运放选型指南

运放选型指南
运放选型指南

小信号放大器选型指南

小信号放大器选型的几项重要指标

⑴、电源电压:根据实际需求选择具有合适的工作电压的放大器。

⑵、放大器精度:放大器的精度主要与输入偏置电压(osV)相关,并分别随温度漂移,电源抑制比(PSRR)以及共模抑制比(CMRR)变化。精密型一般是指具有低输入偏执电压及低输入偏置电压温度漂移的运算放大器。放大小信号需要采用高精密度的运算放大器。⑶、增益带宽积(GWB):电压反馈型运算放大器的增益带宽积决定了其在某项应用中的有效带宽。将增益带宽积除以应用中的实际闭环增益,便可大致估算出实际可用带宽。增益带宽积是恒定的常数。选择大带宽/转换速率(slew rate)的运算放大器,能够实现更低的失真,更卓越的线性度、更佳的增益准确度。 4、电压噪声:放大器产生的噪声将会限制系统的最大动态范围、准确度和分辨率。地电压噪声能够改善精确度。

5、输出偏置电流:当与源阻抗或反馈阻抗相互作用将产生偏置误差。具有高源阻抗或高反馈阻抗的应用,通常需要有较低的输入偏置电流。场效应(FET)输入及COMS运算放大器一般都能够提供很低的输入偏置电流。

6、转换速率:放大器的最大变化速率。当驱动大信号至高频时,转换速率是一个很重要的参数。一个运算放大器的最大可用带宽取决于其转换速率。

二、运算放大器选择需要注意的问题

1、输入信号的幅度大小

为确保因输入信号而产生的错误最小化,微小输入信号需要高精度(例如低偏执电压)的放大器,以确保放大信号输出的电压范围涵盖了所需的放大输出的信号范围

2、放大器周围环境的变化

运算放大器对于温度的变化极为敏感,因此,考虑偏置电压随温度偏移很重要 3、共模电压一般需要确保运算放大器工作在其共模电压范围内,并保证足够的共模抑制比(CMRR)。共模电压会导致额外的偏置电压。 4、电源电压是否会改变

电源电压的改变会影响到偏置电压,这对使用电池供电的放大器尤为重要。

三、集成运放的主要技术指标

集成运放的输入级通常由差分放大电路组成,因此一般具有两个输入端以及一个输出端,还有其他以连接电源电压等的引出端。两个输入端中,一个与输出端为反相关系,另一个为同相关系,分别称为反相输入端和同相输入端。

运算放大器的符号如下图所示。其中反相输入端和同相输入端分别用符号“-”和“+”标明

为了描述集成运放的性能,提出了许多项技术指标,现将常用的几项分别介绍如下:

一、开环差模电压增益Aod

Aod是指运放在无外加反馈情况下的直流差模增益,一般用对数表示,单位为分贝。Aod是决定运放精度的重要因素,理想情况下希望Aod为无穷大。实际集成运放一般Aod为100dB 左右,高质量的集成运Aod可达140dB以上。

二、输入失调电压U10

它的定义是,为了使输出电压为零,在输入端所需要加的补偿电压。其数值表征了输入级差分对管UBE(或场效应管UGS)失配的程度,在一定程度上了反映温漂的大小。一般运放的U10值为1~10mV,高质量的在1mV以下。

三、输入失调电压温漂ΑU10

它表示失调电压在规定工作范围内的温度系数,是衡量运放漂的重要指标。一般运放为每度10~20μV,高质量的低于每度0.5μV。这个指标往往比失调电压更为重要,因为可以通过调整电阻的阻值人为地使失调电压等于零,便却无法将失调电压的温漂调至零,甚至不一定能使其降低。

四、输入失调电流I10

输入失调电流的定义是当输出电压等于零时,两个输入端偏置电流之差,即用以描述差分对管输入电流的不对称情况,一般运放为几十至一百纳安,高质量的低于1nA。

五、输入失调电流温漂αI10

它代表输入失调电流的湿度系数。一般为每度几纳安,高质量的只有每度几十皮安。

六、输入偏置电流IIB

IIB定义是当输出电压等于零时,两个输入端偏置电流的平均值,这是衡量分对管输入电流绝对值大小的指标,它的值主要决定于集成运放输入级的静态集电极电流及输入级放大管的β值。一般集成运放的输入偏置电流愈大,其输入偏置电流约为几十纳安至1μA,场效应管输入级的集成运放,输入偏置电流在1nA以下。

