电磁场中的单杆模型.

电磁场中的单杆模型.
电磁场中的单杆模型.

模型组合讲解——电磁场中的单杆模型

[模型概述]

在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。

[模型讲解]

一、单杆在磁场中匀速运动

例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A ,电表均为理想电表。导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。

图1

(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?

(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。因此,应该是电压表正好达到满偏。 当电压表满偏时,即U 1=10V ,此时电流表示数为

I U R A 112==并

设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20V

a 、

b 棒受到的安培力为

F 1=BIL =40N

解得v m s 11=/

(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。

由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以

F I I F N N 221132

4060=

==×。 二、单杠在磁场中匀变速运动

例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。ab 棒的电阻为R =0.10Ω,其他各部分电阻均不计。开始时,磁感应强度B T 0050=.。

图2

(1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右的拉力,使它做匀加速直线运动。此拉力F 的大小随时间t 变化关系如图2乙所示。求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。

(2)若从t =0开始,使磁感应强度的大小从B 0开始使其以??B t

=0.20T/s 的变化率均匀增加。求经过多长时间ab 棒开始滑动?此时通过ab 棒的电流大小和方向如何?(ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等)

解析:(1)当t =0时,F N F F ma f 113=-=,

当t =2s 时,F 2=8N

F F B B Lat R

L ma f 200--= 联立以上式得:

a F F R B L t

m s F F ma N f =-==-=()/210222141, (2)当F F f 安=时,为导体棒刚滑动的临界条件,则有:

B B t L

R

L F f ??2=

则B T B B B t

t t s ==+

=41750,,??. 三、单杆在磁场中变速运动

例3. (2005年上海高考)如图3所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻。匀速磁场方向与导轨平面垂直。质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。

图3

(1)求金属棒沿导轨由静止开始下滑时的加速度大小;

(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小;

(3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向。(g =10m/s 2,sin37°=0.6,cos37°=0.8)

解析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律

mg mg ma sin cos θμθ-= ①

由①式解得 a m s =42/ ②

(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡: mg mg F sin cos θμθ--=0 ③

此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率

Fv P = ④

由③、④两式解得:

v m s =10/ ⑤

(3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为B

I vBl R

= ⑥ P I R =2 ⑦

由⑥、⑦两式解得 B PR vl

T ==04. ⑧ 磁场方向垂直导轨平面向上。

四、变杆问题

例4. (2005年肇庆市模拟)如图4所示,边长为L =2m 的正方形导线框ABCD 和一金属棒MN 由粗细相同的同种材料制成,每米长电阻为R 0=1Ω/m ,以导线框两条对角线交点O 为圆心,半径r =0.5m 的匀强磁场区域的磁感应强度为B =0.5T ,方向垂直纸面向里且垂直于导线框所在平面,金属棒MN 与导线框接触良好且与对角线AC 平行放置于导线框上。若棒以v =4m/s 的速度沿垂直于AC 方向向右匀速运动,当运动至AC 位置时,求(计算结果保留二位有效数字):

图4

(1)棒MN 上通过的电流强度大小和方向;

(2)棒MN 所受安培力的大小和方向。

解析:(1)棒MN 运动至AC 位置时,棒上感应电动势为E B r v =2· 线路总电阻R L L R =+

()20。 MN 棒上的电流I E R

= 将数值代入上述式子可得:

I =0.41A ,电流方向:N →M

(2)棒MN 所受的安培力:

F B rI N F A A ==2021.,方向垂直AC 向左。

说明:要特别注意公式E =BLv 中的L 为切割磁感线的有效长度,即在磁场中与速度方向垂直的导线长度。

[模型要点]

(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。

(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N

t =?Φ?或E BLv =求感应电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。

(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。

[误区点拨]

正确应答导体棒相关量(速度、加速度、功率等)最大、最小等极值问题的关键是从力电角度分析导体单棒运动过程;而对于处理空间距离时很多同学总想到动能定律,但对于导体单棒问题我们还可以更多的考虑动量定理。所以解答导体单棒问题一般是抓住力是改变物体运动状态的原因,通过分析受力,结合运动过程,知道加速度和速度的关系,结合动量定理、能量守恒就能解决。

[模型演练]

1. (2005年大联考)如图5所示,足够长金属导轨MN 和PQ 与R 相连,平行地放在水平桌面上。质量为m 的金属杆ab 可以无摩擦地沿导轨运动。导轨与ab 杆的电阻不计,导轨宽度为L ,磁感应强度为B 的匀强磁场垂直穿过整个导轨平面。现给金属杆ab 一个瞬时冲量I 0,使ab 杆向右滑行。

图5

(1)回路最大电流是多少?

(2)当滑行过程中电阻上产生的热量为Q 时,杆ab 的加速度多大?

