海明码和CRC编码的图解和详细计算过程

海明码和CRC编码的图解和详细计算过程
海明码和CRC编码的图解和详细计算过程

一、CRC编码

1、已知多项式和原报文,求CRC编码,如:使用多项式G(x)=x^5 + x^4 + x +1,对报文10100110进行CRC编码,则编码后的报文是什么?

方法与步骤:

步骤1:对报文10100110,在末尾添加所给多项式的最高次阶个0,如本题为x^5,则添加5个0,变为:1010011000000。

步骤2:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。

步骤3:步骤1中求得的1010011000000对步骤2中求得的110011进行模二除法,所得到的余数即为校验码,把校验码添加在原报文尾部即为所求的编码报文1010011011000,具体如下:

2.已知道接收到的CRC编码,求原编码或判断是否出错,如:已知G(x)=x^5 + x^4 + x +1,接收的为1010011011001,问是否出错?

步骤一:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。

步骤二:用接收的报文1010011011001对步骤一的110011进行模二除法,看余数是否为0,如为0则正确,如不为0,则出错,计算余数为1,则出错。如下图:

二、海明码

1.求海明码,如:求1011海明码。

步骤一:求校验码位数r,公式为:2^r ≥r+k+1的最小r。题目中为2^3≥3+4+1,所以取r=3,即校验码为3位。

步骤二:画图,并把原码的位编号写成2的指数求和的方式,其中位编号长度为原码和校验码个数之和,从1开始。校验码插在2的阶码次方的位编号下,且阶小于r。如下:

原码的位编号写成2的指数求和:

7=2^2+2^1+2^0;

6=2^2+2^1;

5=2^2+2^0;

3=2^1+2^0;

步骤三:求校验位,即每个校验位的值为步骤二中“原码的位编号写成2的指数求和”式子中相应2的阶出现的位编号下原码的值异或。即:

r0=I4异或I2异或I1=1; (2^0次出现在7,5,3位,其对应的值为I4,I2,I1)

r1=I4异或I3异或I1=0; (2^1次出现在7,6,3位,其对应的值为I4,I3,I1)

r2=I4异或I3异或I2=0; (2^0次出现在7,6,5位,其对应的值为I4,I3,I2)

把r0,r1,r2带入海明码,得所求的海明码为:1010101

2.已知海明码,求原码或判断是否出错并改正错位,如:信息位8位的海明码,接收110010100000时,判断是否出错,并求出发送端信息位。

步骤一:求校验码位数r,公式为:2^r ≥r+k+1的最小r。题目中为2^4≥4+8+1,所以取k=4,即校验码为4位。

步骤二:根据作图,求得信息位编码和发过来的校验码记为r,并由原编码从新计算出新的校验码与发来的校验码r进行异或运算,具体如下:

得到,原码11000100,发送来的校验码r为1000

再根据求R,把原码的位编号写成2的指数求和:

12=2^3+2^2;

11=2^3+2^1+2^0;

10=2^3+2^0;

9=2^3+2^0;

7=2^2+2^1+2^0;

6=2^2+2^1;

5=2^2+2^0;

3=2^1+2^0;

求得:

S3=r3异或(I8异或I7异或I6异或I5)

S2=r2异或(I8异或I4异或I3异或I2)

S1=r1异或(I7异或I6异或I4异或I3异或I1)

S0=r0异或(I7异或I5异或I4异或I2异或I1)

S3S2S1S0,其十进制为0,表示没出错,如果不为零,则其十进制数即为出错的位。

本题S3S2S1S0=1001,十进制为9,即第九位出错。改过来既为:11010100

CRC标准及计算过程

CRC标准及计算过程 根据应用环境与习惯的不同,CRC又可分为以下几种标准: ①CRC-8码; ②CRC-12码; ③CRC-16码; ④CRC-CCITT码; ⑤CRC-32码。 CRC-12码通常用来传送6-bit字符串。 CRC-16及CRC-CCITT码则是用来传送8-bit字符串,其中CRC-16为美国采用,而CRC-CCITT为欧洲国家所采用。 CRC-32码大都被采用在一种称为Point-to-Point的同步传输中。 生成过程 下面以最常用的CRC-16为例来说明其生成过程。 CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。 计算过程 1.设置CRC寄存器,并给其赋值FFFF(hex)。 2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC 寄存器。 3.CRC寄存器向右移一位,MSB补零,移出并检查LSB。 4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。 5.重复第3与第4步直到8次移位全部完成。此时一个8-bit数据处理完毕。 6.重复第2至第5步直到所有数据全部处理完成。 7.最终CRC寄存器的内容即为CRC值。