七、差模输入电阻rid

它的定义是差模输入电压UId与相应的输入电流IId的变化量之比,用以衡量集成运放向信号源索取电流的大小。一般集成运放的差模输入电阻为几兆欧,以场效应管作为输入级的集成运放,Rid可达106MΩ。

八、共模抑制比KCMR

共模抑制比的定义是开环差模电压增益与开环共模电压增益之比,一般也用对数表示,这个指标用以衡量集成运放抑制温漂的能力。多数集成运放的共模抑制比在80dB以上,高质量的可达160dB。

九、最大共模输入电压UIcm

表示集成运放输入端所能跟随的最大共模电压。如果超过此值,集成运放的共模抑制性能将显著恶化。

十、最大共模输入电压UIdm

这是集成运放反相输入端与同相输入端之间能够承受的最大电压。若超过这个限度,输入级差分对管中的一个管子的发射结可能被反向击穿。

十一、-3dB带宽?H

表示Aod下降3dB时的频率。一般集成运放的?H值较低,只有几赫至几千赫。

十二、单位增益带宽BWG

指Aod降至0dB时的频率,即此时开环差模电压放大倍数等于1。BWG衡量集成运放的一项重要品质因素――增益带宽积的大小。

十三、转换速率SR

转换速率是指在额定负载条件下,输入一个大幅度的阶跃信号时,输出电压的最大变化率。单位为V/μS。这个指标描述集成运放对大幅度信号的适应能力。在实际工作中,输入信号的变化率一般不要大于集成运放的SR值。

按应用分类的运算放大器选型指南

ADI 公司开发创新能源解决方案已逾十年。我们的高性能放大器产品组合在促进变电站设备中的电能质量监控方面起着重要作用,而且随着再生能源系统的最新发展,它们也有助于实现突破性的解决方案。 能源应用放大器 欲了解有关能源应用的更多信息,请访问:https://www.360docs.net/doc/3f14021633.html,/zh/energy 典型太阳能电池系统图 典型变电站自动化系统图

过程控制和工业自动化应用放大器 40多年来,工业过程控制系统设计者与ADI公司密切合作,以定义、开发、实施针对各种应用进行优化的完整信号链解决方案。我们提供基于业界领先技术和系统性专业技术的精密控制与监测解决方案,使过程控制同时具备可靠性与创新性。 欲了解有关过程控制和工业自动化应用的更多信息,请访问:https://www.360docs.net/doc/3f14021633.html,/zh/processcontrol

仪器仪表和测量应用放大器 ADI公司提供高性能模拟解决方案,用来检测、测量、控制各种传感器。我们的技术支持广泛的创新设备鉴别、测量液体、粉末、固体和气体。领先的放大器产品可帮助客户优化定性和定量仪器的性能。 网络分析仪框图 电子秤框图 欲了解有关仪器仪表和测量应用的更多信息,请访问:https://www.360docs.net/doc/3f14021633.html,/zh/instrumentation

电机和电源控制应用放大器 针对电机和电源控制解决方案,ADI公司提供齐全的产品系列以优化系统级和应用导向设计。ADI公司的放大器产品在电流检测和电压检测应用中具有许多优势。 欲了解有关电机和电源控制应用的更多信息,请访问:https://www.360docs.net/doc/3f14021633.html,/zh/motorcontorl

