖测量点必须离开倒角和打字处,以避免测量有误差,同时表尖应接触套圈的基准端面。 被测套圈两端面间的距离,则是套圈宽度尺寸,被测套圈在仪器上旋转一周以上所测量得的两端间最大与最小距离之差为宽度变动量。 检查套圈端面直线性,可用刀口尺紧贴端面检查光隙度。也可用仪器测量(图7-36),端面的凹凸度=a-b,即是端面直线性误差其误差不应超过规定的宽度变动量数值1/2. 套圈平面度(图7-37)检查,用G803仪器测量。其测量方法如图3-37b所示,仪器的三个定位必须相隔120°,仪表的测量点与套圈基准端面接触,并位于定位支点的正中间, 这样才能测出平面度正确值。 套圈平面度误差大都出现在推力轴承套圈和超轻,特轻系 列轴承的外圈上(即薄壁套圈),其产生原因是由于打印热处 理或磨端面时磁盘磁力过大等造成的。 外观质量检查,主要检查加工后的端面不允许有碰伤车削 痕压伤划伤和黑皮等缺陷,以及端面有超过规定的烧伤。 残次检查,可用电磁感仪器或用铆钉检查。 二加工余量 各型类轴承套圈宽度的磨削留量可参看表7-10,如310外圈直径为110毫米,由表中可看出,当不经软磨时,其基本留量为0.25毫米,最大留量则为0.40毫米。

表7-10 套圈高度留量表 套圈外径车工留量及公差软磨留量及公差基准面余量 >18≤500.25--0.400.2±0.030.10 >50≤800.25--0.400.25±0.030.13 >80≤1200.25--0.400.25±0.030.13 >120≤1500.30--0.450.30±0.030.15 >150≤1800.30--0.500.30±0.030.15 >280≤2500.40--0.600.40±0.030.20 >250≤3150.50--0.700.50±0.030.25 >315≤4000.60--0.800.60±0.030.30 在磨削端面时,应特别注意余量在套圈两个端面上的分配,每个端面必须合理地去除磨量。第一工步应先磨非基准端面,第二工步磨基准端面。各类型套圈的基准面应按图纸规定,如向心球轴承和圆柱滚子轴承套圈,均以无打字面为基准端面。圆锥滚子轴承和角接触轴承的内外圈,均以宽面为基准端面。 图7-38为310轴承外圈的加工图(不软磨)。宽度基本留量为0.25毫米,毛坯的公差为+0.15毫米,这时基准端面留量为二分之一的基本留量,即0.13毫米,而非基准面的最大余量则为0.27毫米。 由此可以看出,基准面和非基准面的加工余量是不一样的,因此加工的先后不可弄错。在实际操作中,应认真挑选基准面加工。 在采用卧式双端面磨床加工套圈端面时,根据其工艺特性,对于对于两端面面积相等的轴承套圈,其高度之总余量自动地平均分配于被加工的两个端面。为了保证毛坯沟的位置,车加工宽度尺寸必须达到严格要求,一般需要精车宽度或经软磨工序。例如,308外圈车加工宽度应达到23.25±0.03毫米的要求。 在双端面磨削时,还必须注意每个工步的加工余量的合理分配。生产实践表明,在一次贯穿行程中(即一个工步)磨去过大的余量,会使砂轮工作面过快磨损,磨削力和磨削热过大不能保证加工质量。每个工步去除余量的合理数值应在生产条件下试验确定,以308外圈为例第一工步可磨至23.10±0.02毫米,第二工步磨至最后尺寸23 0-0.03毫米。 三砂轮选择 磨削轴承套圈端面的砂轮可参考表7-11. 表7-11 磨端面用的砂轮