海明码编码

纠错编码-海明码 在数据通信的过程中,解决差错问题的一种方法是在每个要发送的数据块上附加足够的冗余信息,使接收方能够通过这些冗余信息推导出实际发送出的应该是什么样的比特串。最常见的纠错码是海明码,它能发现两比特错,但只能纠正单比特错。 汉明编码是将码字内的位从最左边开始依次编号,第1位是1号,第2位是2号……第n位是n号,编号为2的幂的位(1号位,2号位,4号位,8号位等)是校验位,其余的位填入位数据。每个校验位的取值应使得包括自己在内的一些位的集合服从规定的奇偶性(例如偶性要求这些位的集合中1的个数是偶数)。为了知道编号为k的数据位对哪些检测位有影响,将编号k改写成2的幂的和,例如11=1+2+8,29:1+4+8+1 6。1个位只由扩展式中所示编号的位检测,例如编号为11的位只由编号为1、2和8的检测位检测。 m个信息位插入r个校验位组成n=m+r位码字,它们必须满足的关系是:2r≥n+1。以典型的4位数据编码为例,汉明码将加入3个校验码,从而实际传输7位码字: 数据位:1 2 3 4 5 6 7 代码:P1 P2 D8 P3 D4 D2 D1 说明:Px为校验码,Dx为数据码。 下面根据图举例说明编码的方法。 图海明编码的例子 当对8位数数据进行海明编码时,其校验关系如下表所示。

表校验关系表 海明码纠错过程( 接收端) 首先将差错计数器置“0”。 当海明码数据到达接收端后,接收端逐个检查各个校验位的奇偶性。 如发现某一校验位和它所检测的集合的奇偶性不正确,就将该检验位的编号加到差错计数器中。 待所有校验位核对完毕,若差错计数器仍为0值,则说明该码字接收无误。反之,差错计数器的值即为出错位的编号,将该位求反就可得到正确结果。 假设传送的信息为1001011,把各个数据放在3,5,6,7,9,10,11等位置上,l,2,4,8位留做校验位。 根据上图,3、5、7、9、11的二进制编码的第一位为1,所以3、5、7、9、11号位参加第1位校验.若按偶校验计算.1号位应为1。 也可用异或计算 类似地,3、6、7、10、ll号位参加2位校验,5、6、7号位参加4位校验,9、10和11号位参加8位校验,全部按偶校验计算,最终得到:

海明码

海明码 有了奇偶校验码的基础,就不难理解海明码了。海明码实际上是奇偶校验码的一个扩充。奇偶校验码只能检测错误而不能纠正错误,海明码能检测出两位错误并纠正一位错误,下面就介绍一下海明码的工作原理。 在奇偶校验中,我们假设发送端有K位信息位(k = n – 1,n代表码元位数),表示为a1 ~a n-1 , 在信息位后面加上一位奇偶校验位a0,就构成了a0~a n的n位码元,则接收端可按照监督关系式s=a0+a1+…+a n-2+a n-1(s为校验因子)来进行数据校验。从奇偶校验的工作原理可以看出奇偶校验只有一个冗余位(对应一个监督关系式和一个校验因子),因此奇偶校验只能判别两种状态,当s=0表示正确,s=1表示出错。可以设想一下,若增加冗余位亦即增加监督关系式和校验因子,便能判别更多的状态,海明码正是基于这一点工作的。 上面讲到海明码通过增加冗余位来进行错误的检测和纠正,那么对于k位的信息需要增加多少个冗余位才能满足检错并纠正1位错误的要求呢? 假设信息位有k位,校验位(冗余位)为m,那么m位的校验码可以生成2m个校验值,显然数据被正确传输的状态只有一个,用2m个值中的一个值来表示,则其余的2m-1个值可用来表示错误的状态,如果能满足:2m -1≥k+m (k+m 为编码后的总长度),在理论上m位校验码就能判断出是哪一位数据(包括信息位和校验位)出现错误。下面用示例加以说明: 例(1):假设信息位k=4,求足以判别出错位位置的校验码所需的位数m。 解:由2m -1≥k+m , k=4可知 2m ≥5+m 即m≥3 即至少需要3位冗余位(对应产生3个校正因子和3个监督关系式), 形成23=8种判断状态才足以能够判断出出错数据位的位置 假设编成的n位海明码为h n h n-1…h2h1,则海明码的编码规律如下:1.校验位分布:在n位的海明码中,各检验位分布在位号为2n 的位置,即检验位的位置分别为第1,2,4,8,…,2n位,数据位按照原来的顺序插入其中。若信息码为k5k4k3k2k1,则编成的海明码为…k5r4k4k3k2r3 k1r2r1,此分布关系可以用下表表示,其中k i 表示信息位,下标从1开始。r i表示校验位,下标从0开始。 表(1)计算校验位分布表 2.检验关系:海明码的每一位h i要有多个检验位来检验。检验关系是被检验位的位号等于相关检验位的位号之和。在表(1)中,k5(位号为9)需要r4(位号8)和r0(位号1)来检验。同理,k 4需要由r2、r1和r0 检验,k3由r2、r1 检验,以此类推,为便于分析,我们列表如下: 表(2)校验关系对照表