健器械的未来。 脉搏血氧仪功能框图

小信号放大器选型指南

小信号放大器选型总结 李杨2011/12/30 一、小信号放大器选型的几项重要指标 ⑴、电源电压:根据实际需求选择具有合适的工作电压的放大器。 ⑵、放大器精度:放大器的精度主要与输入偏置电压( V)相关,并分别随温度 os 漂移,电源抑制比(PSRR)以及共模抑制比(CMRR)变化。精密型一般是指具有低输入偏执电压及低输入偏置电压温度漂移的运算放大器。放大小信号需要采用高精密度的运算放大器。 ⑶、增益带宽积(GWB):电压反馈型运算放大器的增益带宽积决定了其在某项 应用中的有效带宽。将增益带宽积除以应用中的实际闭环增益,便可大致估算出实际可用带宽。增益带宽积是恒定的常数。选择大带宽/转换速率(slew rate)的运算放大器,能够实现更低的失真,更卓越的线性度、更佳的增益准确度。 4、电压噪声:放大器产生的噪声将会限制系统的最大动态范围、准确度和分辨率。 地电压噪声能够改善精确度。 5、输出偏置电流:当与源阻抗或反馈阻抗相互作用将产生偏置误差。具有高源阻 抗或高反馈阻抗的应用,通常需要有较低的输入偏置电流。场效应(FET)输入及COMS运算放大器一般都能够提供很低的输入偏置电流。 6、转换速率:放大器的最大变化速率。当驱动大信号至高频时,转换速率是一个 很重要的参数。一个运算放大器的最大可用带宽取决于其转换速率。 二、运算放大器选择需要注意的问题 1、输入信号的幅度大小 为确保因输入信号而产生的错误最小化,微小输入信号需要高精度(例如低偏执电压)的放大器,以确保放大信号输出的电压范围涵盖了所需的放大输出的信号范围 2、放大器周围环境的变化 运算放大器对于温度的变化极为敏感,因此,考虑偏置电压随温度偏移很重要 3、共模电压 一般需要确保运算放大器工作在其共模电压范围内,并保证足够的共模抑制比(CMRR)。共模电压会导致额外的偏置电压。 4、电源电压是否会改变 电源电压的改变会影响到偏置电压,这对使用电池供电的放大器尤为重要。三、集成运放的主要技术指标 集成运放的输入级通常由差分放大电路组成,因此一般具有两个输入端以及一个输出端,还有其他以连接电源电压等的引出端。两个输入端中,一个与输出端为反相关系,另一个为同相关系,分别称为反相输入端和同相输入端。 运算放大器的符号如下图所示。其中反相输入端和同相输入端分别用符号“-”和“+”标明。

仪表放大器的设计说明

目录 一、绪言 (7) 二、电路设计 (8) 设计要求 (8) 设计方案 (8) 1、电路原理 (8) 2、主要器件选择 (9) 3、电路仿真 (10) 三、电路焊接 (13) 四、电路调试 (14) 1、仪表放大电路的调试 (14) 2、误差分析 (15) 五、心得体会 (18) 六、参考文献 (19)

绪言 智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态围越宽越好。仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号围。本文从仪表放大器电路的结构、原理出发,设计出仪表放大器电路实现方案,通过分析,为以后进行电子电路实验提供一定的参考。 在同组成员帅威、智越的共同努力下,大家集思广益,深入探讨了实验过程中可能出现的各种问题,然后分工负责个部分的工作,我和帅威负责前期的电路设计和器件的采购,后期的焊接由智越完成,最后的调试由我们三个人共同完成。本报告在做实验以及其他同学提出的富有建设性意见的基础上由我编写,报告中难免会有不足或疏漏之处,还望大家指正为谢!

第一章电路设计 一、设计要求 1、电路放大倍数>3000倍 2、输入电阻>3000kΩ 3、输出电阻<300Ω 二、设计方案 1、电路原理 仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,RF和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。由公式可见,电路增益的调节可以通过改变Rg阻值实现。

组合仪表选型设计规范

组合仪表选型设计规范 一、概述 彩屏总线仪表是基于J1939通信协议的新一代智能总线仪表,配备驱动模块可以构成全车CAN总线系统,实现全车电气负载的智能控制与诊断功能。该仪表可直接和发动机通讯,通过CAN总线读取发动机的相关信息(如燃油消耗、水温、转速机油压力等),满足欧Ⅲ和欧Ⅳ标准;同时可取消机油压力传感器、水温传感器、转速传感器;可采集指示灯开光信号,通过LCD或者LED显示各类状态信息,如:远光、雾灯、制动、转向、开关门和变速箱等状态指示灯;可采集传感器信号,如车速、油量、气压等;不同发动机和底盘可通过上位机进行配置。该型号HNS-ZB209A主要用于传统车型。 二、功能和规格参数 1.高性能双核处理器,功能强大,实时性好,抗干扰能力强; 2.集成了彩色7寸模拟TFT显示屏,显示内容丰富,可实现视频监 控和数字终端功能; 3.具备声光报警功能,及时准确指示故障所在; 4.有2个标准CAN通讯接口,集成网关功能,一个连接车身模块系 统;另一个直接与发动机ECU模块、变速箱、ABS等通讯,直接读取J1939总线上的状态信息和传感器信息等; 5.有39路开关输入: ◆1路带120mA驱动电流的D+专用开关输入; ◆2路带50mA驱动电流只能接低有效的开关输入,一般用来做

