实验一平稳随机过程的数字特征

实验一平稳随机过程的数字特征
实验一平稳随机过程的数字特征

实验一 平稳随机过程的数字特征

一、实验目的

1、加深理解平稳随机过程数字特征的概念

2、掌握平稳随机序列期望、自相关序列的求解

3、分析平稳随机过程数字特征的特点

二、实验设备

计算机、Matlab 软件 三、实验内容和步骤

设随机电报信号X(n)(-∞

2.RX(m).打印m=-N,…-1,0,1,…N;其中N=64时的自相关序列值,并绘出RX(m)的曲线.

3.相关系数序列rX(m)=KX(m)/ KX(0),并打印m=-N,…-1,0,1,…N;其中N=64时的自相关系数序列值,并绘出rX(m)的曲线.

四、实验原理

平稳随机过程数字特征求解的相关原理 RX(m)=I2e-2λ|m|; KX(m)= RX(m)-m2X

E(X(n))= I*P{X(n)=+I}+(-I )*P{X(n)=-I}=0

}1)()({})()({)]()([)(2222-=+-=+=+=m n X n X P I I m n X n X P I m n X n X E m R

当0>m 时, m

k k e

k m I m n X n X P λλ-∞

=∑==+022

)!2()(})()({

m

k k e

k m I m n X n X P λλ-∞

=+∑+==+0122

)!12()(})()({

m

e I m n X n X E m R λ22)]()([)(-=+=

五、实验要求

1、写出求期望和自相关序列的步骤;

2、分析自相关序列的特点;

3、打印相关序列和相关系数的图形;

4、附上程序和必要的注解。

六、实验过程

input('王斌欢迎您') I=input('输入I 的值');

a=0.5; %a 的值为P{X(n)=+I} b=0.5; %b 的值为P{X(n)=-I} EX=I*a+(-I)*b %EX 为期望的输出值 xuehao=21; %学号为21

k=1/xuehao;

Ex=I*0.5+(-I)*0.5; m=-64:1:64;

Rx=I*I*exp(-2*k*abs(m)); Cx=Rx-Ex*Ex;

Cx0=I*I*exp(-2*k*abs(0))-Ex*Ex; rx=Cx/Cx0;

figure(1);

subplot(211);stem(EX);title('期望') %输出图像 subplot(212);stem(m,Rx);title('自相关序列'); figure(2);

stem(m,rx);title('相关系数');

七、实验结果及分析

00.20.40.60.81 1.2 1.4 1.6 1.82

-1

-0.500.5

1期望

0100200300400自相关序列

00.10.20.30.40.50.60.70.80.91相关系数

自相关序列的特点分析:m>0时Rx(m)随着m 的增大而减小,m<0时Rx(m)随着

m的增大而增大。在m=0的点,Rx(m)有最大值。

八、实验心得体会

通过本次实验初步了解了MATLAB软件,知道了基本数学运算和绘图功能,进一步理解了随机过程的数字特征的概念,掌握了平稳随机序列期望,自相关序列的求解,直观的看到了自相关序列曲线和相关系数曲线。

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

随机过程上机实验报告讲解.pdf

2015-2016第一学期随机过程第二次上机实验报告 实验目的:通过随机过程上机实验,熟悉Monte Carlo计算机随机模拟方法,熟悉Matlab的运行环境,了解随机模拟的原理,熟悉随机过程的编码规律即各种随机过程的实现方 法,加深对随机过程的理解。 上机内容: (1)模拟随机游走。 (2)模拟Brown运动的样本轨道。 (3)模拟Markov过程。 实验步骤: (1)给出随机游走的样本轨道模拟结果,并附带模拟程序。 ①一维情形 %一维简单随机游走 %“从0开始,向前跳一步的概率为p,向后跳一步的概率为1-p” n=50; p=0.5; y=[0 cumsum(2.*(rand(1,n-1)<=p)-1)]; % n步。 plot([0:n-1],y); %画出折线图如下。

%一维随机步长的随机游动 %选取任一零均值的分布为步长, 比如,均匀分布。n=50; x=rand(1,n)-1/2; y=[0 (cumsum(x)-1)]; plot([0:n],y);