(3)杆ab 从开始运动到停下共滑行了多少距离?

答案:(1)由动量定理I mv 000=-得v I m

00= 由题可知金属杆作减速运动,刚开始有最大速度时有最大E BLv m =0,所以回路最大电流:

I BLv R BLI mR

m ==00 (2)设此时杆的速度为v ,由动能定理有: W mv mv A =-1212

202而Q =-W A 解之 v I m Q m =

-0222 由牛顿第二定律F BIL ma A ==及闭合电路欧姆定律

I BLv R

=得

a B L v mR B L mR I m

Q m ==-2222

0222 (3)对全过程应用动量定理有:

-=-∑BI L t I i ·?00

而I t q i ·?∑=所以有q I BL

=0 又q I t E R t R t t R BLx R

=====·???Φ???Φ 其中x 为杆滑行的距离所以有x I R B L =

022

。 2. (2005年南通调研)如图6所示,光滑平行的水平金属导轨MNPQ 相距l ,在M 点和P 点间接一个阻值为R 的电阻,在两导轨间OO O O 11''矩形区域内有垂直导轨平面竖直向下、宽为d 的匀强磁场,磁感强度为B 。一质量为m ,电阻为r 的导体棒ab ,垂直搁在导轨上,与磁场左边界相距d 0。现用一大小为F 、水平向右的恒力拉ab 棒,使它由静止开始运动,棒ab 在离开磁场前已经做匀速直线运动(棒ab 与导轨始终保持良好的接触,导轨电阻不计)。求:

图6

(1)棒ab 在离开磁场右边界时的速度;

(2)棒ab 通过磁场区的过程中整个回路所消耗的电能;

(3)试分析讨论ab 棒在磁场中可能的运动情况。

解析:(1)ab 棒离开磁场右边界前做匀速运动,速度为v m ,则有:

E Blv I E R r

m ==+, 对ab 棒F BIl -=0,解得v F R r B l m =

+()22 (2)由能量守恒可得:

F d d W mv m ()0212

+=+电

解得:W F d d mF R r B l

电=+-+()()022

442 (3)设棒刚进入磁场时速度为v 由:

F d mv v Fd m

·可得:020122== 棒在进入磁场前做匀加速直线运动,在磁场中运动可分三种情况讨论: ①若2022Fd m F R r B l =+()(或F d B l m R r =+20442()

),则棒做匀速直线运动; ②若2022Fd m F R r B l <+()(或F d B l m R r >+20442()

),则棒先加速后匀速; ③若2022Fd m F R r B l >+()(或F d B l m R r <+20442

()),则棒先减速后匀速。

圆周运动中绳模型和杆模型的一般解析

圆周运动中绳模型和杆模型的一般解析 一:绳模型:若已不可伸长的绳子长L ,其一端栓有一质量m 的小球(可看成质点)。现使绳子拉着小球绕一点O 做匀速圆周运动,则(1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,绳子拉F 。 解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg 作用, 故,由其做圆周运动得: L v m mg 2= 故 gL v = (2)由分析得,当小球到最高点时速度gL v v =>'时, 则,mg L mv F -=2 ' 而,当gL v v =<'时,那么小球重力mg 大于其所需向心力,因此小球做向心运动。 二:杆模型:若一硬质轻杆长L ,其一端有一质量m 的小球(可看成质点)。现使杆和小球绕一点O 做匀速圆周运动, 则 (1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,杆对小球的作用力F 。 解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。 (2)①由绳模型可知,当小球通过最高点速度gL v =时,

恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时, 若小球速度gL v =时,小球所需向心力恰好等于重力mg , 故,此时杆对小球没有作用力。 ②当小球通过最高点时速度gL v >时, 则小球所需向心力比重力mg 大,所以此时杆对小球表现为拉力,使小球不至于做离心运动 故对小球有, L mv mg F 2=+ ③同理,当小球通过最高点时速度gL v <时, 则小球所需向心力小于重力mg ,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用, 故对小球有, L mv F mg 2=-

高中物理模型-电磁场中的单杆模型

模型组合讲解——电磁场中的单杆模型 秋飏 [模型概述] 在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。 [模型讲解] 一、单杆在磁场中匀速运动 例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A 且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。 图1 (1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少? (2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V , 当电压表满偏时,即U 1=10V ,此时电流表示数为 I U R A 112==并 设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20V a 、 b 棒受到的安培力为 F 1=BIL =40N 解得v m s 11=/ (2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为