计算法简单实现crc校验

计算法简单实现crc校验 计算法简单实现crc校验 前一段时间做协议转换器的时间用到CRC-16校验,查了不少资料发现都不理想。查表法要建表太麻烦,而计算法觉得那些例子太罗嗦。最后只好自己写了,最后发现原来挺简单嘛:)两个子程序搞定。这里用的多项式为:CRC-16=X16+X12+X5+X0=2 +2 +2+2 =0x11021 因最高位一定为“1”,故略去计算只采用0x1021即可 CRC_Byte:计算单字节的CRC值 CRC_Data:计算一帧数据的CRC值 CRC_HighCRC_Low:存放单字节CRC值 CRC16_HighCRC16_Low:存放帧数据CRC值; ------------------------------------------------------------- ;Functi on:CRConebyte ;Input:CRCByte ;Output:CRC_HighCRC_Low ; ------------------------------------------------------------- CRC_Byte: clrfCRC_Low clrfCRC_High movlw09H movwfv_Loop1 movfCRCByte,w movwfCRC_High CRC: decfszv_Loop1;8次循环,每一位相应计算 gotoCRC10 gotoCRCend CRC10 bcfSTATUS,C rlfCRC_Low rlfCRC_High btfssSTATUS,C   ;gotoCRC;为0不需计算movlw10H;若多项式改变,这里作相应变化xorwfCRC_High,f movlw21H;若多项式改变,这里作相应变化 xorwfCRC_Low,f gotoCRC CRCend: nop nop return ; ------------------------------------------------------------- ;CRCone byteend ; ------------------------------------------------------------- ; ------------------------------------------------------------- ;Functi on:CRCdate ;Input:BufStart(A,B,C)(一帧数据的起始地址)v_Count(要做CRC的字节数);Output:CRC16_HighCRC16_Low(结果); ------------------------------------------------------------- CRC_Data: clrfCRC16_High clrfCRC16_Low CRC_Data10 movfINDF,w

海明码的计算

海明码的计算: 码距:是不同码字的海明距离的最小值。 (1)可查出多少位错误:可以发现“≤码距-1”位的错误 (2)可以纠正多少位错误:可以纠正“<码距/2”位的错误,因此如果要能纠正n位错误,则所需最小的码距是:2n+1。 计算:海明码是放置在2的幂次位上的即1,2,4,8,16,32, 而对于信息位为m的原始数据,需加入k位的校验码,它满足m+k+1

海明码的纠错:如下给出一个加入了校验码的的信息,并说明有一位的错误,要找出错误位: 1 2 3 4 5 6 7 8 9 10 11 12 13 将B1,B2,B4,B8代入上式的公式中: B1=B1⊕B3⊕B5⊕B7⊕B9⊕B11⊕B13=1⊕1⊕0⊕1⊕0⊕0⊕0=1 B2=B2⊕B3⊕B6⊕B7⊕B10⊕B11=1⊕1⊕1⊕1⊕1⊕0=1 B4=B4⊕B5⊕B6⊕B7⊕B12⊕B13=0⊕0⊕1⊕1⊕0⊕0=0 B8=B8⊕B9⊕B10⊕B11⊕B12⊕B13=0⊕0⊕1⊕0⊕0⊕0=1 然后从高位往下写,B8+B4+B2+B1=1011=11(十进制)即11位出错。

标准CRC生成多项式如下表:

标准CRC生成多项式如下表: 名称生成多项式简记式* 标准引用 CRC-4 x4+x+1 3 ITU G.704 CRC-8 x8+x5+x4+1 0x31 CRC-8 x8+x2+x1+1 0x07 CRC-8 x8+x6+x4+x3+x2+x1 0x5E CRC-12 x12+x11+x3+x+1 80F CRC-16 x16+x15+x2+1 8005 IBM SDLC CRC16-CCITT x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP 生成多项式的最高位固定的1,故在简记式中忽略最高位1了,如0x1021实际是0x11021。 I、基本算法(人工笔算): 以CRC16-CCITT为例进行说明,CRC校验码为16位,生成多项式17位。假如数据流为4字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]; 数据流左移16位,相当于扩大256×256倍,再除以生成多项式0x11021,做不借位的除法运算(相当于按位异或),所得的余数就是CRC校验码。 发送时的数据流为6字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]、CRC[1]、CRC[0]; II、计算机算法1(比特型算法): 1)将扩大后的数据流(6字节)高16位(BYTE[3]、BYTE[2])放入一个长度为16的寄存器; 2)如果寄存器的首位为1,将寄存器左移1位(寄存器的最低位从下一个字节获得),再与生成多项式的简记式异或; 否则仅将寄存器左移1位(寄存器的最低位从下一个字节获得); 3)重复第2步,直到数据流(6字节)全部移入寄存器; 4)寄存器中的值则为CRC校验码CRC[1]、CRC[0]。

crc校验码计算例题

crc校验码计算例题 1、若信息码字为11100011,生成多项式G(X)=X5+X4+X+1,则计算出的CRC 校验码为?x的最高次幂5则信息码(被除数)补五个0为:1110001100000 除数为110011 ------------10110110 --------------------- 110011/1110001100000 -------110011 ------------------ ---------101111 ---------110011 ------------------ ----------111000 ----------110011 ------------------ ------------101100 ------------110011 ------------------------ -------------111110 -------------110011 ------------------------- ---------------11010 2、信息码为101110101,生成多项式X4+X2+1,求冗余位??? 算法同上被除数补四个0 为:1011101010000 除数为:10101 答案:1100 7E 00 05 60 31 32 33 计算CRC16结果应该是:5B3E 方法如下: CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从