②二维情形 %在(u, v)坐标平面上画出点(u(k), v(k)), k=1:n, 其中(u(k))和(v(k)) 是一维随机游动。例 %子程序是用四种不同颜色画了同一随机游动的四条轨 道。 n=100000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(2,n)<0.5)-1; x=[zeros(1,2); cumsum(z')]; col=colorstr(k); plot(x(:,1),x(:,2),col);

hold on end grid ③%三维随机游走ranwalk3d p=0.5; n=10000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(3,n)<=p)-1; x=[zeros(1,3); cumsum(z')]; col=colorstr(k); plot3(x(:,1),x(:,2),x(:,3),col);

四、随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

随机过程作业题及参考答案(第一章)

第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02 t k π ωπ=+ ,即0112t k πω??= + ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02 t k π ωπ≠+ ,即0112t k πω?? ≠ + ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22 000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω- = ;. 2. 利用投掷一枚硬币的试验,定义随机过程为 ()cos 2t X t t π?=??,出现正面,出现反面 假定“出现正面”和“出现反面”的概率各为 12。试确定()X t 的一维分布函数12F x ?? ???;和()1F x ;,以及二维分布函数12112 F x x ?? ?? ? ,;, 。

00 11101222 11

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=2 2 Y X -=,则34) A C 5A 6、)1= (C ) A .3 4?B .3 7C . 323?D .3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A .-13? B .15 C .19? D .23 8、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )

A .6? B .22 C .30? D .46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A .31? B .1 C .3 10?D .10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A.E (X )=1? B.D (X )=3? C.P (X=1)=0? D.P (X<1)=0.5 11 A .C .12、XY ρ= (D 13x =(B) A . 14、(C ) A.-15、为(A .C .21)(,41)(== X D X E ?D .4 1 )(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为

则)(XY E =(B ) A .9 1-?B .0 C .9 1?D .3 1 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A 18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}2 2 εσεμn n X P ≥ <-?B .{} 22 1ε σεμn X P -≥<- C .{}2 2 1ε σεμn X P - ≤≥-?D .{}2 2 εσεμn n X P ≤ ≥-

实验三 随机过程通过线性系统

实验名称线性系统对随机过程的响应 一、实验目的 通过本仿真实验了解正态白色噪声随机过程通过线性系统后相关函数以及功率谱的变化;培养计算机编程能力。 二、实验平台 MATLAB R2014a 三、实验要求 (1)运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布 序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 (2)设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 (3)随机过程x(n)的理论上的功率谱函数为 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。 (4)根据步骤二产生的数据序列x(n)计算相关函数的估计值 与理论值1.1296、-0.666、0.85、0、0、0的差异。 (5)根据相关函数的估计值对随机过程的功率谱密度函数进行估计 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图,比较其与理论上的功率谱密度函数S(w)的差异。 (6)依照实验1的方法统计数据x(n)在不同区间出现的概率,计算其理论概率, 观察二者是否基本一致。

四、实验代码及结果 A、运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 代码实现: 波形图: 分析:运用正态分布随机数产生函数产生均值为0,根方差σ=1的白色噪声样本序列。 B、设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 代码实现:

随机变量的数字特征教案

§2.3.1随机变量的数字特征(二) 学习目标 1.熟练掌握均值公式及性质. 2.能利用随机变量的均值解决实际生活中的有关问题. 学习过程 【任务一】双基自测 1.分布列为 的期望值为 ( ) A .0 B .-1 C .-13 D .12 2.设E (ξ)=10,则E (3ξ+5)等于 ( ) A .35 B .40 C .30 D .15 3.某一供电网络,有n 个用电单位,每个单位在一天中使用电的机会是p ,供电网络中一天平均用电的单位个数是 ( ) A .np (1-p ) B .Np C .n D .p (1-p ) 4.两封信随机投入A 、B 、C 三个空邮箱中,则A 邮箱的信件数ξ的数学期望E (ξ)=________ 【任务二】题型与解法 题型一 二项分布的均值 例1:一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确.每题选对得5分,不选或选错不得分,满分