U I R 22=并=6V 可以安全使用,符合题意。 由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以 F I I F N N 221132 4060= ==×。 二、单杠在磁场中匀变速运动 例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。该轨道平面ab 棒的电阻为R =0.10Ω,其他各 部分电阻均不计。开始时,磁感应强度B T 0050 =.。 图2 (1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右F 的大小随时间t 变化关系如图2乙所示。求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。 (2)若从t =0开始,使磁感应强度的大小从B 0开始使其以??B t =0.20T/s 的变化率均匀增加。求经过多长时间ab 棒开始滑动?此时通过ab ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等) 解析:(1)当t =0时,F N F F ma f 113=-=, 当t =2s 时,F 2=8N F F B B Lat R L ma f 200--= 联立以上式得: a F F R B L t m s F F ma N f =-==-=()/210222141, (2)当F F f 安=时,为导体棒刚滑动的临界条件,则有:

最新电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任 意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度在直角坐标系的表达式 z A y A x A z y x A A ??????++ = ??=ρ ρdiv ; 散度在圆柱坐标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右 手螺旋法则。当S 点P 时,存在极限环量密度。二者的关系 n dS dC e A ρρ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该 点最 大环量密度的方向。 4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。梯度的大小为该点 标量函数 ?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的 方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与 梯度的关系是梯度的大小为该点标量函数 ?的最大变化率,即该点最 大方向导数; 梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数 的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e r 的表达 式 ;

7、直角坐标系下方向导数 u ?的数学表达式是 ,梯度的表达式 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。 9、麦克斯韦方程组的积分形式分别为 ()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ?=??=-??=?=+????????r r r r r r r r g r r r r r g ???? 其物理描述分别为 10、麦克斯韦方程组的微分形式分别为 2 0E /E /t B 0 B //t B c J E ρεε??=??=-????=??=+??r r r r r r r 其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的 场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。 12、坡印廷矢量的数学表达式 2 0S c E B E H ε=?=?r r r r r ,其物理意义表示了单 位面积的瞬时功率流或功率密度。功率流的方向与电场和磁场的方向垂直。表达式 ()s E H dS ??r r r g ?的物理意义穿过包围体积v 的封闭面S 的功率。 13、电介质的极化是指在外电场作用下,电介质中出现有序排列电偶极子以及表面上出

电磁感应现象中的单杆切割磁感线问题

电磁感应现象中的单杆切割磁感线问题 一、教学内容:电磁感应知识与应用复习之单杆切割磁感线问题 二、教学课时:二课时 三、教学课型:高三第一轮复习课 四、教学设计适合对象:高三理科学生 五、教学理念: 电磁感应现象知识的应用历来是高考的重点、热点,问题可将力学、电磁学等知识溶于一体,能很好地考查学生的理 解、推理、分析综合及应用数学处理物理问题的能力。通过近年高考题的研究,电磁感应问题每年都有“单杆切割磁感线 问题”模型的高考题出现。 而解决电磁感应单杆切割磁感线问题的关键就是借鉴或利用相似原型来启发、理解和变换物理模型,即把最基础的物 理模型进行细致的分析和深入的理解后,有目的的针对某些关键位置进行变式,从而把陌生的物理模型与熟悉的物理模型 相联系,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法?巧妙地 运用“类同”变换,“类似”变换, “类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化,从而提高了课堂教学的有效 性。 六、电磁感应教学内容与学情分析研究: 6. 1 ?教学内容分析: 电磁感应中的单杆模型包括:导轨、金属棒和磁场,所以对问题的变化点主要有: 1.针对金属棒 1)金属棒的受力情况:平行轨道方向上,除受安培力以外是否存在拉力、阻力; 2)金属棒的初始状态:静止或有一个初速度V。; 3)金属棒的运动状态:与导轨是否垂直,与磁场是否垂直,是不是绕中心点转动; 4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线。 2?针对导轨 1)导轨的形状:常见导轨的形状为U形,还可以为圆形、三角形、三角函数图形等; 2)导轨的闭合性:导轨本身可以开口,也可闭合; 3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; 4)导轨的放置:水平、竖直、倾斜放置。 3.针对磁场 1 )磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化; 2)磁场的分布:有界或无界。 6 . 2 .学生学情分析:

电磁场与微波技术在日常生活中的应用

电磁场与微波技术在日常生活中的应用 学院:信息科学与工程学院 专业班级:电子0803班 姓名:叶琳琳 学号:20082722

电磁场与微波技术在日常生活中的应用 电磁场与微波技术在日常生活中的应用是非常广泛的,其应用大致体现在电磁起重机,磁悬浮列车小到电动机,指南针,扬声器,变压器,电磁炉,微波炉,以及微波技术在食品中的应用,微波加热,微波杀菌等等。 其中,电磁炉,微波炉,以及微波技术在食品工业中的应用等等。 电磁炉是厨具市场的一种新型灶具,它打破了传统的明火烹调方式采用磁场感应电流的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场,当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流,涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能,使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。电磁炉的优势首先表现在它的热效率极高。作为倡导"绿色厨房文化"的高科技产品,电磁炉的应用原理是电流通过线圈产生磁场,磁场内的磁力线通过含铁物质的底部时,促使铁分子高速运动,产生无数小涡流,因此热效率高,鉴于电磁炉的种种优点,现在大量使用。 电磁炉的优势首先表现在它的热效率极高。作为倡导"绿色厨房文化"的高科技产品,电磁炉的应用原理是电流通过线圈产生磁场,磁场内的磁力线通过含铁物质(铁锅、不锈钢锅、搪瓷锅等)的底部时,促使铁分子高速运动,产生无数小涡流,因此热效率高。相比之下,传统炉具,如电热炉、石油气炉、煤气炉及电饭锅的加热原理是先烧红器皿底部直接加热锅内食物,另有部分热耗用在燃烧空气,热效率在40%-70%之间,热能耗量大、煮食慢。而电磁炉的热效率普遍高于80%,连盟电磁炉热效率能够达到93%。用传统炉灶明火烧开一壶水需要9分钟,而放到电磁炉上则只需2~3分钟,大大节省了能源。连盟电磁炉不受锅具种类和大小的左右,独有的热能强力制御开发, 2200W的电磁炉产生的极高的热值相当于4800 KCAL/m3的煤气炉发出的高火力。 微波炉是利用了微波是一种电磁波,其能量比通常的无线电波大得多。微波一碰到金属就发生反射,金属根本没有办法吸收或传导它。微波可以穿过玻璃、陶瓷、塑料等绝缘材料,但不会消耗能量;而含有水分的食物,微波不但不能透过,其能量反而会被吸收。微波炉正是利用微波的这些特性制作的。微波炉的外壳用不锈钢等金属材料制成,可以阻挡微波从炉内逃出,以免影响人们的身体健康。装食物的容器则用绝缘材料制成。微波炉的心脏是磁控管。这个叫磁控管的电子管是个微波发生器,它能产生每秒钟振动频率为24.5亿次的微波。这种肉眼看不见的微波,能穿透食物达5cm深,并使食物中的水分子也随之运动,剧烈的运动产生了大量的热能,食物就会被煮熟了,这就是微波炉加热的原理。用普通炉灶煮食物时,热量总是从食物外部逐渐进入食物内部的。而用微波炉烹饪,热量则是直接深入食物内部,所以烹饪速度比其它炉灶快4至10倍,热效率高达80%以上。微波炉由于烹饪的时间很短,进而能很好地保持食物中的维生素和天然风味,满足人们的需求。 微波技术在食品行业中的应用也是相当的广泛。鉴于微波具有加热迅速、均匀、节能高效、防霉保鲜、可连续生产、安全无害、设备占地面积小、改善劳动条件等优点,已被广泛应引用于粉状、颗粒、片状等各种食品、营养品、调味品、

单杆模型

14.(10分)如图15所示,电阻不计的光滑形导轨水平放置,导轨间距,导轨一端 接有的电阻.有一质量、电阻的金属棒与导轨垂直放置.整个装置处在竖直向下的匀强磁场中,磁场的磁感应强度现用水平力垂直拉动金属棒,使它以 的速度向右做匀速运动.设导轨足够长. 图15 (1)求金属棒两端的电压; (2)若某时刻撤去外力,从撤去外力到金属棒停止运动,求电阻产生的热量. 8.(16分) 如题8图所示,倾角为θ的“U”型金属框架下端连接一阻值为R的电阻,相互平行的金属杆MN、PQ间距为L,与金属杆垂直的虚线a1b1、a2b2区域内有垂直框架平面向上的匀强磁场,磁感应强度大小为B,a1b1、a2b2间距离为d,一长为L、质量为m、电阻为R 的导体棒在全属框架平面上与磁场上边界a2b2距离d处从静止开始释放,最后能匀速通过磁场下边界a1b1.重力加速度为g(金属框架摩擦及电阻不计).求: (1)导体棒刚到达磁场上边界a2b2时速度大小v1; (2)导体棒匀速通过磁场下边界a1b1时速度大小v2; (3)导体棒穿越磁场过程中,回路产生的电能. 16.(18分)如图所示,足够长的光滑平行金属导轨,相距上,导轨平面与水平面夹角为θ,匀强磁场垂直于导轨平面,已知磁感应强度为B,平行导轨的上端连接一个阻值为R 的电阻.一根质量为m,电阻为1 2 R的金属棒oA垂直于导轨放置在导轨上,金属棒从静止 开始沿导轨下滑. (1)画出ab在滑行过程中的受力示意图. (2)ab棒滑行的最大速度v m=? (3)若ab棒从静止开始沿斜面下滑距离s时,棒刚好达到最大速度,求棒从开始下滑到最大速度过程中,电阻R上产生的热量Q R=? 16.(20分)如图所示,两根平行金属导轨相距L,上端接有 直流电源,电源电动势为E,内阻为r,导轨的倾斜部分与水平面 成θ角,水平部分右端与阻值为R的电阻相连。倾斜部分存在垂 直斜面向上的匀强磁场,水平部分存在垂直水平面向下的匀强磁 场,两部分磁场的磁感应强度大小相等。倾斜导轨与水平导轨光 滑连接,金属棒a与导轨接触良好,质量 为m,电阻也为R。金属导轨固定不动且电阻不计。不计一切摩擦。导轨的倾斜部分和水平部分都足够长。求: (1)开关闭合时,金属棒a恰能处于静止状态,求匀强磁场磁感应强度的大小? (2)断开开关,从静止释放金属棒a,在金属棒a进入水平轨道后, 电路中产生的最大焦

