初中几何反证法专题

初中几何反证法专题
初中几何反证法专题

初中几何反证法专题

学习要求

了解反证法的意义,懂得什么是反证法。

理解反证法的基本思路,并掌握反证法的一般证题步骤。

知识讲解

对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。

1.反证法的概念:

不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。

2.反证法的基本思路:

首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。

3.反证法的一般步骤:

(1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾;

(3)由矛盾判定假设不正确,从而肯定命题的结论正确。

简而言之就是“反设-归谬-结论”三步曲。

例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。

(1)

证明:假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。

∵OA=OB,M是AB中点

∴OM⊥AB(等腰三角形底边上的中线垂直于底边)

同理可得:

OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM

这与已知的定理相矛盾。

故AB与CD不能互相平分。

例2.已知:在四边形ABCD中,M、N分别是AB、DC的中点,

且MN=(AD+BC)。

求证:AD∥BC

(2)

证明:假设AD BC,连结ABD,并设P是BD的中点,再连结MP、PN。

在△ABD中

∵BM=MA,BP=PD

∴MP AD,同理可证PN BC

从而MP+PN=(AD+BC)①

这时,BD的中点不在MN上

若不然,则由MN∥AD,MN∥BC,得AD∥BC与假设AD BC矛盾,

于是M、P、N三点不共线。

从而MP+PN>MN②

由①、②得(AD+BC)>MN,这与已知条件MN=(AD+BC)

相矛盾,

故假设AD BC不成立,所以AD∥BC。

课堂练习

1.求证:三角形中至少有一个角不大于60°。

2.求证:一直线的垂线与斜线必相交。

已知:设m,n分别为直线l的垂线和斜线(如图),垂足为A,斜足为B

求证:m和n必相交。

3.在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,求证:AD 与

BE不能被点H互相平分。

4.求证:直线与圆最多只有两个交点。

5.求证:等腰三角形的底角必为锐角。

已知:△ABC中,AB=AC

求证:∠B、∠C必为锐角。

参考答案:

1.证明:假设△ABC中的∠A、∠B、∠C都大于60°

则∠A+∠B+∠C>3×60°=180°

这与三角形内角和定义矛盾,所以假设不能成立。

故三角形中至少有一个角不大于60°。

2.证明:假设m和n不相交则

m∥n

∵m⊥l ∴n⊥l

这与n是l的斜线相矛盾,所以假设不能成立。

故m和n必相交。

3.证明:假设AD、BE被交点H互相平分,则ABDE是平行四边形。

∴AE∥BD,即AC∥BC

这与AC、BC相交于C点矛盾,

故假设AD、BE被交点H平分不能成立。

所以AD与BE不能被点H互相平分。

4.证明:假设一直线l与⊙O有三个不同的交点A、B、C,

M、N分别是弦AB、BC的中点。

∵OA=OB=OC

∴在等腰△OAB和△OBC中

OM⊥AB,ON⊥BC

从而过O点有两条直线都垂直于l,这是不可能的,故假设不能成立。

因此直线与圆最多只有两个交点。

5.证明:假设∠B、∠C不是锐角,

则可能有两种情况:

(1)∠B=∠C=90°

(2)∠B=∠C>90°

若∠B=∠C=90°,则∠A+∠B+∠C>180°,

这与三角形内角和定理矛盾。

若∠B=∠C>90°,则∠A+∠B+∠C>180°,

这与三角形内角和定理矛盾。

所以假设不能成立。

故∠B、∠C必为锐角。

本讲小结

对于一个几何命题,当用直接法证比较困难或甚至不能证明时,则可采用简接证法,反证法就是一种最常见的间接证明方法、掌握并

运用好这种方法,对思维能力的提高大有裨益。

所谓反证法,就是先假设命题的结论不成立,从结论的反面入手,

进行正确的逻辑推理,导致结果与已知学过的公理、定理,从而得

出结论的反面不成立,于是原结论成立。

反证法证题的一般步骤是:

(1)反设:将结论的反面作为假设;

(2)归谬:由“反设”出发,利用已学过的公理、定理,推出与已知

矛盾的结果;

(3)结论:由推出的矛盾判断“反设”错误,从而肯定命题的结论正

确。

运用“反证法”的关键:

反证法的主要手段是从求证的结论的反面出发,导出矛盾的结果,因此,如何导出矛盾,就成了使用反证法的关键。

“反证法”宜用于证明否定性命题、唯一性命题、“至少”“至多”

命题和某些逆命题等,一般地说“正难则反”凡是直接法很难证明的

命题都可考虑用反证法。

课后作业

1.求证:在平面上,不存在这样的凸四边形ABCD,使△ABC、△BCD、

△CDA、△DAB都是锐角三角形。

2.在△ABC中,AB=AC,P是内部一点且∠APB>∠APC,求证:PB<PC。

3.求证:在一个三角形中,至少有一个内角大于或者等于60°。

4.求证:在△ABC的BC边上任取一点D、AC边上任意取一点E,连结AD、BE,则AD和BE必定不能互相平分。

5.已知△ABC为不等边三角形,AD⊥BC于D点,求证:D点到AB、AC边的距离必不相等。

参考答案:

1.证明:假设存在凸四边形ABCD,

使△ABC、△BCD、△CDA、△DAB都是锐角三角形。

则∠A+∠B+∠C+∠D<360°。

这与四边形ABCD中

∠A+∠B+∠C+∠D=360°矛盾。

故假设不能成立,所以原命题成立。

2.证明:假设PB PC,即PB>PC或PB=PC

(1)当PB>PC时(如图)

在△PBC中,可得<PCB>∠PBC

∵AB=AC

∴∠ABC=∠ACB,从而∠ABP>∠ACP①

在△BAP与△CAP中

∵AB=AC,AP=AP,PB>PC

∴∠BAP>∠CAP②

由①②和三角形内角和定理,可得∠APB<∠APC,

这与已知∠APB>∠APC相矛盾。

(2)当PB=PC时,在△APB与△APC中

∵AP=AP,BP=CP,AB=AC

∴△ABP≌△ACP,∴∠APB=∠APC

这与已知∠APB>∠APC相矛盾,

由(1)(2)可知假设PB PC不成立。

故PB>PC。

3.证明:不妨设三角形的三个内角为∠A、∠B、∠C

假设∠A、∠B、∠C中设有一个大于或等于60°,

则它们都小于60°。

即∠A<60°、∠B<60°、∠C<60°

∴∠A+∠B+∠C<180°这与三角形内角和定理矛盾,

这说明假设不成立。

故∠A、∠B、∠C中至少有一个大于或等于60°。

4.证明:假设AD和BE互相平分于P点,则ABDE应是一个平行四边形。

所以AE∥EB,即AC∥BC

这与AC与BC相交于C点矛盾,

故假设AD与BE互相平分不能成立。

所以AD和BE必定不能互相平分。

5.证明:作BE⊥AB于E,DF⊥AC于F

假设DE=DF,则∠1=∠2

∵AD⊥BC

∴ ∠B=90°-∠1

∠C=90°-∠2

∴ ∠B=∠C

∴ AB=AC这与△ABC为不等边三角形矛盾。

故假设不能成立,即D点到AB、AC边的距离必不相等。

几何练习题精选

几何练习题精选 题型一、相似三角形的判定与性质 1、 如图1、在ABC ?中, 90=∠BAC ,BC 边的垂直平分线EM 与AB 及CA 的延长线分别交于D 、E ,连接AM , 求证:EM DM AM ?=2 2、 如图2,已知梯形ABCD 为圆内接四边形,AD//BC ,过C 作该圆的切线,交AD 的延长线于E ,求证:ABC ?相似于EDC ? 3、 如图3,D B ∠=∠,AE ⊥BC , 90=∠ACD ,且AB=6,AC=4,AD=12,求BE 的长。