100分.学生甲选对任意一题的概率为0.9,学生乙则在测验中对每题都从各选项中随机地选择一个.分别求学生甲和学生乙在这次测验中成绩的均值. 跟踪训练1英语考试有100道选择题,每题4个选项,选对得1分,否则得0分.学生甲会其中的20道,学生乙会其中的80道,不会的均随机选择.求甲、乙在这次测验中得分的期望. 题型二超几何分布的均值 例2一名博彩者,放6个白球和6个红球在一个袋子中,定下规矩:

凡是愿意摸彩者,每人交1元作为手续费,然后可以一次从袋中摸出5个球,中彩情况如下表: 试计算:(1)摸一次能获得20元奖品的概率; (2)按摸10 000次统计,这个人能否赚钱?如果赚钱,则净赚多少钱? 跟踪训练2厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;

通信原理软件实验报告材料单人地

标准文档 实验目的: 通过仿真测量占空比为25%、50%、75%以及100%的单、双极性归零码波形及其功率谱。(1)流程图 (2)源代码 ①单极性归零码 clear all close all L=64; %每码元采样点数 N=1024;%采样点数 M=N/L;%码元数 Rs=2;%码元速率 Ts=1/Rs;%比特间隔 fs=L/Ts;%采样速率 Bs=fs/2;%系统带宽 T=N/fs;%截短时间 t=[-(T/2):1/fs:(T/2-1/fs)];%时域采样点 f=-Bs+[0:N-1]/T;%频域采样点 EP=zeros(1,N); 实用文案

for loop=1:1000 a=(randn(1,M)>0);%产生单极性数据 tmp=zeros(L,M); L1=L*0.5; %0.5是占空比 tmp([1:L1],:)=ones(L1,1)*a; s=tmp(:)'; S=t2f(s,fs); P=abs(S).^2/T;%样本信号的功率谱密度 %随机过程的功率谱是各个样本的功率谱的数学期望 EP=EP*(1-1/loop)+P/loop; end figure(1) plot(t,s) axis equal grid figure(2) plot(f,EP) axis([-20,20,0,max(EP)]) grid 实验结果: 占空比为50%的单极性归零码

占空比为50%的单极性归零码功率谱修改占空比可得到以下图形 占空比为75%的单极性归零

占空比为75%的单极性归零码功率谱 占空比为100%的单极性归零码

占空比为100%的单极性归零码功率谱 ②双极性归零码 L=64; N=512; M=N/L; Rs=2; Ts=1/Rs; fs=L/Ts; Bs=fs/2; T=N/fs; t=[-(T/2):1/fs:(T/2-1/fs)]; f=-Bs+[0:N-1]/T; EP=zeros(1,N); for loop=1:1000 a=sign(randn(1,M)); tmp=zeros(L,M); L1=L*0.5; tmp([1:L1],:)=ones(L1,1)*a; s=tmp(:)'; S=t2f(s,fs); P=abs(S).^2/T; EP=EP*(1-1/loop)+P/loop; end figure(1) plot(t,s)

相关正态随机过程的仿真实验报告

实验名称:相关正态随机过程的仿真 一、实验目的 以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。 二、实验内容 相关正态分布离散随机过程的产生 (1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列 {U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000} 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列 n1=hist(u1,10);%--------------------------hist函数绘制分布直方图 subplot(121);%-----------------------------一行两列中的第一个图 bar(n1); n2=hist(u2,10); subplot(122); bar(n2); 实验结果:

(2)生成均值为m=0,根方差σ=1的白色正态分布序列 {e(n)|n=1,2, (100000) [][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n) n=hist(en,100);%--------------------------hist 函数绘制分布直方图 bar(n); 实验结果: (3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α 功率谱函数为