海明码计算题

海明码计算习题 请写出每道题的计算过程 1:使用海明码进行纠错,7位码长(X7X6X5X4X3X2X1),其中4位数据,监督关系式为:C0 = x1+x3+x5+x7 C1 = x2+x3+x6+x7 C2 = x4+x5+x6+x7 如果接收到的码字为1000101,那么纠错后的码字是( 1010101 ) 解答: 1,1,0,1=1 0,1,0,1=0 0,0,0,1=1 第五位有错 2:已知海明码的监督关系式为: S2=a2+a3+a4+a6 S1=a1+a4+a5+a6 S0=a0+a3+a4+a5 接收端收到的码字为a6a5a4a3a2a1a0=1010100,问在最多一位错的情况下发送端发送的码字是什么?(写出推演过程)。 S2=1,0,1,1=1 S1=0,1,0,1=0 S0=0,0,1,0=1 故s2,s0公共的位但与S1不公共的位a3有错 发送端码字:1011100 3:已知:信息码为:"0010"。海明码的监督关系式为: S2=a2+a4+a5+a6 S1=a1+a3+a5+a6 S0=a0+a3+a4+a6 求:海明码码字。 解: 7 6 5 4 3 2 1 位数 0 0 1 0 信息位

1 0 1 校验位 a6 a5 a4 a3 a2 a1 a0 4:已知:海明码的监督关系式为: S2=a2+a4+a5+a6 S1=a1+a3+a5+a6 S0=a0+a3+a4+a6 接收码字为:"0011101" ( n=7 ) 求:发送端的信息码。 解: S2=1,1,0,0=0 S1=0,1,0,0=1 S0=1,1,1,0=1 故s1,s0公共的位但与S2不公共的位a3有错 发送端码字:0010101 5:在海明码编码方法中,若冗余位为3位,且与错码位置的对应关系为 S2S1S0 111 110 101 011 100 010 001 000 错码位置 a6 a5 a4 a3 a2 a1 a0 无错 则S1的监督关系式为( D )。 A.S1=a1+a3+a5+a6=1 B. S1=a2+a3+a4+a6=1 B.C. S1=a1+a3+a4+a5=1 D. S1=a1+a2+a5+a6=0 6:使用海明码进行前向纠错,如果冗余位为4位,那么信息位最多可以用到 11 位。2^4-4-1=11

查表法计算CRC

在硬件实现中,CRC 通常采用线性反馈移位寄存器实现。其中一个单元对应CRC 的每一比特,图3-2给出了8比特寄存器。对于移位寄存器中的每一单元,如果在发生器多项式中D 的某次幂为1,那么到下一个单元的连接要经过一个异或门(XOR)。对于每一传输块,首先将移位寄存器置零;接传输块数据输入移位寄存器,当传输块的所有比特全部输入移位寄存器后,移位寄存器的存储内容就是所要求的CRC 比特。这些比特以倒序传输,如图3-2,首先传输在最左寄存器中的CRC 比特。 图3-2 8比特CRC 生成移位寄存器 对于上述算法,当输入1个比特时,要经过一系列的异或和移位,才能完成。上图只是8比特CRC 的实现图,考虑到g CRC24A (D)的多项式,实现更为复杂。而下行峰值速率又相对很高,采用这种方法显然是达不到需求的速率的。下面介绍一种更为高效的查表法[17],多核DSP 计算CRC 也使用了查表法。 设传输块有k 比特,CRC 比特数为k n -;下面是按4比特查表计算24比特CRC 的过程。对于传输块中的二进制序列,可以用下面的多项式表示: ()1011222k k k k m x m m m m --=++++ 式(3-1) 将上式每4个比特组合在一起,如下所示: ()44(1)4011222n n n n m x m m m m --=++ ++ 式(3-2) 求此序列的24比特CRC 时,先乘以242(左移24位)后,再除以CRC 的生成多项式()x g ,所得到的余数即为所求的CRC 码。如下式所示: ()()()() () 242424 2444(1) 01222222n n n m x m m m g x g x g x g x -=+++ 式(3-3) 设:()()()()24 0002r x m Q x g x g x =+ ,其中()0r x 为24位二进制余数;将它代入式(3-3)可得: ()()()()()()()()()()()()2424 24044(1)1042424 044(1)102222222222 n n n n n n m x r x m m Q x g x g x g x g x r x m m Q x g x g x g x --??=++++??? ?????=++++?????? 式(3-4) 因为,()()()()()4204244000002[2]222h l h l r x r x r x r x r x =+=+ 式(3-5)