4、 如图4,O Θ和O 'Θ相交于A ,B 两点,过A 作两圆的切线分别交两圆于C 、D 两点, 连接DB 并延长交O Θ于点E ,证明:(1)AB AD BD AC ?=?;(2)AC=AE 题型二、截割定理与射影定理的应用 1、 如图5,已知E 是正方形ABCD 的边AB 延长线上一点,DE 交CB 于M ,MN//AE 于 N ,求证:MN=MB 2、 如图6,在ABC Rt ?中, 90=∠BAC ,AD 是斜边BC 上的高,若AB :AC=2:1, 求AD :BC 的值。

3、 如图7,AB 是半圆O 的直径,C 是半圆上异于A 、B 的点,CD ⊥AB ,垂足为D ,已 知AD=2,CB=34,求CD 的长。 4、 如图8,在ABC ?中,DE//BC ,EF//CD ,若BC=3,DE=2,DF=1,求AB 的长。 题型三、圆内接四边形的判定与性质 1、 如图9、AB ,CD 都是圆的弦,且AB//CD ,F 为圆上一点,延长FD ,AB 相交于点E , 求证:BD=AC ;(2)DE AF AC AE ?=?

2016中学考试数学:_几何与函数问题专题复习

2016中考数学专题讲座 几何与函数问题 【知识纵横】 客观世界中事物总是相互关联、相互制约的。几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。 【典型例题】 【例1】已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点. (1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段 BE 的长; (3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长. 【思路点拨】(1)取AB 中点H ,联结MH ;(2)先求出 DE; (3)分二种情况讨论。 【例2】()已知:如图(1),在Rt ACB △中,90C ∠=,4cm AC =, 3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥? (2)设AQP △的面积为y (2 cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由; (4)如图(2),连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ', B A D M E C B A D C 备用图

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

立体几何专题训练(附答案)

立体几何 G5 空间中的垂直关系 18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D- AF- E的余弦值. 图1-4 19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形. (1)证明:O1O⊥底面ABCD; (2)若∠CBA=60°,求二面角C1-OB1-D的余弦值. 19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD. 因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD. 由题设知,O1O∥C1C.故O1O⊥底面ABCD. (2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1. 由(1)知,O1O⊥底面ABCD O1O⊥A1C1. 又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形, 因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1. 进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7. 在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2 = 1+12 7 = 197 . 故cos ∠C 1HO 1=O 1H C 1H = 23 7197 =25719. 即二面角C 1-OB 1-D 的余弦值为257 19 . 方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直. 如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2), C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n 2·OB →1=0,n 2·OC →1=0,即???3x +2z =0, y +2z =0. 取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??????n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719 . 19. 、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . 图1-6 (1)求证:AB ⊥PD .

初二几何专题训练整理

初中几何综合测试题 一.填空题 1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为_______. 2.△ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是 10,则△A′B′C′的面积是_________. 4.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面 积为8cm,则△AOB的面积为________. 5.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 . 6.梯形上底长为2,中位线长为5,则梯形的下底长为________. 7.如图,分别延长四边形ABCD两组对边交于E、F,若DF=2DA, 8.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°, 那么AD等于_________. 二.选择题 1.一个角的余角和它的补角互为补角,则这个角是 [ ] A.30° B.45° C.60° D.75° 2.依次连结等腰梯形的各边中点所得的四边形是 [ ] A.矩形 B.正方形 C.菱形 D.梯形 3.如图,DF∥EG∥BC,AD=DE=EB,△ABC被分成三部分的 面积之比为 [ ]

A.1∶2∶3 B.1∶1∶1 C.1∶4∶9 D.1∶3∶5 4.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°, 则∠BCF的度数是 [ ] A.160° B.150° C.70° D.50° 5.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和 BC相交于E,图中全等三角形共有 [ ] A.2对 B.3对 C.4对 D.5对 6.既是轴对称,又是中心对称的图形是 [ ] A.等腰三角形 B.等腰梯形 C.平行四边形 D.线段 三.解答题