随机变量的数字特征

第四章随机变量的数字特征 【基本要求】理解随机变量的数学期望与方差的概念,掌握它们的性质与计算方法;掌握计算随机变量函数的数学期望方法;掌握二项分布、泊松分布、正态分布和指数分布的数学期望和方差;了解协方差、相关系数、矩的概念、性质及计算方法。 【本章重点】数学期望与方差的概念、性质与计算方法;求随机变量函数的数学期望的方法;二项分布、泊松分布、正态分布和指数分布的数学期望和方差。 【本章难点】数学期望与方差的概念计算方法;随机变量函数的数学期望的计算方法;协方差、相关系数、矩的概念、性质及计算方法 【学时分配】7-9学时 分布函数:) x F≤ =——全面描述随机变量X取值的统计规律。但是,在实际问题中 P X ) ( (x 分布函数的确定并不是一件容易的事,而且有时我们也不需要知道分布函数,只需知道随机变量的某些数字特征就够了。例如: 评价粮食产量,只关注平均产量; 研究水稻品种优劣,只关注每株平均粒数; 评价某班成绩,只关注平均分数、偏离程度; 评价射击水平,只关注平均命中环数、偏离程度。 描述变量的平均值的量——数学期望, 描述变量的离散程度的量——方差。 §4.1 数学期望 教学目的:使学生理解掌握随机变量的数学期望的实际意义及概念,会计算具体分布的数学期望; 使学生理解掌握随机变量函数的数学期望的计算及数学期望的性质。 教学重点、难点:数学期望的概念及其计算;随机变量函数的数学期望的计算及数学期望的性质。

教学过程: (一) 数学期望的概念 先看一个例子:一射手进行打靶练习,规定射入 区域2e 得2分, 射入区域1e 得1分,脱靶即射入 区域0e 得0分.设射手一次射击的得分数X 是一个 e 0 随机变量,而且X 的分布律为P{X=k}=k p ,k=0,1,2 现射击N 次,其中得0分0a 次,得1分1a 次,得2分2a 次,0a +1a +2a =N.则他射击N 次得分的总和为0a 0+ 1a 1+ 2a 2,他平均一次射击的得分数为 ∑==?+?+?2 210210k k N a k N a a a ,因为当N 充分大时, 频率k p 概率稳定值 ??→?N a k 。 所以当N 充分大时, 平均数∑=??→?2 k k k p x x 稳定值 。 显然,数值∑=2 k k k p x 完全由随机变量X 的概率分布确定,而与试验无关,它反映了平均数的大小。 定义: 1.离散型随机变量的数学期望:设离散型随机变量X 的分布律为{}k k P X x p ==,1,2,3k =…若级数1 k k k x p ∞ =∑绝对收敛,则称级数1 k k k x p ∞ =∑为随机变量X 的数学期望,记为()E X ,即()E X =1 k k k x p ∞ =∑。 2.连续型随机变量的数学期望:设连续型随机变量X 的密度函数为()f x ,若积分()xf x dx ∞ -∞ ?绝对 收敛,则称积分()xf x dx ∞-∞ ?的值为随机变量X 的数学期望,记为()E X 。即()E X =()xf x dx ∞ -∞ ?。 数学期望简称期望,又称为均值。 (二) 数学期望的计算 关键是:求出随机变量的分布律或者密度函数。 1、离散型——若 则()E X =1k k k x p ∞ =∑ (绝对收敛)

实验一平稳随机过程的数字特征

实验一 平稳随机过程的数字特征 一、实验目的 1、加深理解平稳随机过程数字特征的概念 2、掌握平稳随机序列期望、自相关序列的求解 3、分析平稳随机过程数字特征的特点 二、实验设备 计算机、Matlab 软件 三、实验内容和步骤 设随机电报信号X(n)(-∞m 时, m k k e k m I m n X n X P λλ-∞ =∑==+022 )!2()(})()({

m k k e k m I m n X n X P λλ-∞ =+∑+==+0122 )!12()(})()({ m e I m n X n X E m R λ22)]()([)(-=+= 五、实验要求 1、写出求期望和自相关序列的步骤; 2、分析自相关序列的特点; 3、打印相关序列和相关系数的图形; 4、附上程序和必要的注解。 六、实验过程 input('王斌欢迎您') I=input('输入I 的值'); a=0.5; %a 的值为P{X(n)=+I} b=0.5; %b 的值为P{X(n)=-I} EX=I*a+(-I)*b %EX 为期望的输出值 xuehao=21; %学号为21 k=1/xuehao; Ex=I*0.5+(-I)*0.5; m=-64:1:64; Rx=I*I*exp(-2*k*abs(m)); Cx=Rx-Ex*Ex; Cx0=I*I*exp(-2*k*abs(0))-Ex*Ex; rx=Cx/Cx0; figure(1); subplot(211);stem(EX);title('期望') %输出图像 subplot(212);stem(m,Rx);title('自相关序列'); figure(2); stem(m,rx);title('相关系数'); 七、实验结果及分析