高考物理双基突破二专题电磁感应中的单杆模型精讲.doc

专题32 电磁感应中的“单杆”模型 单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 应电动势E = 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt 速度为v +Δv ,此时感应

=Blv R ,安培力F =BIL =B2L2v R ,做减速运 动:v ?F ?a , 当v =0时,F =0,a =0,杆保持静止 此时 a =BLE mr ,杆 ab 速度v ?感 应电动势 BLv ?I ?安 培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL BLv ?I ?安 培力F 安= BIL ,由F -F 安 =ma 知a ,当a =0时,v 最大, v m = FR B2L2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv20 2 C .整个过程中金属棒在导轨上发生的位移为qR BL

高考模型_电磁场中的双杆模型

高考模型——电磁场中的双杆模型 研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。 一、在竖直导轨上的“双杆滑动”问题 1.等间距型 如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则: A 、 当va=12m/s 时,vb=18m/s B 、当va=12m/s 时,vb=22m/s C 、若导轨很长,它们最终速度必相同 D 、它们最终速度不相同,但速度差恒定 【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。 在释放a 后的1s 对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 它的冲量大小都为I ,选向下的方向为正方向。 当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有: 对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0 联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。 在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。当棒的速度与棒接近时,闭合回路中的逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小。最后,两棒以共同的速度向下做加速度为g 的匀加速运动。 2.不等间距型 图中1111a b c d 和2222a b c d 为在同一竖直平面的金属导轨,处在磁感应强度为B 的匀强磁 场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的 11a b 段与22a b 段是竖直的.距离为小1l ,11c d 段与22c d 段也是竖直的,距离为2l 。11x y 与22x y 为两根用不可伸长的绝缘轻线 相连的金属细杆,质量分别为 1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆11x y 上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。(04全国2)

电磁场中的单杆模型.

模型组合讲解——电磁场中的单杆模型 [模型概述] 在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。 [模型讲解] 一、单杆在磁场中匀速运动 例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A ,电表均为理想电表。导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。 图1 (1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少? (2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。因此,应该是电压表正好达到满偏。 当电压表满偏时,即U 1=10V ,此时电流表示数为 I U R A 112==并 设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20V a 、 b 棒受到的安培力为 F 1=BIL =40N 解得v m s 11=/ (2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。 由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以

最新高考物理双基突破:专题32-电磁感应中的“单杆”模型(精讲)

单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt

势E =BLv ,电流I = E R =Blv R ,安培力F =BIL = B 2L 2 v R ,做减速运动: v ?F ?a ,当v =0时,F =0,a =0, 杆保持静止 此时a =BLE mr ,杆 ab 速度v ?感应电动势BLv ?I ?安培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL 应电动势E =BLv ?I ?安培力F 安=BIL ,由F -F 安 =ma 知a ,当 a =0时,v 最大, v m = FR B 2L 2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值 为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv 202

《走向高考》2013高考物理总复习 8-4电磁场在实际中的应用

8-4电磁场在实际中的应用 一、选择题 1.设回旋加速器中的匀强磁场的磁感应强度为B,粒子的质量为m,所带电荷量为q,刚进入磁场的速度为v0,回旋加速器的最大半径为R,那么两极间所加的交变电压的周期T和该粒子的最大速度v分别为() A.T=2πm qB,v不超过 qBR m B.T= πm qB,v不超过 qBR m C.T=2πm qB,v不超过 qBR 2m D.T= πm qB,v不超过 qBR 2m [答案] A [解析]粒子做匀圆周运动周期为T=2πm qB,故电源周期须与粒 子运动周期同步,粒子的最大速度由最大半径R决定。 2.(2012·北京西城抽样)如图是磁流体发电机的原理示意图,金属板M、N正对着平行放置,且板面垂直于纸面,在两板之间接有电阻R。在极板间有垂直于纸面向里的匀强磁场。当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是() A.N板的电势高于M板的电势 B.M板的电势高于N板的电势