论文题目:浅析滚动轴承的加工工艺

论文题目:浅析滚动轴承的加工工艺专业班级:G02××班 作者姓名:××× 指导教师:××× 完成日期:2005.5.26

(浅析滚动轴承的加工工艺) 姓名:××× 系别:×××××系 专业:××××× 研究方向:滚动轴承的加工工艺 指导老师:××× 论文完成日期:2005.5.26

摘要本论文围绕着滚动轴承加工工艺,结合自己在××轴承有限公司实习中所学到的一些工作经验,并参阅有关的资料,简述了滚动轴承的基础知识,探讨了滚动轴承从进厂到出厂的各道工序和工艺,分析了滚动轴承的加工过程和工序流程,论述了防锈的重要性和有效的防锈的措施,并就脂润滑和油润滑作了分析,最后列举了轴承的损伤与其相应的对策。关键词滚动轴承,工艺,质检,装配 Abstract This thesis is around the topic of researching the craft of the process of the roll over bearings. I have practiced in the TianAn limited company for two months. In the thesis, I wrote what I have learnt, what I have seen in the practice, and some my own experience with the work. At the same time, I read a lot of relevant data about the roll over bearings and learnt a lot from it. The thesis researched the working preface and the craft of the roll over bearings between the bearings putting into and outing of the factory, introduced some foundation knowledge about the roll over bearings, analyzed the process and the work preface of the process of the roll over bearings, discussed the importance of defending the rust and the valid measure of defending the rust, brief introduced the effect of the lubricate and compared the difference between the oil lubricate and the grease lubricate. At the end, it enumerated the bearing’s hurt and the homologous Solution method 。 Key words Roll over bearings;Whet;Quality checking;Assemble;

轴承滚子的加工工艺

轴承滚子的加工技术 一,圆柱滚子柱面加工方法现状及发展方向: 圆柱滚子是滚柱轴承的重要部件,其加工质量影响着滚柱轴承的品质。传统圆柱滚子加工方法主要有无心磨削、无心研磨和超精加工等。在一整个滚子的加工过程中,磨削加工占总加工量的70%以上,而其中的重要工序则是对滚动面的加工。滚动体圆柱面加工质量是滚柱轴承质量提高的一个技术瓶颈。 1.无心磨削是工件不定中心的磨削,最大的优点是无需对工件进行装夹定位,这使之能很好地用于大批量生产的场合,每个工件的安装调试时间几乎为零。而且一旦机床调整完毕,则工件在加工过程中基本上是自行找修正的。无心贯穿磨削是无心磨削的一种,因其具有高效的生产效率和相对低廉的生产成本,是生产圆柱滚子较为常用的方法。 无心磨削因其高效廉价是最常用的磨削手段之一。但由于工件采用不定中心的固定方式,磨削后的工件能否改善几何形状具有不确定性,并且在加工过程中影响因素较多,需要对各种要素进行合理的调整设置。在滚子加工中,除了较为常用的无心贯穿磨削,还有其他多种磨削方式,如: 定程磨削法,横磨法,摆头磨削法等。 2.无心研磨:研磨是一种较早出现的光整加工方法,既能用于平面加工,也适用于曲面加工。研具在一定的压力下与被加工表面作复杂的相对运动,磨粒则在两者之间发生滑动和滚动,从而产生切削和挤压作用。同时,研磨液中的液体与工件表面发生化学反应,这样,研磨既有机械切削作用,又有化学作用。 3.超精研加工特点: ①磨粒能保持较长时间的切削作用,所以较研磨加工切削效率高; ②切削过程能自动循环,从而能自动进行粗、细、精,完整的循环;③加工时工件发热低,不会产生加工变质层。 4.磁流体磨削:目前,在某些应用中,普通钢制轴承已经无法满足要求,以氮化硅( Si3N4)、碳化硅( SiC) 为代表的工程陶瓷作为结构用材料代替以往的金属材料的应用正在各个方面取得进展。其中,氮化硅陶瓷以其高硬度、低密度、疲劳寿命长等优点作为轴承滚动体制作材料。但由于硬度较高,用一般的研磨抛光需要选用金刚石磨料( 或者砂轮) 并且比较耗时,使得陶瓷轴承的制作成本较高。 5.方向:随着工业技术的高速发展,各类设备中对轴承的要求也越来越高,滚动体作为轴承中极其重要的部件,其加工工艺需要不断的改进和更新。以上的方法都有一定程度的局限性,必须在生产实践中不断的优化改进,不断的提高加工精度和效率,比如在磨削加工中加入弹性结合系统。陶瓷等新兴材料的应用对加工方法提出挑战,所以,未来的加工方法在具有高效、高精度及操作简单等优点外,必然要有对不同材料的适用性。 二,轴承滚子加工方法(手段、工艺): 2004年哈尔滨轴承集团公司的吴广山研究了光饰工艺在轴承滚子加工中的应用。针对滚子的表面质量问题,将光饰加工用于滚子的生产,能提高产品质量、生产效率,特别对滚子的表面粗糙度的降低效果很明显。通过公司对几十个品种近百万粒对滚子的生产经验,光饰加工完全适用于滚子加工,完全达到了预期效果,并且,此种光饰设备对套圈、保持架的光亮加工、毛刺的去除,也将起到意想不到的效果。 2005年瓦房店轴承股份公司研究了改进推力型大锥角小圆锥滚子外径磨削方法,通过改进原有加工方法,瓦轴已经摸索出比较成熟的滚子加工工艺,并先后完成上述几种推力型大锥角小圆锥滚子的加工。经过改进加工方法,避免了滚子磨削烧伤、撞伤砂轮、磨削量不均匀的弊端,不仅达到了均匀磨削滚子外径的效果,也保证了滚子的加工精度,但这种方法只适用于小批量的生产,能够使推力型大锥角小圆锥滚子基本上达到工艺要求。 这种加工方法对滚子定位磨削稳定性比较好,方法看起来较简单,也有一定适用范围,

轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

轴承套圈加工技术水平分析及解决方案 1.?前言 作为整个工业基础的机械制造业,正在朝着高精度、高效率、智能化和柔性化的方向发展。磨削、超精研加工(简称“磨超加工”)往往是机械产品的终极加工环节,其机械加工的好坏直接影响到产品的质量和性能。作为机械工业基础件之一轴承的生产中,套圈的磨超加工是决定套圈零件乃至整个轴承精度的主要环节,其中滚动表面的磨超加工,则又是影响轴承寿命以及轴承减振降噪的主要环节。因此,历来磨超加工都是轴承制造技术领域的关键技术和核心技术。? 国外轴承工业,60年代已形成一个稳定的套圈磨超加工工艺流程及基本方法,即:双端面磨削——无心外圆磨削——滚道切入无心磨削——滚道超精研加工。除了结构特殊的轴承,需要附加若干工序外,大量生产的套圈均是按这一流程加工的。几十年来,工艺流程未出现根本性的变化,但是这并不意味着轴承制造技术没有发展。简要地说,60年代只是建立和发展“双端面——无心外圆——切入磨——超精研”这一工艺流程,并相应诞生了成系列的切入无心磨床和超精研机床,零件加工精度达到3~5um,单件加工时间13~18s(中小型尺寸)。70年代则主要是以应用60m/s高速磨削、控制力磨削技术及控制力磨床大量采用,以集成电路为特征的电子控制技术的数字控制技术被大量采用,从而提高了磨床及工艺的稳定性,零件加工精度达到1~3um,零件加工时间10~12s。80年代以来,工艺及设备的加工精度已不是问题,主要发展方向是在稳定质量的前提下,追求更高的效率,{TodayHot}调整更方便以及制造系统的数控化和自动化。? 2.?轴承套圈的磨削加工 在轴承生产中,磨削加工劳动量约占总劳动量的60%,所用磨床数量也占全部金属切削机床的60%左右,磨削加工的成本占整个轴承成本的15%以上。对于高精度轴承,磨削加工的这些比例更大。另外,磨削加工又是整个加工过程中最复杂,对其了解至今仍是最不充分的一个环节。这个复杂性表现在:所要求的性能指标更多、精度更高;加工成形机理更复杂,影响加工精度的因素众多;加工参数在线检测困难。因此,对于轴承生产中关键工序之一的磨削加工,如何采用新工艺,新技术,以高精度、高效率、低成本地完成磨削过程,便是磨削加工的主要任务。 2.1?高速磨削技术 高速磨削能实现现代制造技术追求的两大目标提高产品质量和劳动效率。实践证明:若将磨削速度由35m/s提高到50~60m/s时,一般生产效率可提高