随机实验报告

随机信号实验报告 课程:随机信号 实验题目:随机过程的模拟与特征估计 学院: 学生名称:

实验目的: 1.学会利用MATLAB模拟产生各类随即序列。 2.熟悉和掌握随机信号数字特征估计的基本方法。 实验内容: 1.模拟产生各种随即序列,并画出信号和波形。 (1)白噪声(高斯分布,正弦分布)。 (2)随相正弦波。 (3)白噪声中的多个正弦分布。 (4)二元随机信号。 (5)自然信号:语音,图形(选做)。 2.随机信号数字特征的估计 (1)估计上诉随机信号的均值,方差,自相关函数,功率谱密度,概率密度。 (2)各估计量性能分析(选做) 实验仪器: PC机一台 MATLAB软件 实验原理:

随机变量常用到的数字特征是数字期望值、方差、自相关函数等。相应地,随机过程常用到的数字特征是数字期望值、方差、相关函数等。它们是由随机变量的数字特征推广而来,但是一般不再是确定的数值,而是确定的时间函数。 1.均值:m x(t)=E[X(t)]=;式中,p(x,t)是X(t)的 一维概率密度。m x(t)是随机过程X(t)的所有样本函数在 时刻t的函数值的均值。在matlab中用mea()函数求均值。 2.方差:(t)=D[X(t)]=E[];(t)是t的确定 函数,它描述了随机过程诸样本函数围绕数学期望m x(t) 的分散程度。若X(t)表示噪声电压,则方差(t)则 表示瞬时交流功率的统计平均值。在matlab中用var()函 数求均值。 3.自相关函数:Rx(t1,t2)=E[X(t1)X(t2)];自相关函数就是用来描 述随机过程任意两个不同时刻状态之间相关性的重要数 字特征。在matlab中用xcorr()来求自相关函数。 4.在matlab中可用函数rand、randn、normr、random即可生成 满足各种需要的近似的独立随机序列。 实验步骤: (一)大体实验步骤 (1)利用MATLAB编写程序。 (2)调试程序。

随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

随机变量数字特征习题课

第12讲 随机变量的数字特征习题课 教学目的:掌握随机变量的数字特征,了解切比雪夫不等式和大数定律。 教学重点:理解数学期望和方差的概念,掌握它们的性质与计算,熟悉常用分布的数 学期望和方差。 教学难点:随机变量函数的数学期望。 教学时数:2学时 教学过程: 一、知识要点回顾 1. 随机变量X 的数学期望()E X 2. 对离散随机变量 ()()i i i E X x p x =∑ 3. 若1,2,i =,则假定这个级数绝对收敛,否则就没有数学期望。 4. 对连续随机变量 ()()E X xf x dx +∞ -∞ =? 5. 假定这个广义积分绝对收敛,否则就没有数学期望。 6. 随机变量X 的函数()g X 的数学期望[()]E g X ,其中()g X 为实函数。 7. 对离散随机变量 [()]()()i i i E g X g x p x =∑ 8. 对连续随机变量 [()]()()E g X g x f x dx +∞ -∞ =? 9. 假定所涉及的无穷级数绝对收敛,所涉及的广义积分绝对收敛。 10. 二维随机变量(,)X Y 的函数(,)g X Y 的数学期望[(,)]E g X Y ,其中(,)g X Y 为二元 实函数。 11. 对离散随机变量 [(,)](,)(,)i j i j i j E g X Y g x y p x y =∑∑ 12. 对连续随机变量 [(,)](,)(,)E g X Y g x y f x y dxdy +∞ +∞ -∞ -∞ =? ? 13. 假定所涉及的无穷级数绝对收敛,所涉及的广义积分绝对收敛。 14. 数学期望的性质(假定所涉及的数学期望都存在) 15. (), ()E c c c =为常数 16. ()(), ()E cX cE X c =为常数