初中数学几何基本图形+初中数学图形与几何

初中数学几何基本图形初中数学图形与几何导读:就爱阅读网友为您分享以下“初中数学图形与几何”资讯,希望对您有所帮助,感谢您对https://www.360docs.net/doc/3e11544545.html,的支持! 课程简介 初中数学图形与几何 【课程简介】 本模块主要研讨数学课程标准修订稿中“初中数学空间与图形”部分的内容要求,目的是通过研讨,使教师们明确本模块内容的具体要求,并提出教学实施过程中的一些建议。总体分为六个部分: 1. 图形与几何内容结构分析——主要探讨图形与几何部分的整体结构框架和三条主要线索; 2. 图形的性质内容与教学分析——主要探讨图形的性质部分的内容要求、与实验稿的变化以及教学实施中注意的问 1 题; 3. 图形的变化内容与教学分析——主要探讨图形的变化部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 4. 图形与坐标内容与教学分析——主要探讨图形与坐标部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 5. 空间观念与几何直观——主要探讨核心概念空间观念与几何直观的含义,以及在图形与几何的教学中如何培养学生的空间观念与几何直观能力; 6. 推理能力——主要探讨核心概念推理能力的含义,以及在图形与几何的教学中如何培养学生的推理能力。

课程既有理论指导,又有大量的教学实例,同时还有主讲教师间的相互交流,给教师们提供了较为广阔的思考空间。 【学习要求】 1(对“初中数学空间与图形”模块的内容结构和主线有清楚 2 的认识,能够说出这些线索之间的区别与联系; 2(了解图形的性质部分的研究的图形有哪些,认识图形的哪些方面,以及在这部分中是如何认识这些图形的; 3(体会图形的变化是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 4(体会图形与坐标是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 5(能够结合自己的教学实践,举出相应的实例,说明图形的性质、图形的变化和图形与坐标的教学经验和方法; 6(理解核心概念——空间观念、几何直观和推理能力的具体含义,体会它们与知识技能的区别和联系,能够借助具体实例说出培养学生上述能力的途径和方法。 专题讲座 初中数学图形与几何 刘晓玫(首师大数学,教授) 史炳星(北京教育学院,副教授 ) 章巍(河北保定三中分校,高级教师 ) 3 一、图形与几何内容结构分析

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

解析几何专题讲座

解析几何专题讲座 题型一 圆锥曲线的概念及性质 【例1】椭圆x 2 a 2+y 2 b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) A.? ? ? ?0,22 B.????0,12 C .[2-1,1) D.????12,1 又e =c a ,∴2e 2+e ≥1,∴2e 2+e -1≥0,即(2e -1)(e +1)≥0,又0b >0),|PF 1|=m ,|PF 2|=n . 在△PF 1F 2中,由余弦定理可知,4c 2=m 2+n 2-2mn cos 60°. ∵m +n =2a ,∴m 2+n 2=(m +n )2-2mn =4a 2-2mn , ∴4c 2=4a 2-3mn ,即3mn =4a 2-4c 2.又mn ≤????m +n 22=a 2(当且仅当m =n 时取等号), ∴4a 2-4c 2≤3a 2,∴c 2 a 2≥14,即e ≥12,∴e 的取值范围是????1 2,1. (2)证明:由(1)知mn =43b 2,∴S △PF 1F 2=12sin 60°=33b 2, 即△PF 1F 2的面积只与短轴长有关. 题型二 圆锥曲线的方程 【例2】设椭圆C : 222 2 1(0),l ,x y a b F F C A B a b + =>>的右焦点为过的直线与椭圆相交于两点 60,2l AF FB = 直线的倾斜角为 (1)求椭圆C 的离心率; (2)如果|AB |=15 4 ,求椭圆C 的方程. 解:设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. (1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2. 联立????? y =3(x -c ),x 2a 2+y 2b 2=1 得(3a 2+b 2)y 2+23b 2cy -3b 4 =0. 解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2 . 因为FA →=2FB → ,所以-y 1=2y 2. 即3b 2 (c +2a )3a 2+b 2=2·-3b 2 (c -2a )3a 2+b 2 得离心率e =c a =23. (2)因为|AB |= 1+13|y 2-y 1|,所以23 ·43ab 23a 2+b 2=15 4. 由c a =23得b =53a ,所以54a =15 4,得a =3,b = 5. 椭圆C 的方程为x 29+y 2 5 =1. 拓展提升——开阔思路 提炼方法 求圆锥曲线的方程常利用圆锥曲线的定义或待定系数法求解,但要注意焦点所在坐标轴,避免漏解. 题型三 热点交汇