轴承套圈冷处理工艺

轴承零件的热处理质量控制在整个机械行业是最为严格的。轴承热处理在过去的20来年里取得了很大的进步,主要表现在以下几个方面:热处理基础理论的研究;热处理工艺及应用技术的研究;新型热处理装备及相关技术的开发。 1.高碳铬轴承钢的退火:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。传统的球化退火工艺是在略高于Ac1的温度(如GCr15为780~810℃)保温后随炉缓慢冷却(25℃/h)至650℃以下出炉空冷。该工艺热处理时间长(20h以上),且退火后碳化物的颗粒不均匀,影响以后的冷加工及最终的淬回火组织和性能。之后,根据过冷奥氏体的转变特点,开发等温球化退火工艺:在加热后快冷至Ar1以下某一温度范围内(690~720℃)进行等温,在等温过程中完成奥氏体向铁素体和碳化物的转变,转变完成后可直接出炉空冷。该工艺的优点是节省热处理时间(整个工艺约12~18h),;处理后的组织中碳化物细小均匀。另一种节省时间的工艺是重复球化退火:第一次加热到810℃后冷却至650℃,再加热到790℃后冷却到650℃出炉空冷。该工艺虽可节省一定的时间,但工艺操作较繁。 2.高碳铬轴承钢的马氏体淬回火: 2.1常规马氏体淬回火的组织与性能.近20年来,常规的高碳铬轴承钢的马氏体淬回火工艺的发展主要分两个方面:一方面是开展淬回火工艺参数对组织和性能的影响,如淬回火过程中的组织转变、残余奥氏体的分解、淬回火后的韧性与疲劳性能等;另一方面是淬回火的工艺性能,如淬火条件对尺寸和变形的影响、尺寸稳定性等。常规马氏体淬火后的组织为马氏体、残余奥氏体和未溶(残留)碳化物组成。其中,马氏体的组织形态又可分为两类:在金相显微镜下(放大倍数一般低于1000倍),马氏体可分为板条状马氏体和片状马氏体两类典型组织,一般淬火后为板条和片状马氏体的混合组织,或称介于二者之间的中间形态—枣核状马氏体(轴承行业上所谓的隐晶马氏体、结晶马氏体);在高倍电镜下,其亚结构可分为位错缠结和孪晶。其具体的组织形态主要取决于基体的碳含量,奥氏体温度越高,原始组织越不稳定,则奥氏体基体的碳含量越高,淬后组织中残余奥氏体越多,片状马氏体越多,尺寸越大,亚结构中孪晶的比例越大,且易形成淬火显微裂纹。一般,基体碳含量低于0.3%时,马氏体主要是位错亚结构为主的板条马氏体;基体碳含量高于0.6%时,马氏体是位错和孪晶混合亚结构的片状马氏体;基体碳含量为0.75%时,出现带有明显中脊面的大片状马氏体,且片状马氏体生长时相互撞击处带有显微裂纹。与此同时,随奥氏体化温度的提高,淬后硬度提高,韧性下降,但奥氏体化温度过高则因淬后残余奥氏体过多而导致硬度下降。常规马氏体淬火后的组织中残余奥氏体的含量一般为6~15%,残余奥氏体为软的亚稳定相,在一定的条件下(如回火、自然时效或零件的使用过程中),其失稳发生分解为马氏体或贝氏体。分解带来的后果是零件的硬度提高,韧性下降,尺寸发生变化而影响零件的尺寸精度甚至正常工作。对尺寸精度要求较高的轴承零件,一般希望残余奥氏体越少越好,如淬火后进行补充水冷或深冷处理,采用较高温度的回火等。但残余奥氏体可提高韧性和裂纹扩展抗力,一定的条件下,工件表层的残余奥氏体还可降低接触应力集中,提高轴承的接触疲劳寿命,这种情况下在工艺和材料的成分上采取一定的措施来保留一定量的残余奥氏体并提高其稳定性,如加入奥氏体稳定化元素Si、Mn,;进行稳定化处理等。 2.2常规马氏体淬回火工艺常规高碳铬轴承钢马氏体淬回火为:把轴承零件加热到830~860℃保温后,在油中进行淬火,之后进行低温回火。淬回火后的力学性能除淬前的原始组织、淬火工艺有关外,还很大程度上取决于回火温度及时间。随回火温度升高和保温时间的延长,

相关文档
最新文档