随机过程上机实验报告-华中科技大学--HUST

随机实验报告 班级:通信1301班姓名:郭世康 学号:U201313639 指导教师:卢正新

一、模块功能描述 CMYRand类是整个系统的核心,它产生各种随机数据供后面的类使用。可以产生伪随机序列、均匀分布、正态分布、泊松分布、指数分布等多种随机数据。 CRandomDlg类是数据的采集处理类。它可以将CMYRand产生的随机数据处理分析,再送入CScope等类进行模拟示波器显示。 CScope等类是有关示波器显示的类。 二、模块间的关系 CRandomDlg类在整个程序中是一个不可缺少的环节,它调用CMYRand中的函数来产生符合所需分布的随机序列,再将产生的结果统计分析,送到CScope类中的函数进行模拟示波器显示。CMYRand为整个程序的核心,就是这个类产生所需分布的随机序列。CAboutDlg是模拟示波器界面上的有关按钮选项的类。我们在示波器界面上点击一个按钮,它就会执行这个按钮所对应功能,比如点击正态分布,它就会调用CRandomDlg中的对应函数,在调用CMYRand中的产生正态分布的函数,再将结果送到CScope类中进行显示,最后我们可以在示波器上看到图形。 三、数据结构 在本次随机试验中所填写的代码部分并没有用到有关于结构体等数据结构的东西。 四、功能函数 1、 /* 函数功能,采用线性同余法,根据输入的种子数产生一个伪随机数. 如果种子不变,则将可以重复调用产生一个伪随机序列。 利用CMyRand类中定义的全局变量:S, K, N, Y。 其中K和N为算法参数,S用于保存种子数,Y为产生的随机数 */ unsigned int CMyRand::MyRand(unsigned int seed) { //添加伪随机数产生代码 if(S==seed)

随机变量的数字特征归纳

第四章 随机变量的数字特征 ㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置. 1、数学期望的定义 (1) 定义 离散型和连续型随机变量X 的数学期望定义为 {}?????==?∑∞ ∞ - d )( )()( , , 连续型离散型x x xf x X x X k k k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在. ①常见的离散型随机变量的数学期望 1、离散型随机变量的数学期望 设离散型随机变量的概率分布为 ,若,则称级数为随 机变量 的数学期望(或称为均值),记为 , 即 2、两点分布的数学期望 设 服从0—1分布,则有 ,根据定义, 的数学期望为 . 3、二项分布的数学期望 设 服从以 为参数的二项分布, ,则 。 4、泊松分布的数学期望 设随机变量 服从参数为的泊松分布,即,从而有 。 ①常见的连续型随机变量的数学期望 1)均匀分布

设随机变量ξ服从均匀分布,ξ~U [a,b] (a0,- <μ<+ ) 则令得 ∴ E(ξ)=μ . 3)指数分布 设随机变量服从参数为的指数分布,的密度函数为 ,则. (2) 随机变量的函数的数学期望设)(x g y=为连续函数或分段连续函数,而X是任一随机变量,则随机变量) (X g Y=的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出Y的概率分布再求其数学期望;对于二元函数) , (Y X g Z=,有类似的公式: (){} ? ? ? ? ?= = = ? ∑ ∞ ∞ . ; (连续型) 离散型 - d) ( ) ( ) ( ) ( x x f x g x X x g X g Y k k k P E E

随机过程的模拟与数字特征

实验二随机过程的模拟与数字特征 一、实验目的 1. 学习利用MATLAB模拟产生随机过程的方法。 2. 熟悉和掌握特征估计的基本方法及其MATLAB 实现。 二、实验原理 1.正态分布白噪声序列的产生 MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N (,) 分布的随机序列,则可以由标准正态随机序列产生。如果X ~ N(0,1),则N (,)。 2.相关函数估计 MATLAB提供了函数xcorr用于自相关函数的估计。 函数:xcorr 用法:c= xcorr (x,y) c= xcorr (x)