汉明码计算及其纠错原理详解

汉明码计算及其纠错原理详解 当计算机存储或移动数据时,可能会产生数据位错误,这时可以利用汉明码来检测并纠错,简单的说,汉明码是一个错误校验码码集,由Bell 实验室的R.W.Hamming 发明,因此定名为汉明码。 汉明码(Hamming Code),是在电信领域的一种线性调试码,以发明者理查德·卫斯里·汉明的名字命名。汉明码在传输的消息流中插入验证码,以侦测并更正单一比特错误。由于汉明编码简单,它们被广泛应用于内存(RAM )。其SECDED (single error correction,double error detection)版本另外加入一检测比特,可以侦测两个或以下同时发生的比特错误,并能够更正单一比特的错误。因此,当发送端与接收端的比特样式的汉明距离(Hamming distance)小于或等于1时(仅有1 bit发生错误),可实现可靠的通信。相对的,简单的奇偶检验码除了不能纠正错误之外,也只能侦测出奇数个的错误。 在数学方面,汉明码是一种二元线性码。对于每一个整数,存在一个编码,带有个奇偶校验位个数据位。该奇偶检验矩阵的汉明码是通过列出所有米栏的长度是两两独立。 汉明码的定义和汉明码不等式:设:m=数据位数,k=校验位数为,n=总编码位数=m+k,有Hamming不等式: a)总数据长度为N,如果每一位数据是否错误都要记录,就需要N位来存储。 b)每个校验位都可以表示:对或错;校验位共K位,共可表示2k种状态 c)总编码长度为N,所以包含某一位错和全对共N+1种状态。 d)所以2k≧N+1 e)数据表见下 无法实现2位或2位以上的纠错,Hamming码只能实现一位纠错。 以典型的4位数据编码为例,演示汉明码的工作 D8=1、D4=1、D2=0、D1=1, P1 =1,P2=0、P3=0。 汉明码处理的结果就是1010101 假设:D8出错,P3’P2’P1’=011=十进制的3,即表示编码后第三位出错,对照存储

海明码和CRC校验的C语言实现

海明码和CRC校验的C语言实现 1.海明码 //code by zxf 2010.4.10 #include #include #include //N代表待编码数据的上限位数 #define N 100 int HmLength(int k);//计算海明码校验位位数 void InCode(char *data,char *c,int k,int r);//计算海明码每个校验位的数值 void main() { int k=0,r=0,dnum=0,cnum=0; char data[N]; char c[N]; clrscr(); printf("Now please input the data you want to Incode:"); for(k=0;k

《深入理解计算机网络》配套自测题

《深入理解计算机网络》配套自测题 一、小小数制伤大脑,抓包分析不可少 1. 与二进制100101.001101等值的十进制数是(C)。 A.25.203125 B.25.34 C.37.203125 D.37.34 2. 与十进制数28.625等值的十六进制数为(B)。 A.112.10 B.1C.A C.1C.5 D.112.5 3. 与十六进制数AC.E等值的十进制数是(D)。 A.112.875 B.162.875 C.254.7 D.172.875 4. 将-33以单符号位补码形式存入8 位寄存器中,寄存器中的内容为(A)。 A. DFH B. A1H C. 5FH D. DEH 5. 原码1.0101110 所表示的真值为(A)。 A. -0.0101110 B. +0.0101110 C. -0.1010010 D. +0.1010010 6. 若用8位机器码表示十进制数–101,则补码表示的形式为(B)。 A.11100101 B.10011011 C.11010101 D.11100111 7. 将多项式214 + 211 + 24 + 21 + 20表示为十六进制数为(A)。 A.4813H B.8026H C.2410H D.EB410H 8. 设字长8位并用定点整数表示,模为28,若[X]补=11111010,则X的原码及真值X分别为(B)。 A. [X]原=00000110,X=+0000110 B. [X]原=10000110,X=-0000110 C. [X] 原=01111010 ,X=+1111010 D. [X] 原=11111010 ,X=-0000110 9. 真值 X=-127D ,则其真值及 8 位反码分别为(D)。 A. [X] 反=11111111 , X=-1000000 B. [X] 反=10000000 ,X=-1000000 C. [X] 反=11111111 , X=-1111111 D. [X] 反=10000000 , X=-1111111 10. 若[X]补=CCH,机器字长为8位,则[X/2]补=(D)。 A.34H B.66H C.98H D.E6H 二、网络基础最基本,马上试试不要等 1.最早的计算机网络通常认为是(A)。 A. ARPANET B. BITENT C. CERNET D. ETHERNET 2. 小王出差到北京了,打电话给广州公司的小张说他要公司一份文件,小张马上用邮件发给他。这体现了计算机网络的(D)功能。 A. 资源共享 B. 分布式处理 C. 网络通信 D. 数据通信 3.有关令牌环网络的描述错误的是(C)。 A.令牌只能沿着逻辑环的一个方向进行传递 B. 任何时刻只有一个站点发送数据,不会产生介质访问冲突 C.发送数据时令牌必须随着数据一起传递,并一起被目的站点接收 D. 发送的信息帧(包括数据帧和令牌帧)最终都会回到源站点,目的站点接收的是复制数据帧 4. 有关令牌总线网络的描述错误的是(C)。 A.令牌总线网络的数据传输也是沿着逻辑环进行的,但每次生成的逻辑环可能都不一样 B. 如果总线网络中某个站点出现故障,或者没有工作,可以重新建立新的逻辑环 C. 令牌总线网络发送数据时不同时发送令牌帧,源数据也不用回到源站点 D. 在令牌总线的逻辑环中每个站点都有一张“连接表”,标识了本站点及前、后站点的地址 5. 下面关于令牌环网络和令牌总线网络比较,不正确的是(B)。