ABS开关输入; ◆2路带10mA驱动电流只能接低有效的开关输入; ◆2路带10mA驱动电流只能接高有效的开关输入; ◆3路不带驱动电流只能接高有效的开关输入; ◆29路带弱驱动电流可接高也可以接低的开关输入,且均可做为 高低有效配置,均带有唤醒功能。 6. 2路3A高端功率输出,可做开短路检测及故障诊断。 7. 有20路状态显示指示灯;6个步进电机驱动的仪表盘; 8. 2路PWM脉冲输入电路,一路带上拉电阻,另外一路带下拉电阻; 9. 一个稳定的12V/300mA电源输出,作为车速传感器电源; 10. 2路PWM脉冲输出电路,其中一路脉冲输出电压为(0~12)V,另一路输出电压为(0~24)V; 11. 5路传感器输入,传感器的阻值为(0-500)欧姆; 12. 面板有6个按键,分别可做故障查询、参数设置、蜂鸣器取消功能,1个蜂鸣器声音报警提示; 13. 1个分辨率为800×480的7寸TFT屏,可显示全车的各类状态信息,具有报警指示功能; 14. 4路CVBS视频信号输入,可接中门监控、倒车监控和行李舱监控等。 15. 不同车型的软件可通过CAN总线在PC机上更新或者配置(传感器采集方式、车速转速比、里程参数),满足不同的需要;

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

运放关键参数及选型原则

运放参数解释及常用运放选型 集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下:

输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

仪表选型原则

检测仪表(元件)及控制阀选型的一般原则 ①工艺过程的条件 工艺过程的温度、压力、流量、粘度、腐蚀性、毒性、脉动等因素是决定仪表选型的主要条件,它关系到仪表选用的合理性、仪表的使用寿命及车间的防火、防爆、保安等问题。 ②操作上的重要性 各检测点的参数在操作上的重要性是仪表的指示、记录、积算、报警、控制、遥控等功能选定依据。一般来说,对工艺过程影响不大,但需经常监视的变量,可选指示型;对需要经常了解变化趋势的重要变量,应选记录式;而一些对工艺过程影响较大的,又需随时监控的变量,应设控制;对关系到物料衡算和动力消耗而要求计量或经济核算的变量,宜设积算;一些可能影响生产或安全的变量,宜设报警。 ③经济性和统一性 仪表的选型也决定于投资的规模,应在满足工艺和自控的要求前提下,进行必要的经济核算,取得适宜的性能/价格比。 为便于仪表的维修和管理,在选型时也要注意到仪表的统一性。尽量选用同一系列、同一规格型号及同一生产厂家的产品。 ④仪表的使用和供应情况 选用的仪表应是较为成熟的产品,经现场使用证明性能可靠的;同时要注意到选用的仪表应当是货源供应充沛,不会影响工程的施工进度。

仪表选性手册 物位仪表在选型时,与压力、流量等仪表有很大不同。物位测量的现场工况千差万别,很难设计出能满足所有工况应用的物位仪表。 在非接触式物位测量仪表中,超声波物位计和雷达物位计是两大主流仪表。这两类仪表各有特点,只有充分了解仪表特点及应用条件,才能做到选型合理,充分利用仪表的测量性能。 超声波物位计 传感器发出的超声波碰到被测介质被反射,反射回波的质量反映了物位计应用效果。回波质量定义为最小回波幅度(在最恶劣条件下回波幅度)比最大噪声幅度(虚假回波、多径反射回波等的幅度)。回波质量数值越大,物位计应用效果越好。 超声波物位计工作频率及测量性能:传感器高频(40-70KHz)工作时,传感器的尺寸小,盲区小,方向性好,精度高,但其声波衰减快,传播介质(空气)波动时穿透性差,测距较小。传感器低频(10-20KHz)工作时,传感器尺寸大,盲区大,方向性不好,精度低,其优势是声波衰减慢,传播介质(空气)波动时穿透性较好,测距 稍远。 超声波的回波强度主要受以下两个因素影响: 1.传播介质越稳定越有利于传播。