c= xcorr (x,y ,'opition') c= xcorr (x, ,'opition') 功能:xcorr(x,y) 计算X (n ) 与Y (n)的互相关,xcorr(x)计算X (n )的自相关。 option 选项可以设定为: 'biased' 有偏估计。 'unbiased' 无偏估计。 'coeff' m = 0 时的相关函数值归一化为1。 'none' 不做归一化处理。 3.功率谱估计 对于平稳随机序列X(n),如果它的相关函数满足 (2.1) 那么它的功率谱定义为自相关函数R X(m)的傅里叶变换: (2.2) 功率谱表示随机信号频域的统计特性,有着重要的物理意义。我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。功率谱估计的方法有很多种,这里我们介绍基于傅里叶分析的两种通用谱估计方法。 (1)自相关法 先求自相关函数的估计X(m),然后对自相关函数做傅里叶变换 (2.3) 其中N 表示用于估计样本序列的样本个数。 (2)周期图法

随机过程实验报告全

随机过程实验报告学院专业学号姓名

实验目的 通过随机过程的模拟实验,熟悉随机过程编码规律以 及各种随机过程的实现方法,通过理论与实际相结合的方式,加深对随机过程的理解。 二、实验内容 (1)熟悉Matlab 工作环境,会计算Markov 链的n 步转移概率矩阵和Markov 链的平稳分布。 (2)用Matlab 产生服从各种常用分布的随机数,会调用matlab 自带的一些常用分布的分布律或概率密度。 (3)模拟随机游走。 (4)模拟Brown 运动的样本轨道的模拟。 (5)Markov 过程的模拟。 三、实验原理及实验程序 n 步转移概率矩阵 根据Matlab的矩阵运算原理编程,Pn = P A n o 已知随机游动的转移概率矩阵为: P = 0.5000 0.5000 0 0 0.5000 0.5000 0.5000 0 0.5000

求三步转移概率矩阵p3 及当初始分布为 P{x0 = 1} = p{x0 = 2} = 0, P{x0 = 3} = 1 时经三步转移后处于状态 3 的概率。 代码及结果如下: P = [0.5 0.5 0; 0 0.5 0.5; 0.5 0 0.5] % 一步转移概率矩阵 P3 = P A3 %三步转移概率矩阵 P3_3 = P3(3,3) %三步转移后处于状态的概率 1、两点分布x=0:1; y=binopdf(x,1,0.55); plot(x,y,'r*'); title(' 两点分 布'); 2、二项分布 N=1000;p=0.3;k=0:N; pdf=binopdf(k,N,p); plot(k,pdf,'b*'); title(' 二项分布'); xlabel('k'); ylabel('pdf'); gridon; boxon 3、泊松分布x=0:100; y=poisspdf(x,50); plot(x,y,'g.'); title(' 泊松分布') 4、几何分布 x=0:100; y=geopdf(x,0.2); plot(x,y,'r*'); title(' 几何分布'); xlabel('x'); ylabel('y'); 5、泊松过程仿真 5.1 % simulate 10 times clear; m=10; lamda=1; x=[]; for i=1:m s=exprnd(lamda,'seed',1); x=[x,exprnd(lamda)]; t1=cumsum(x); end [x',t1'] 5.2%输入:

第四章随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案 一、选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=0.5,D (X )=0.5 B. E (X )=0.5,D (X )=0.25 C. E (X )=2,D (X )=4 D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )= ( C ) A. 1 B. 3 C. 5 D. 6 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004 B. 0.04 C. 0.4 D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是( D ) A . D (X+Y )=D (X )+D (Y ) B . D (X+C )=D (X )+C C . D (X-Y )=D (X )-D (Y ) D . D (X-C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 B . 21 C .2 3 D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D =(C ) A . 34 B . 37 C . 323 D . 3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y , X 与Y 相互独立,则)43(--Y X D =(C ) A . -13 B . 15 C . 19 D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B ) A . 6 B . 22 C . 30 D . 46 9、设)3 1,10(~B X ,则)(X E =(C ) A . 31 B . 1 C . 3 10 D . 10 10、设)3,1(~2 N X ,则下列选项中,不成立的是(B ) A. E (X )=1 B. D (X )=3 C. P (X=1)=0 D. P (X<1)=0.5 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D B . )(X D -)(Y D

相关文档
最新文档