C.R中有由b向a方向的电流 D.R中有由a向b方向的电流 [答案]BD [解析]根据左手定则可以判断,当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,正粒子向上偏转,所以M板的电势高于N板的电势,B选项正确,A选项错误;在电源外部电流从高电势流向低电势,R中有由a向b方向的电流,D选项正确,C选项错误。 3.如图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。平板S下方有强度为B0的匀强磁场。下列表述正确的是() A.质谱仪是分析同位素的重要工具 B.速度选择器中的磁场方向垂直纸面向外 C.能通过狭缝P的带电粒子的速率等于E/B D.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小 [答案]ABC

河北省保定安国中学电磁感应中单杆模型的动态分析(10页)

河北省保定安国中学电磁感应中单杆模型的动态分析 速度V 0≠0 V =0 示意图 单杆以一定初 速度v0在光滑 水平轨道上滑 动,质量为m, 电阻不计,杆长为L 轨道光滑水 平,杆质量 为m,电阻不 计,杆长为L,拉力F恒定 力学和运动学分析导体杆以速度v切割磁感线产生感 应电动势BLv E=,电流 R BLv R E I= =,安培力 R v L B BIL F 2 2 = =,做减速运动: ↓ ↓?a v,当0 = v时,0 = F, = a,杆保持静止 开始时 m F a=,杆ab速度↑? v感应 电动势↑? ↑? =I BLv E安培力 ↑ =BIL F 安 由a F F m = - 安 知↓ a,当 = a时,v最大, 2 2L B FR v m = 图像观点 F B R v0 B R

1、(多选)如图所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN 成水平沿导轨滑下,在与导轨和电阻R 组成的闭合电路中,其他电阻不计。当金属杆MN 进入磁场区后,其运动的速度图像可能是下图中的( ACD ) 在电磁感应现象问题中求解距离问题的方法:①运动学公式。②动量定理。 v m t R v L B ?=?总 22(t v ?是V-t 图像的面积)③利用电量总R nBxL q ==总R n φ? 2、质量为m 的导体棒可沿光滑水平的平行轨道滑行,两轨道间距离为L ,导轨左端与电阻R 连接,放在竖直向上的匀强磁场中,磁感应强度为B ,杆的速度为v 0,电阻不计,如图,试求棒所滑行的距离。 能 量 观 点 动能全部转化为内能: 202 1mv Q = F 做的功中的一部分转化为杆的动能,一部分产热:22 1m F mv Q W + = v 0 B R

圆周运动中绳模型和杆模型的一般解析

圆周运动中绳模型和杆模型的一般解析 -CAL-FENGHAI.-(YICAI)-Company One1

圆周运动中绳模型和杆模型的一般解析 一:绳模型:若已不可伸长的绳子长L ,其一端栓有一质量m 的小球(可看成质点)。现使绳子拉着小球绕一点O 做匀速圆周运动,则(1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,绳子拉F 。 解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg 作用, 故,由其做圆周运动得: L v m mg 2= 故 gL v = (2)由分析得,当小球到最高点时速度gL v v =>'时, 则,mg L mv F -=2 ' 而,当gL v v =<'时,那么小球重力mg 大于其所需向心力,因此小球做向心运动。 二:杆模型:若一硬质轻杆长L ,其一端有一质量m 的小球(可看成质点)。现使杆和小球绕一点O 做匀速圆周运动, 则 (1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,杆对小球的作用力F 。 解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。

(2)①由绳模型可知,当小球通过最高点速度gL v =时,恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时, 若小球速度gL v =时,小球所需向心力恰好等于重力mg , 故,此时杆对小球没有作用力。 ②当小球通过最高点时速度gL v >时, 则小球所需向心力比重力mg 大,所以此时杆对小球表现为拉力,使小球不至于做离心运动 故对小球有, L mv mg F 2=+ ③同理,当小球通过最高点时速度gL v <时, 则小球所需向心力小于重力mg ,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用, 故对小球有, L mv F mg 2=-

高中物理模型组合讲解——电磁场中的单杆模型专题辅导

高中物理模型组合讲解——电磁场中的单杆模型专题辅导 秋飏 [模型概述] 在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。 [模型讲解] 一、单杆在磁场中匀速运动 例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A ,电表均为理想电表。导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。 图1 (1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少? (2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。因此,应该是电压表正好达到满偏。 当电压表满偏时,即U 1=10V ,此时电流表示数为 I U R A 112==并 设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20V a 、 b 棒受到的安培力为 F 1=BIL =40N 解得v m s 11=/