小学奥数几何专题训练附答案

学习奥数的重要性 1. 学习奥数是一种很好的思维训练。奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。 2. 学习奥数能提高逻辑思维能力。奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助 3. 为中学学好数理化打下基础。等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。 4. 学习奥数对孩子的意志品质是一种锻炼。大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。 六年级几何专题复习 如图,已知AB =40cm,图中的曲线是由半径不同的三种半圆弧平滑连接 而成,那么阴影部分的面积是_____cm2。(π取3.14)(几何) 有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,则至少需要绳子_____分米。(结头处绳长不计,π取3.14) 图中的阴影部分的面积是________平方厘米。(π取3)

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

高三数学二轮复习专题讲座 解析几何复习建议

解析几何二轮复习建议 南京一中 引入坐标系,使点与坐标,曲线与方程联系起来的坐标方法对于数学发展起了巨大的作用。用坐标法研究曲线(几何图形),实际上要解决两个问题:第一是由曲线(几何图形)求方程;第二是利用方程讨论曲线(几何图形)的性质。由曲线求方程,要解决如何将曲线上的点所满足的条件转化为曲线上点的坐标所适合的方程;在解析几何里,所讨论的曲线的性质通常包括:曲线的范围,曲线的对称性,曲线的截距,以及不同曲线所具有的一些特殊性质,例如过定点,过定线,最值等一些不变(量)性。用坐标法研究几何问题,是数学中一个很大的课题,问题的大小、深浅差别很大。 坐标法是借助坐标系,以代数中数与式、方程的知识为基础来研究几何问题的一种数学方法。因此,要有一定的代数知识基础,特别是代数式变形和解方程组的能力要求较高。 以下解析几何二轮复习建议,仅供参考。 基本题型一:求基本量 1.直线的几何量主要是斜率、倾斜角、截距;圆的几何量主要是圆心、半径。这些量主要通过两直线的平行与垂直、线性规划、直线与圆的位置关系等进行综合,作为题中的一个点出现. 2.圆锥曲线的几何量主要包括轴、轴长、顶点、焦距、焦点、准线、渐近线、离心率。在已知方程求有关量时,首先是把方程化为标准方程,找准a ,b ,c ,p 的值,二是记准相应量的计算公式.在已知图形中求有关量时,要明确各个量的几何意义和图形中的特征求方程或不等式求几何量. 例1.直线l :3x -y +m =0与圆C :x 2+y 2-2x -2=0相切,则直线l 在x 轴上的截距_____. 解:因为⊙C 方程可化为(x -1)2+y 2=(3)2,所以圆心C (1,0),半径r =3,因为直线l 与圆C 相切,直线C 到l 的距离等于r ,即∣3?1-1?0+m ∣2=3,解得m =-33或3. 当m =3时,直线l 方程为3x -y +3=0,在x 轴上的截距为-1; 当m =-33,直线l 方程为3x -y +-33=0,在x 轴上的截距为3. 例2.(2008天津)设椭圆x 2m 2+y 2 m 2-1=1(m >1)上一点P 到其左焦点的距离为3,到右焦点 的距离为1,则P 到右准线的距离为___________ 解:根据椭圆定义得2a =1+3,a =2,即m =2,b =m 2-1=3,c =1,e =c a =1 2 ,根据