如何选择运放

如何选择运放? 您坐下来为您的电路选择合适的运算放大器(op amp) 时,首先要做的便是确定系统通过该放大器进行传输的信号带宽。一旦您确定下来这一点,您便可以开始寻找正确的放大器。来自高速设计专家的告诫是:您应该避免使用相对您的应用而言速度过快的模拟器件。因此,您要尽量选择一种闭环带宽稍高于信号最大频率的放大器。 它听起来好像是一种较好的产品选择方案,但是这种设计方法将可能会给您的应用板带来灾难性的后果。在实验室中,您可能会发现当您将应用最大频率的输入正弦波信号置入系统时,您放大器的输出信号并未穿过希望的全刻度模拟范围。信号增益远低于预期。您放大器的转换速率(slew rate ——SR)等级超出所需。另外,您并没有驱动放大器输出至电源轨中。哪里出错了呢? 不要再反复检查您的电阻值了!在增益单元中设计某个放大器时,为这项工作选择备选放大器时您需要了解一些事情。例如,您的信号最大带宽(SBW) 是多少?放大器闭环噪声增益(NG)是多少,以及考虑中的放大器的增益带宽产品(GBWP,我认为应该是增益带宽积GBW更合适) 是什么?另外,您想要容许多少增益误差?闭环噪声增益就是放大器增益,就像一个小电压源与运算放大器同相输入串联。 让我们通过例子来说明这个问题。例如,以1 MHz信号带宽(SBW) 开始,图1 所示放大器电路噪声增益(NG = 1 + 9R/R)为10V/V。图1还显示了具有相对于该电路刚好足够带宽的放大器的开

环频率响应;或者您认为合适的开环频率响应。放大器GBWP 为16 MHz。 由图1 所示可知,像它这样的运算放大器可以支持1 MHz 频率10 V/V (20 dB) 的增益,但我们需要进一步研究。SBW 开环增益曲线的增益为: 在我们的例子中,1 MHz频率下放大器的开环增益(AVOL-SBW) 等于16 V/V。但是,没什么好抱怨的。该电路的闭环增益误差等于NG/(AOL-SBW + NG)。在我们的例子中,1 MHz 闭环增益误差等于0.385,即38.5% 的增益误差! 就该电路而言,如果您想要容许放大器0.05 的增益误差,同时您知道因产品和温度的不同,放大器的GBWP 会改变30% 最大值,则您需要一个具有247 MHz GBWP 的放大器。产品选择部分的指导公式如下:

ADI《仪表放大器应用工程师指南》中文版

下面是我上月25号整理的,当时偶然发现我就趋值班的时间整理了一下,现在整理一下供大家点评。下面有下划线的地方是我修改过的(方括号[]内是原译和本人观点),我觉得这样比较通顺一点,正文中的黑体处属于准确性明显不足的地方。今天还发现了一个明显是错误的地方,呆会帖出来,大家看看是不是? 信号放大与 CMR [原译:仪表放大器是一种放大两输入信号电压之差而抑制对两输入端共模的任何信号的器件。----观点:原文说得好好的,但译出了一种洋味,特别是那个“对”字,纯属多余又影响理解。|| 原文:An instrumentation amplifier is a device that amplifies the dif ference between two input signal voltages while rejecting any signals that are common to both inputs. 抑制这两个输入端共模信号的器件,因此,仪表放大器在从传感器和其它信号源提取微弱信号时提供非常重要的功能。 共模抑制(CMR)是指抵消任何共模信号([原译:两输入端电位相同----观点:两个输入端的电位|| 原文:the same potential on both inputs])同时放大差模信号(两输入端的电位差)的特性,这是仪表放大器所提供的最重要的功能(阅读附注:也可以说是表现最突出、最有吸引力的功能/性能)。[原译:DC 和交流(AC)CMR 两者都是仪表放大器的重要技术指标----观点:意思没错,就是有点“涩”,翻译时加上CMR的中文意思更多方便更语言化一点,但那个“两者”是没有必要加进去了。|| 原文:Both dc and ac common-mode rejection are important in-amp specifications.]直流和交流的共模抑制CMR都是它的重要技术指标。[原译:使用现代任何质量合格的仪表放大器都能将由于DC 共模电压(即,出现在两输入端的DC 电压)产生的任何误差减小到80 dB 至120 dB。----观点:理由同上句,但读者要注意原文并没有说交流共模抑制也能达到8 0~120dB。|| 原文:Any errors due to dc common-mode voltage (i.e., dc v oltage present at both inputs) will be reduced 80 dB to 120 dB by any mo dern in-amp of decent quality 共模电压(即出现在两输入端的直流电压)产生的任何误差减小到80~120dB。 然而,[原译:如果AC CMR 不够大会产生一种很大的时变误差。因为它通常随着频率产生很大变化,所以要在仪表放大器的输出端消除它是困难的。幸好大多数现代单片集成电