(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。 由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以 F I I F N N 221132 4060= ==×。 二、单杠在磁场中匀变速运动 例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。ab 棒的电阻为R =0.10Ω,其他各部分电阻 均不计。开始时,磁感应强度B T 0050 =.。 图2 (1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右的拉力,使它做匀加速直线运动。此拉力F 的大小随时间t 变化关系如图2乙所示。求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。 (2)若从t =0开始,使磁感应强度的大小从B 0开始使其以??B t =0.20T/s 的变化率均匀增加。求经过多长时间ab 棒开始滑动?此时通过ab 棒的电流大小和方向如何?(ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等) 解析:(1)当t =0时,F N F F ma f 113=-=, 当t =2s 时,F 2=8N F F B B Lat R L ma f 200--= 联立以上式得:

电磁学在生活中的应用

电磁学在生活中的应用 材料与化学工程学院 高分子材料与工程 541004010122 李祥祥

电磁学在生活中的应用电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 电磁学在生活中应用也比较广泛,下面举例说明电磁学在生活中应用。 指南针 指南针是用以判别方位的一种简单仪器。指南针的前身是中国古代四大发明之一的司南。主要组成部分是一根装在轴上可以自由转动的磁针。磁针在地磁场作用下能保持在磁子午线的切线方向上。磁针的北极指向地理的北极,利用这一性能可以辨别方向。常用于航海、大地测量、旅行及军事等方面。地球是个大磁体,其地磁南极在地理北极附近,地磁北极在地理南极附近。指南针在地球的磁场中受磁场力的作用,所以会一端指南一端指北。电磁炉 电磁炉作为厨具市场的一种新型灶具。它打破了传统的明火烹调方式采用磁场感应电流(又称为涡流)的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁原子高速无规则运动,原

子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。因此,在电磁炉较普及的一些国家里,人们誉之为“烹饪之神”和“绿色炉具”。 电磁炉工作过程中热量由锅底直接感应磁场产生涡流来产生的,因此应该选择对磁敏感的铁来作为炊具,由于铁对磁场的吸收充分、屏蔽效果也非常好,这样减少了很多的磁辐射,所以铁锅比其他任何材质的炊具也都更加安全。此外,铁是对人体健康有益的物质,也是人体长期需要摄取的必要元素。 电磁起重机 电磁起重机是利用电磁原理搬运钢铁物品的机器。电磁起重机的主要部分是磁铁。接通电流,电磁铁便把钢铁物品牢牢吸住,吊运到指定的地方。切断电流,磁性消失,钢铁物品就放下来了。电磁起重机使用十分方便,但必须有电流才可以使用,可以应用在废钢铁回收部门和炼钢车间等。 利用电磁铁来搬运钢铁材料的装置叫做电磁起重机。电磁起重机能产生强大的磁场力,几十吨重的铁片、铁丝、铁钉、废铁和其他各种铁料,不装箱不打包也不用捆扎,就能很方便地收集和搬运,不但

绳球模型与杆球模型

绳球模型与杆球模型 摘要:绳球模型与杆球模型作为竖直面内圆周运动的典型,在高中物理分析综合能力考查中属于重点内容,也是难点内容。本文就带大家一起来从根本上认识它们。 关键词:高中物理;绳球模型;杆球模型 绳球模型与杆球模型作为竖直面内圆周运动的典型,在高中物理分析综合能力考查中属于重点内容,也是难点内容。它常常与能量观点综合运用,用于解决实际生活中的诸如过山车、水流星等运动。因此正确认识、区分、理解这两种模型十分重要,本文就带大家一起来从根本上认识它们。 首先来看看它们的相似之处。 两种模型“外貌相似”:如下图(1)轻绳L一端栓结可视为质点的小球m,另一端绕水平转轴O在竖直面内转动即为绳球模型;将轻绳换作轻杆即为杆球模型图(2)。“向心力的来源相似”。讨论小球向心力的来源,都是轻绳(或轻杆)的作用力与小球重力的合力沿半径方向的分量来提供。 绳球模型与杆球模型如此相似,难道就是一个字

的差别?它们究竟有哪些区别呢? 首先从根本上讲,轻绳与轻杆提供的力不一样:轻绳只能给小球提供沿着绳并指向绳收缩方向的拉力,而轻杆既可以给小球提供向圆周内的拉力,也可以提供向圆周外的推力,甚至它提供的力可以不沿着轻杆自身。其次约束情况不一样:轻绳对球产生了单面约束,即小球不能跑到半径为L的圆周以外,但可以跑到半径为L的圆周之内,轻杆对球产生了双面约束,小球既不能跑到半径为L的圆周以外,也不能跑到半径为L的圆周之内,只能在半径为L的圆周上运动。其三小球运动情况不一样:绳球模型中小球不能实现竖直面内匀速圆周运动,只能是一般圆周运动,杆球模型中小球能够实现在竖直面内匀速圆周运动。第四做功情况不一样:轻绳对小球不做功,小球机械能守恒,而轻杆可以对小球做功改变其机械能。 最后,小球在最高点的临界条件不同,这点是常考点。(默认向下为正方向)绳球模型小球在最高点时:mg+T=mv2L,其中T≥0,因此mg≤mv2L,即有v ≥gL,故绳球模型中小球过最高点时的最小速度为gL。而对于杆球模型小球在最高点时:mg+F=mv2L,其中F>0,F=0,F0(即轻杆提供向下拉力)时有mggL;当F=0(即轻杆恰不提供力)时有mg=mv2L,即有