海明码计算方法

1.海明码的概念 海明码是一种可以纠正一位差错的编码。它是利用在信息位为k位,增加r位冗余位,构成一个n=k+r位的码字,然后用r个监督关系式产生的r个校正因子来区分无错和在码字中的n个不同位置的一位错。它必需满足以下关系式: 2^r>=n+1 或 2^r>=k+r+1 例题:以 4 位信息位为例,由上表可以看出需要的海明码长度为 3。设信息位为 x4x3x2x1,添加的 3 位海明码为 a3a2a1,信息码和海明码组合之后得到的码为 H7H6H5H4H3H2H1。 错误无H1H2H3H4H5H6H7 C10 1 0 1 0 1 0 1 C1 = H1 + H3 + H5 + H7 = 0 C20 0 1 1 0 0 1 1 C2 = H2 + H3 + H6 + H7 = 0 C30 0 0 0 1 1 1 1 C3 = H4 + H5 + H6 + H7 = 0 海明码的编码效率为: R=k/(k+r) 式中k为信息位位数r为增加冗余位位数 2.海明码的生成与接收 方法一:

例1.已知:信息码为:"0010"。海明码的监督关系式为:S2=a2+a4+a5+a6 S1=a1+a3+a5+a6 S0=a0+a3+a4+a6 求:海明码码字。 解:1)由监督关系式知冗余码为a2a1a0。 2)冗余码与信息码合成的海明码是:"0010a2a1a0"。 设S2=S1=S0=0,由监督关系式得: a2=a4+a5+a6=1 a1=a3+a5+a6=0 a0=a3+a4+a6=1 因此,海明码码字为:"0010101" 2)海明码的接收。 例2.已知:海明码的监督关系式为: S2=a2+a4+a5+a6 S1=a1+a3+a5+a6 S0=a0+a3+a4+a6 接收码字为:"0011101"(n=7) 求:发送端的信息码。 解:1)由海明码的监督关系式计算得S2S1S0=011。

对海明码的理解

对海明码的理解 海明码是一种多重(复式)奇偶检错系统。它将信息用逻辑形式编码,以便能够检错和纠错。用在海明码中的全部传输码字是由原来的信息和附加的奇偶校验位组成的。每一个这种奇偶位被编在传输码字的特定位置上。实现得合适时,这个系统对于错误的数位无论是原有信息位中的,还是附加校验位中的都能把它分离出来。 一个n位二进制数位串在传输过程中哪一位都有出错的可能,也就是说有n个发生错误的可能性。针对此情况,如果发送方只抽出其中一位制置奇偶校验位值,以便对其它位进行偶校验或奇校验,虽然也能检错,但无法确定错码的位置,不能纠错。如果发送方抽出其中r位(放在1,2,4,8,16……位上),给每个位制置奇偶校验位值,以便对从其它位中选择的有差异的r个位组进行偶校验或奇校验,这样,就能用含r个校验位值的逻辑组合(其所在位置可以不连续,但是,其在逻辑上是连续的)所衍生出的2r种状态对可能发生的错误进行相应范围的检测。进一步思考:如果让2r种可能发生的状态中除去一种状态反映整个位串传输正确外,剩下的2r-1种状态一一对应地反映位串中可能发生的n种错误,

那么,对r会有多大的数量要求呢?显然,r应满足下列关系式: 2r-1>=n (1) 这样,r个校验位所衍生出的2r种状态才能覆盖可能产生的n种错误。每种错误发生时才不至于漏检。 从n中扣出r个校验位n-r=k,这k个位是信息位。n=k+r,代入(1)式得: 2r-1>=k+r (2) 移项得: 2r-r>=k+1 (3) 按(3)式进行试算(试算不包括”>”——取最小值) 表1 根据经验 表2 此即r以其所衍生出的状态能覆盖的信息位数量。反过来,从k的数量,可以倒推需要多少校验位对其进行检测。 知道了信息位数量与校验位数量的关系后,怎样编海明

modbus_rtu_crc计算方法

MODBUS RTU模式下的CRC方法 使用RTU模式,消息包括了一基于CRC方法的错误检测域。CRC域检测了整个消息的内容。 CRC域是两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。 CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。 CRC产生过程中,每个8位字符都单独和寄存器内容相或(O R),结果向最低有效位方向移动,最高有效位以0填充。L SB被提取出来检测,如果LSB为1,寄存器单独和预置的值或一下,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相或。最终寄存器中的值,是消息中所有的字节都执行之后的C RC值。 CRC添加到消息中时,低字节先加入,然后高字节。CRC简单函数如下: unsigned short CRC16(puchMsg, usDataLen) unsigned char *puchMsg ; /* 要进行CRC校验的消息 */ unsigned short usDataLen ; /* 消息中字节数 */ { unsigned char uchCRCHi = 0xFF ; /* 高CRC字节初始化 */ unsigned char uchCRCLo = 0xFF ; /* 低CRC 字节初始化 */ unsigned uIndex ; /* CRC循环中的索引 */ while (usDataLen--) /* 传输消息缓冲区 */