Dynisco TPT463E选型手册

Electrical Characteristics Configuration:Four active arm bonded Wheatstone bridge strain gage Excitation:10 Vdc recommended, 12 Vdc maximum Bridge resistance:Input:345 ohms minimum; Output:350 ohms ±10%Internal shunt calibration (R Cal):80% FSO ±1.0%Full scale output:3.33 mV/V ±2%Insulation resistance:1,000 megohms at 50 Vdc Zero balance:±10% full scale Features Benefits ?Better than ±0.5% accuracy ?Reliable pressure measurement ? 3.33 mV/V FSO ?Standard low level output ?Internal 80% shunt calibration ?Easy set - up ?All stainless steel wetted parts ?Corrosion resistant ?0 - 500 to 0 - 30,000 psi ?Choice of pressure ranges ?Good stability and repeatability ?Reliable measurement ?Flexible stem ?Easy to install, ideal for high local temperature ? Integral thermocouple ? Simultaneously measure pressure/temperature in one location ?Removable Type J thermocouple ?On - line repair/replacement ?RTD and optional thermocouples available ?Temperature measurement alternatives Temperature Characteristics Transducer diaphragm: Electronics housing: Maximum diaphragm temperature:750°F (400°C) Maximum temperature:250°F(121°C) Zero shift due to temperature change:25 psi/100°F maximum (45 psi/100°C) Zero shift due to temperature change:±0.05% full scale/°F maximum (±0.10% full scale/°C) Sensitivity shift due to temperature change:±0.02% full scale/°F maximum (±0.04% full scale/°C) Performance Characteristics Ranges (psi):0 - 500, 0 - 750, 0 - 1,000, 0 - 1,500, 0 - 3,000, 0 - 5,000, Maximum pressure:2 x full range or 35,000 psi (whichever is less) 0 - 7,500, 0 - 10,000, 0 - 15,000, 0 - 20,000, 0 - 30,000Material in contact with pressure media:15 - 5 PH stainless steel, Armoloy coated Accuracy:±0.5% FSO Weight: 2.5 lbs. Repeatability:±0.2% FSO Thermocouple:Type J Mounting torque:500 inch - lbs. maximum DYNISCO MODEL TPT463E The Classic Flexible Stem Melt Pressure Transducer with Thermocouple Description Model TPT463E combines a removable Type J thermocouple with the classic PT462E pressure sensor to allow the user to make pressure and temperature measurements at a single point. It has a flexible stem for ease of mounting. Specifications

运放分类及选型

运放分类及选型 对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。 对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小) 运算放大器大体上可以分为如下几类: 1、 通用型运放 2、 高阻型运放 3、 低温漂型运放 4、 高速型运放 5、 低功耗型运放 6、 高压大功率型运放 1、 通用型运放 其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A μ,LM358(双运放),LM324及场效应管为输入级的LF356. 2、 高阻型运放 这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。 这类运放有LF356、LF355、LF347、CA3130、CA3140等 3、 低温漂型运放 在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。底温漂型运放就是为此设计的。 目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。 4、 高速型运放 在快速A/D 及D/A 以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大。高速型运放的主要特点是具有高的转换速率和宽的频率响应。 常见的运放有LM318、175A μ等。其SR=50~70V/ms 5、 低功耗型运放 由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。 常用的低功耗运放有TL-022C ,TL-160C 等。 6、 高压大功率型运放 运放的输出电压主要受供电电源的限制。在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。 高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。D41运放的电源电压可达V 150±,791A μ运放的输出电流可达1A 。 Not e1:精密运放是指漂移和噪声非常低、增益和共模抑制比非常高的运放。这类运放的温度漂移一般低于C V ? /1μ Note 2:高输入阻抗运放是指采用结型场效应管或MOS 管做的输入级集成运放。它的一个附带特性是转换速度比较高。高输入阻抗运放应用十分广泛,如采样-保持电路、积分器、对数放大器、测量放大器、带通滤波器等。