中考数学几何专题训练

专题八圆

8.正多边形的有关计算: (1)中心角n ,半径R N ,边心距r n ,边长a n ,内角n ,边数n;公式举例: (1) n = n 360 ;

(2)有关计算在Rt ΔAOC 中进行. (2) n 1802n ? = α 二 定理: 1.不在一直线上的三个点确定一个圆. 2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角 三 公式: 1.有关的计算: (1)圆的周长C=2πR ;(2)弧长L= 180 R n π;(3)圆的面积S=πR 2 . (4)扇形面积S 扇形 =LR 2 1 360R n 2=π; (5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 圆柱侧(2)圆锥的侧面积:S 圆锥侧 =LR 21 =πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径) 四 常识: 1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心 两边中垂线的交点 三角形的外接圆的圆心; 三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.

A B C 第5 A B C 第6 O E 4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径) 直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r. 5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r ) 两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ; 两圆内切 d=R-r ; 两圆内含 d <R-r. 6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线. 圆中考专题练习 一:选择题。 1. (2010红河自治州)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的 度数为( ) ° ° ° ° 2、(11哈尔滨).如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ). (A )22 (B )32 (C )5 (D )53 3、(2011陕西省)9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有( ) A 1个 B 2个 C 3个 D 4个 4、(2011),安徽芜湖)如图所示,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( ) A .19 B .16 C .18 D .20 5、(11·浙江湖州)如图,已知在Rt △ABC 中,∠ BAC =90°,AB =3, BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所 得圆锥的侧面积等于 ( )

初中数学平面几何建系专题

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自 己的座位。 分析以上情景,他们分别利用那些数据找到位置 的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置? (2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2 )在同一

位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

初中数学几何复习专题1

1 图7 O C B A 初中数学几何复习专题 【典型例题】 一、填空题 1、(08)如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °; 2、(07)如图2,AD 是⊙O 的直径,AB ∥CD ,∠AOC=60°,则∠BAD=______度. 3、(08)如图3,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧 BC 于点D ,连接DC ,则∠DCB= °. 4、(08佛山市)如图4,已知P 是正方形ABCD 对角线BD 上一点, 且BP = BC ,则∠ACP 度数是 . 5、(07广州市)如图5,点D 是AC 的中点,将周长为4㎝的菱形 ABCD 沿对角线AC 方向平移AD 长度得到菱形OB ’C ’D ’,则四边 形OECF 的周长是 ㎝ 6、(08茂名市)如图6,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°, 则∠OAC 的度数是 . (1) (08梅州市) 如图7,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD=30米,则AB=______米. (2) (08梅州市) 如图8, 点 P 到∠AOB 两边的距离相等,若∠POB=30°,则 ∠AOB=_____度. (3) (09广东省) 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°,则BC=_________cm. 图2O D C B A A M N B C 图1 O B D C A 图3 图4 B C D A P O C B A 图6 图8 图9 图5

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初二上几何证明题 题专题训练 好题汇编

八年级上册几何题专题训练50题 1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数. 2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证: ∠C=∠D 3.如图,OP 平分∠AOB ,且OA=OB . (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。 5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。 7. 写出下列命题的逆命题, 并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC 中,∠ACB=90o , D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o .求证:AB=AE . 9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试证明你的结论. 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为多少 11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC . 16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF=A C ;? (2)求证:DG=DF . 6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。 B A E D C

初中数学几何的动点问题专题练习-附答案版

动点问题专题训练 1、如图,已知A B C △中,10A B A C ==厘米,8B C =厘米,点D 为A B 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿A B C △三边运动,求经过多长时间点P 与点Q 第一次在A B C △的哪条边上相遇? 2、直线364 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发, 同时到达A 点,运动停止.点Q 沿线段O A 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485 S = 时,求出点P 的坐标,并直接写出以点 O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

初中数学平面几何建系专题讲课讲稿

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置 ?

(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

相关文档
最新文档