2020高三物理模型组合讲解——电磁场中的单杆模型

2020高三物理模型组合讲解——电磁场中的单杆模型 秋飏 [模型概述] 在电磁场中,〝导体棒〞要紧是以〝棒生电〞或〝电动棒〞的内容显现,从组合情形看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有〝平面导轨〞、〝斜面导轨〞〝竖直导轨〞等。 [模型讲解] 一、单杆在磁场中匀速运动 例1. 如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分不为0~10V 和0~3A ,电表均为理想电表。导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。 图1 〔1〕当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳固速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,那么现在ab 棒的速度v 1是多少? 〔2〕当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳固时,两表中恰有一表满偏,而另一表能安全使用,那么现在作用于ab 棒的水平向右的拉力F 2是多大? 解析:〔1〕假设电流表指针满偏,即I =3A ,那么现在电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。因此,应该是电压表正好达到满偏。 当电压表满偏时,即U 1=10V ,现在电流表示数为 I U R A 112==并 设a 、b 棒稳固时的速度为v 1,产生的感应电动势为E 1,那么E 1=BLv 1,且E 1=I 1(R 1+R 并)=20V

a 、 b 棒受到的安培力为 F 1=BIL =40N 解得v m s 11=/ 〔2〕利用假设法能够判定,现在电流表恰好满偏,即I 2=3A ,现在电压表的示数为U I R 22=并=6V 能够安全使用,符合题意。 由F =BIL 可知,稳固时棒受到的拉力与棒中的电流成正比,因此 F I I F N N 221132 4060= ==×。 二、单杠在磁场中匀变速运动 例2. 如图2甲所示,一个足够长的〝U 〞形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。一根质量为m =0.50kg 的平均金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。该轨道平面处在磁感应强度大小能够调剂的竖直向上的匀强磁场中。ab 棒的电阻为R =0.10Ω,其他各部分电阻均不计。开始时,磁感应强度B T 0050=.。 图2 〔1〕假设保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右的拉力,使它做匀加速直线运动。此拉力F 的大小随时刻t 变化关系如图2乙所示。求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。 〔2〕假设从t =0开始,使磁感应强度的大小从B 0开始使其以??B t =0.20T/s 的变化率平均增加。求通过多长时刻ab 棒开始滑动?现在通过ab 棒的电流大小和方向如何?〔ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等〕

电磁场选择题

一、单项选择题 1、一个标量场中某个曲面上梯度为常数时 C A. 其旋度必不为零 B. 其散度为零 C.该面为等值面 D. 其梯度也为零 2、一个矢量场的散度为零时 B A. 沿任一闭合曲线的线积分不为零 B.沿任一闭合曲面的通量为零 C. 其旋度必不为零 D. 其梯度必为零 3、直角坐标系中的单位向量ex与ey的矢量积是 D A. 1 B. ex C. ey D. ez 4、已知,矢量 A=(2x-3y)ex+(3x-z)ey+(y-x)ez,矢量A的散度为 B A. 1 B. 2 C. 3 D. 4 5、已知,矢量 A=(2x-3y)ex+(3x-z)ey+(y-x)ez,矢量A的旋度为 A A. 2ey+3ez B. 2xex-zey C. 3x-z D. yey-2xez

6、一个矢量场的旋度为零时表示该矢量 D A. 在闭合曲线上的线积分不为零 B. 沿任一闭合曲面的通量为零 C. 其梯度必为零 D. 在一个闭合曲线上的环量等于零 7、一个标量场中某个曲面上梯度为零时 D A. 其旋度也等于零 B. 其散度为零 C. 其散度不为零 D. 该面为等值面 1、电位等于零处 B A. 电场强度也一定等于零 B. 电场强度不一定等于零 C. 电场强度是否等于零与电位的参考点的选择有关 D. 电场强度的散度也一定为零 2、电场强度的大小 B A. 与电荷的分布无关 B. 与电位的变化率有关 C. 与电位参考点的选择有关 D. 与电位参考点的选择无关 3、通过一个闭合曲面的电场强度的通量为零 B A. 该闭合曲面内的电荷总和也为零 B. 该闭合曲面内的电荷总和不一定为零 C. 该

相关文档
最新文档