海明码和CRC编码的图解和详细计算过程

一、CRC编码 1、已知多项式和原报文,求CRC编码,如:使用多项式G(x)=x^5 + x^4 + x +1,对报文10100110进行CRC编码,则编码后的报文是什么? 方法与步骤: 步骤1:对报文10100110,在末尾添加所给多项式的最高次阶个0,如本题为x^5,则添加5个0,变为:1010011000000。 步骤2:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。 步骤3:步骤1中求得的1010011000000对步骤2中求得的110011进行模二除法,所得到的余数即为校验码,把校验码添加在原报文尾部即为所求的编码报文1010011011000,具体如下: 2.已知道接收到的CRC编码,求原编码或判断是否出错,如:已知G(x)=x^5 + x^4 + x +1,接收的为1010011011001,问是否出错? 步骤一:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。 步骤二:用接收的报文1010011011001对步骤一的110011进行模二除法,看余数是否为0,如为0则正确,如不为0,则出错,计算余数为1,则出错。如下图: 二、海明码 1.求海明码,如:求1011海明码。 步骤一:求校验码位数r,公式为:2^r ≥r+k+1的最小r。题目中为2^3≥3+4+1,所以取r=3,即校验码为3位。

步骤二:画图,并把原码的位编号写成2的指数求和的方式,其中位编号长度为原码和校验码个数之和,从1开始。校验码插在2的阶码次方的位编号下,且阶小于r。如下: 原码的位编号写成2的指数求和: 7=2^2+2^1+2^0; 6=2^2+2^1; 5=2^2+2^0; 3=2^1+2^0; 步骤三:求校验位,即每个校验位的值为步骤二中“原码的位编号写成2的指数求和”式子中相应2的阶出现的位编号下原码的值异或。即: r0=I4异或I2异或I1=1; (2^0次出现在7,5,3位,其对应的值为I4,I2,I1) r1=I4异或I3异或I1=0; (2^1次出现在7,6,3位,其对应的值为I4,I3,I1) r2=I4异或I3异或I2=0; (2^0次出现在7,6,5位,其对应的值为I4,I3,I2) 把r0,r1,r2带入海明码,得所求的海明码为:1010101 2.已知海明码,求原码或判断是否出错并改正错位,如:信息位8位的海明码,接收110010100000时,判断是否出错,并求出发送端信息位。 步骤一:求校验码位数r,公式为:2^r ≥r+k+1的最小r。题目中为2^4≥4+8+1,所以取k=4,即校验码为4位。 步骤二:根据作图,求得信息位编码和发过来的校验码记为r,并由原编码从新计算出新的校验码与发来的校验码r进行异或运算,具体如下:

832 计算机技术基础

天津农学院 2015 年硕士研究生招生考试初试 832 计算机技术基础考试大纲
农业工程——农业电气化与自动化专业计算机技术基础考试涵盖“计算机软件技术基 础”和“计算机硬件技术基础”课程。要求考生比较系统地理解计算机软硬件的基本概念和 基本理论, 掌握信息处理的基本方法, 具备基本的计算思维能力以及综合运用所学知识分析 和解决实际应用问题的能力。
考试形式和试卷结构
一、试卷满分及考试时间 本试卷满分为150分, 考试时间为180分钟。 二、答题方式 答题方式为闭卷、笔试。 三、试卷内容结构 计算机软件技术基础 50% 计算机硬件技术基础 50% 四、试卷题型结构 判断 题、 单项选择 题、 填 空 题 、 简答题、计算题、论述题
考试要求 计算机软件技术基础
一、软件开发概述
1. 理解程序的概念,掌握程序的基本特点。 2. 清楚程序设计语言的分类,知晓程序设计语言的基本元素。 3. 理解算法的概念,了解算法的基本特性。 4. 理解算法描述的含义,知晓算法设计目标。 5. 掌握软件的概念、分类;熟知软件发展历史与未来发展趋势。 6. 知晓软件危机产生的原因;熟悉软件生存周期的四个阶段划分。 7. 深入理解软件工程的概念与作用;知晓软件开发过程管理与控制规范;清楚软件复用技 术、组件技术、C/S 系统、B/S 系统的产生背景。
二、数据结构及算法
1.理解数据、数据元素、数据项、数据存储及处理的含义;深入理解数据结构的概念及用 途;知晓数据的逻辑结构、数据的存储结构及数据结构的基本运算。 2. 理解数据类型和抽象数据类型的概念;知晓算法评价的内容(指标) ,包括时间复杂度 和空间复杂度。 3.理解线性表及其逻辑结构, 知晓线性表在计算机内的两种主要实现方式 (顺序表和链表) ; 熟悉顺序表和链表的创建、插入、删除和查找(遍历)操作,熟练掌握各操作的 C 程序实 现。 4. 理解栈的概念及其特点和用途,掌握栈的 6 种基本操作(初始化、入栈、出栈、取栈顶