(完整版)TI常用运放芯片型号

CA3130 高输入阻抗运算放大器Intersil[DA TA] CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器MC14573 ICL7650 斩波稳零放大器 LF347(NS[DATA])带宽四运算放大器KA347 LF351 BI-FET单运算放大器NS[DA TA] LF353 BI-FET双运算放大器NS[DA TA] LF356 BI-FET单运算放大器NS[DA TA] LF357 BI-FET单运算放大器NS[DA TA] LF398 采样保持放大器NS[DATA] LF411 BI-FET单运算放大器NS[DATA] LF412 BI-FET双运放大器NS[DA TA] LM124 低功耗四运算放大器( 军用档 ) NS[DATA]/TI[DATA] LM1458 双运算放大器NS[DATA] LM148 四运算放大器NS[DATA] LM224J 低功耗四运算放大器(工业档 ) NS[DATA]/TI[DA TA] LM2902 四运算放大器NS[DATA]/TI[DATA] LM2904 双运放大器NS[DATA]/TI[DA TA] LM301 运算放大器 NS[DATA] LM308 运算放大器 NS[DATA] LM308H运算放大器(金属封装)NS[DATA] LM318 高速运算放大器NS[DATA] LM324(NS[DATA]) 四运算放大器HA17324,/LM324N(TI) LM348 四运算放大器NS[DATA] LM358 NS[DATA]通用型双运算放大器HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA] LM386-1 NS[DATA]音频放大器NJM386D,UTC386 LM386-3 音频放大器NS[DATA] LM386-4 音频放大器NS[DATA] LM3886 音频大功率放大器NS[DATA] LM3900 四运算放大器 LM725 高精度运算放大器NS[DATA] LM733 带宽运算放大器 LM741 NS[DATA]通用型运算放大器HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器TI[DATA] NE5534 高速低噪声单运算放大器TI[DATA] NE592 视频放大器 OP07-CP 精密运算放大器TI[DA TA] OP07-DP 精密运算放大器TI[DATA] TBA820M小功率音频放大器ST[DATA] TL061 BI-FET单运算放大器 TI[DATA] TL062 BI-FET双运算放大器TI[DATA] TL064 BI-FET四运算放大器TI[DATA]

运放参数说明(加选型和例子)

1、输入失调电压(Input Offset Voltage) V OS 若将运放的两个输入端接地,理想运放输出为零,但实际运放输出不为零。此时,用输出电压除以增益得到的等效输入电压称为输入失调电压。 其值为数mV,该值越小越好,较大时增益受到限制。 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在 1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 本文来自: https://www.360docs.net/doc/3f14021633.html, 原文网址: https://www.360docs.net/doc/3f14021633.html,/info/analog/3366_2.html 2、输入失调电压的温漂(Input Offset Voltage Drift),又叫温度系数 TC V OS 一般为数uV/.C 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 本文来自: https://www.360docs.net/doc/3f14021633.html, 原文网址: https://www.360docs.net/doc/3f14021633.html,/info/analog/3366_2.html 3、输入偏置电流(Input Bias Current) I BIAS 运放两输入端流进或流出直流电流的平均值。 对于双极型运放,该值离散性较大,但却几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