crc计算 delphi

function TForm1.CalCRC16(AData: array of Byte; AStart, AEnd: Integer): string; var i:Integer; s:string ; begin for i:=AStart to AEnd do //对每一个字节进行校验 crcs:=CalOneByte(AData[i]); s:=inttohex(crcs,4); edit3.Text :=s; Result:= rightstr(s,2)+leftstr(s,2); end; function TForm1.CalOneByte(AByte: Byte):word; const GENP=$A001; //多项式公式X16+X15+X2+1(1100 0000 0000 0101)//$A001 var j:Integer; tmp:byte; crc:Word; begin crc:=crcs xor AByte; //将数据与CRC寄存器的低8位进行异或 for j:=0 to 7 do //对每一位进行校验 begin tmp:=crc and $0001; //取出最低位 crc:=crc shr 1; //寄存器向右移一位 crc:=crc and $7FFF; //将最高位置0 if tmp=1 then //检测移出的位,如果为1,那么与多项式异或 crc:=crc xor GENP; crc:=crc and $FFFF; end; result:=crc; end; function TForm1.strtocrc(s: string): string; var buf1:array[0..256] of byte; i:integer; strOrder:string; Res: string;

CRC16校验码如何计算

CRC16校验码如何计算 比如我有一个16进制只字符串 7E 00 05 60 31 32 33 要在末尾添加两个CRC16校验码校验这7个16进制字符请写出算法和答案 7E 00 05 60 31 32 33 计算CRC16结果应该是:5B3E 方法如下: CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1; 0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。 1.设置CRC寄存器,并给其赋值FFFF(hex)。 2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC寄存器。 3.CRC寄存器向右

移一位,MSB补零,移出并检查LSB。 4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。 5.重复第3与第4步直到8次移位全部完成。此时一个8-bit 数据处理完毕。 6.重复第2至第5步直到所有数据全部处理完成。 7.最终CRC寄存器的内容即为CRC值。 CRC(16位)多项式为 X16+X15+X2+1,其对应校验二进制位列为1 1000 0000 0000 0101。

海明码精典例题

海明码精典例题(重点理解) 海明码的生成与接收 方法一:(按教科书) 1)海明码的生成。 例1.已知:信息码为:"0010"。海明码的监督关系式为: S2=a2+a4+a5+a6 S1=a1+a3+a5+a6 S0=a0+a3+a4+a6 求:海明码码字。 解:1)由监督关系式知冗余码为a2a1a0。 2)冗余码与信息码合成的海明码是:"0010a2a1a0"。 设S2=S1=S0=0,由监督关系式得: a2=a4+a5+a6=1 a1=a3+a5+a6=0 a0=a3+a4+a6=1 因此,海明码码字为:"0010101" 2)海明码的接收。 例2.已知:海明码的监督关系式为: S2=a2+a4+a5+a6 S1=a1+a3+a5+a6 S0=a0+a3+a4+a6 接收码字为:"0011101"(n=7) 求:发送端的信息码。 解:1)由海明码的监督关系式计算得S2S1S0=011。 2)由监督关系式可构造出下面错码位置关系表: S2S1S0 000 001 010 100 011 101 110 111 错码位置无错a0 a1 a2 a3 a4 a5 a6 3)由S2S1S0=011查表得知错码位置是a3。 4)纠错--对码字的a3位取反得正确码字:"0 0 1 0 1 0 1" 5)把冗余码a2a1a0删除得发送端的信息码:"0010" 方法二: 1)海明码的生成(顺序生成法)。 例3.已知:信息码为:" 1 1 0 0 1 1 0 0 " (k=8) 求:海明码码字。 解:1)把冗余码A、B、C、…,顺序插入信息码中,得海明码

码字:" A B 1 C 1 0 0 D 1 1 0 0 " 码位: 1 2 3 4 5 6 7 8 9 10 11 12 其中A,B,C,D分别插于2k位(k=0,1,2,3)。码位分别为1,2,4,8。 2)冗余码A,B,C,D的线性码位是:(相当于监督关系式) A->1,3,5,7,9,11; B->2,3,6,7,10,11; C->4,5,6,7,12;(注5=4+1;6=4+2;7=4+2+1;12=8+4) D->8,9,10,11,12。 3)把线性码位的值的偶校验作为冗余码的值(设冗余码初值为0): A=∑(0,1,1,0,1,0)=1 B=∑(0,1,0,0,1,0)=0 C=∑(0,1,0,0,0)=1 D=∑(0,1,1,0,0)=0 4)海明码为:"1 0 1 1 1 0 0 0 1 1 0 0" 2)海明码的接收。 例4.已知:接收的码字为:"1 0 0 1 1 0 0 0 1 1 0 0"(k=8) 求:发送端的信息码。 解:1)设错误累加器(err)初值=0 2)求出冗余码的偶校验和,并按码位累加到err中: A=∑(1,0,1,0,1,0)=1err=err+20=1 B=∑(0,0,0,0,1,0)=1err=err+21=3 C=∑(1,1,0,0,0)=0 err=err+0 =3 D=∑(0,1,1,0,0)=0 err=err+0 =3 由err≠0可知接收码字有错, 3)码字的错误位置就是错误累加器(err)的值3。 4)纠错--对码字的第3位值取反得正确码字: "1 0 1 1 1 0 0 0 1 1 0 0" 5)把位于2k位的冗余码删除得信息码:"1 1 0 0 1 1 0 0"

相关文档
最新文档