运放选型指南

小信号放大器选型指南 小信号放大器选型的几项重要指标 ⑴、电源电压:根据实际需求选择具有合适的工作电压的放大器。 ⑵、放大器精度:放大器的精度主要与输入偏置电压(osV)相关,并分别随温度漂移,电源抑制比(PSRR)以及共模抑制比(CMRR)变化。精密型一般是指具有低输入偏执电压及低输入偏置电压温度漂移的运算放大器。放大小信号需要采用高精密度的运算放大器。⑶、增益带宽积(GWB):电压反馈型运算放大器的增益带宽积决定了其在某项应用中的有效带宽。将增益带宽积除以应用中的实际闭环增益,便可大致估算出实际可用带宽。增益带宽积是恒定的常数。选择大带宽/转换速率(slew rate)的运算放大器,能够实现更低的失真,更卓越的线性度、更佳的增益准确度。 4、电压噪声:放大器产生的噪声将会限制系统的最大动态范围、准确度和分辨率。地电压噪声能够改善精确度。 5、输出偏置电流:当与源阻抗或反馈阻抗相互作用将产生偏置误差。具有高源阻抗或高反馈阻抗的应用,通常需要有较低的输入偏置电流。场效应(FET)输入及COMS运算放大器一般都能够提供很低的输入偏置电流。 6、转换速率:放大器的最大变化速率。当驱动大信号至高频时,转换速率是一个很重要的参数。一个运算放大器的最大可用带宽取决于其转换速率。 二、运算放大器选择需要注意的问题 1、输入信号的幅度大小 为确保因输入信号而产生的错误最小化,微小输入信号需要高精度(例如低偏执电压)的放大器,以确保放大信号输出的电压范围涵盖了所需的放大输出的信号范围 2、放大器周围环境的变化 运算放大器对于温度的变化极为敏感,因此,考虑偏置电压随温度偏移很重要 3、共模电压一般需要确保运算放大器工作在其共模电压范围内,并保证足够的共模抑制比(CMRR)。共模电压会导致额外的偏置电压。 4、电源电压是否会改变 电源电压的改变会影响到偏置电压,这对使用电池供电的放大器尤为重要。 三、集成运放的主要技术指标 集成运放的输入级通常由差分放大电路组成,因此一般具有两个输入端以及一个输出端,还有其他以连接电源电压等的引出端。两个输入端中,一个与输出端为反相关系,另一个为同相关系,分别称为反相输入端和同相输入端。 运算放大器的符号如下图所示。其中反相输入端和同相输入端分别用符号“-”和“+”标明 为了描述集成运放的性能,提出了许多项技术指标,现将常用的几项分别介绍如下: 一、开环差模电压增益Aod Aod是指运放在无外加反馈情况下的直流差模增益,一般用对数表示,单位为分贝。Aod是决定运放精度的重要因素,理想情况下希望Aod为无穷大。实际集成运放一般Aod为100dB 左右,高质量的集成运Aod可达140dB以上。 二、输入失调电压U10 它的定义是,为了使输出电压为零,在输入端所需要加的补偿电压。其数值表征了输入级差分对管UBE(或场效应管UGS)失配的程度,在一定程度上了反映温漂的大小。一般运放的U10值为1~10mV,高质量的在1mV以下。 三、输入失调电压温漂ΑU10

运放关键参数及选型原则

集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下: 输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 偏置电流值也限制了输入电阻和反馈电阻数值不可以过大, 使其在电阻上的压降与运算电压可比而影响了运算精度。或者不能提供足够的偏置电流, 使放大器不能稳定的工作在线性范围。如果设计要求一定要用大数值的反馈电阻和输入电阻, 可以考虑用 J-FET 输入的运放。同样是电压控制的还有 MOSFET 器件, 可以提供更小的输入漏电流。

如何选择仪表放大器_仪表放大器的选择分析

如何选择仪表放大器_仪表放大器的选择分析 什么是仪表放大器这是一个特殊的差动放大器,具有超高输入阻抗,极其良好的CMRR,低输入偏移,低输出阻抗,能放大那些在共模电压下的信号。 随着电子技术的飞速发展,运算放大电路也得到广泛的应用。仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益组件,具有差分输入和相对参考端的单端输出。与运算放大器不同之处是运算放大器的闭环增益是由反相输入端与输出端之间连接的外部电阻决定,而仪表放大器则使用与输入端隔离的内部反馈电阻网络。仪表放大器的 2 个差分输入端施加输入信号,其增益即可由内部预置,也可由用户通过引脚内部设置或者通过与输入信号隔离的外部增益电阻预置。 仪表放大器构成原理仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR 要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)Rf/R3。由公式可见,电路增益的调节可以通过改变Rg阻值实现。 仪表放大器特点●高共模抑制比 共模抑制比(CMRR)则是差模增益(A d)与共模增益(Ac)之比,即:CMRR = 20lg

运放的应用实例和设计指南

1.1运放的典型设计和应用 1.1.1运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

二阶有源低通滤波电路的画法和截止频率 2) 运放在电压比较器中的应用 R785K1 ACH_BF1 FREN1 U85PS2801-1 12 43 R273 1K R274 1K C213 22nF FREN1 R292200K -+ U87B LM393DR2G 567 R2751K 图 电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计 如图所示,恒流原理分析过程如下: U5B (上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A (上图中上边的运放)有: V5 V3=;

相关文档
最新文档