常用运放选型表

常用运放选型表
常用运放选型表

器件名称制造商简介

μA741 TI 单路通用运放

μA747 TI 双路通用运放

AD515A ADI 低功耗FET输入运放

AD605 ADI 低噪声,单电源,可变增益双运放

AD644 ADI 高速,注入BiFET双运放

AD648 ADI 精密的,低功耗BiFET双运放

AD704 ADI 输入微微安培电流双极性四运放AD705 ADI 输入微微安培电流双极性运放

AD706 ADI 输入微微安培电流双极性双运放AD707 ADI 超低漂移运放

AD708 ADI 超低偏移电压双运放

AD711 ADI 精密,低成本,高速BiFET运放

AD712 ADI 精密,低成本,高速BiFET双运放

AD713 ADI 精密,低成本,高速BiFET四运放

AD741 ADI 低成本,高精度IC运放

AD743 ADI 超低噪音BiFET运放

AD744 ADI 高精度,高速BiFET运放

AD745 ADI 超低噪音,高速BiFET运放

AD746 ADI 超低噪音,高速BiFET双运放

AD795 ADI 低功耗,低噪音,精密的FET运放AD797 ADI 超低失真,超低噪音运放

AD8022 ADI 高速低噪,电压反馈双运放

AD8047 ADI 通用电压反馈运放

AD8048 ADI 通用电压反馈运放

AD810 ADI 带禁用的低功耗视频运放

AD811 ADI 高性能视频运放

AD812 ADI 低功耗电流反馈双运放

AD813 ADI 单电源,低功耗视频三运放

AD818 ADI 低成本,低功耗视频运放

AD820 ADI 单电源,FET输入,满幅度低功耗运放AD822 ADI 单电源,FET输入,满幅度低功耗运放AD823 ADI 16MHz,满幅度,FET输入双运放

AD824 ADI 单电源,满幅度低功耗,FET输入运放AD826 ADI 高速,低功耗双运放

AD827 ADI 高速,低功耗双运放

AD828 ADI 低功耗,视频双运放

AD829 ADI 高速,低噪声视频运放

AD830 ADI 高速,视频差分运放

AD840 ADI 宽带快速运放

AD841 ADI 宽带,固定单位增益,快速运放

AD842 ADI 宽带,高输出电流,快速运放

AD843 ADI 34MHz,CBFET快速运放

AD844 ADI 60MHz,2000V/μs单片运放

AD845 ADI 精密的16MHzCBFET运放

AD846 ADI 精密的450V/μs电流反馈运放

AD847 ADI 高速,低功耗单片运放

AD848 ADI 高速,低功耗单片运放

AD849 ADI 高速,低功耗单片运放

AD8519 ADI 满幅度运放

AD8529 ADI 满幅度运放

AD8551 ADI 低漂移,单电源,满幅度输入输出运放AD8552 ADI 低漂移,单电源,满幅度输入输出双运放AD8554 ADI 低漂移,单电源,满幅度输入输出四运放AD8571 ADI 零漂移,单电源,满幅度输入/输出单运放AD8572 ADI 零漂移,单电源,满幅度输入/输出双运放AD8574 ADI 零漂移,单电源,满幅度输入/输出四运放AD8591 ADI 带关断的单电源满幅度输入输出运放AD8592 ADI 带关断的单电源满幅度输入输出运放AD8594 ADI 带关断的单电源满幅度输入输出运放AD8601 ADI 低偏移,单电源,满幅度输入/输出单运放AD8602 ADI 低偏移,单电源,满幅度输入/输出双运放AD8604 ADI 低偏移,单电源,满幅度输入/输出四运放AD9610 ADI 宽带运放

AD9617 ADI 低失真,精密宽带运放

AD9618 ADI 低失真,精密宽带运放

AD9631 ADI 超低失真,宽带电压反馈运放

AD9632 ADI 超低失真,宽带电压反馈运放

C54DSKplus TI 低噪高速去补偿双路运放

L165 ST 3A功率运放

L272 ST 双通道功率运放

L2720 ST 低压差双通道功率运放

L2722 ST 低压差双通道功率运放

L2724 ST 低压差双通道功率运放

L2726 ST 低压差双通道功率运放

L2750 ST 低压差双通道功率运放

LF147 ST 宽带四J-FET运放

LF151 ST 宽带单J-FET运放

LF153 ST 宽带双J-FET运放

LF155 ST 宽带J-FET单运放

LF156 ST 宽带J-FET单运放

LF157 ST 宽带J-FET单运放

LF247 ST 宽带四J-FET运放

LF251 ST 宽带单J-FET运放

LF253 ST 宽带双J-FET运放

LF255 ST 宽带J-FET单运放

LF256 ST 宽带J-FET单运放

LF257 ST 宽带J-FET单运放

LF355 ST 宽带J-FET单运放

LF356 ST 宽带J-FET单运放

LF357 ST 宽带J-FET单运放

LM101A TI 高性能运放

LM124A(ST) ST 低功耗四运放

LM146 ST 可编程四双极型运放

LM158/A ST 低功耗双运放

LM224A(st) ST 低功耗四运放

LM246 ST 可编程四双极型运放

LM258/A ST 低功耗双运放

LM324A ST 低功耗四运放

LM346 ST 可编程四双极型运放

LM358/A ST 低功耗双运放

LMV321 TI 低电压单运放

LMV324 TI 低电压四运放

LMV358 TI 低电压双运放

LS204 ST 高性能双运放

LS404 ST 高性能四运放

LT1013 TI 双通道精密型运放

LT1014 TI 四通道精密型运放

MC1558 TI 双路通用运放

MC33001 ST 通用单JFET运放

MC33002 ST 通用双JFET运放

MC33004 ST 通用四JFET运放

MC3303 TI 四路低功率运放

MC33078 ST 低噪双运放

MC33079 ST 低噪声四运放

MC33171 ST 低功耗双极型单运放

MC33172 ST 低功耗双极型双运放

MC33174 ST 低功耗双极型四运放

MC34001 ST 通用单JFET运放

MC34002 ST 通用双JFET运放

MC34004 ST 通用四JFET运放

MC3403 TI 四路低功率通用运放

MC35001 ST 通用单JFET运放

MC35002 ST 通用双JFET运放

MC35004 ST 通用四JFET运放

MC3503 ST 低功耗双极型四运放

MC35171 ST 低功耗双极型单运放

MC35172 ST 低功耗双极型双运放

MC35174 ST 低功耗双极型四运放

MC4558 ST 宽带双极型双运放

MCP601 Microchip 2.7V~5.5V单电源单运放MCP602 Microchip 2.7V~5.5V单电源双运放

MCP603 Microchip 2.7V~5.5V单电源单运放MCP604 Microchip 2.7V~5.5V单电源四运放NE5532 TI 双路低噪高速音频运放

NE5534 TI 低噪高速音频运放

OP-04 ADI 高性能双运放

OP-08 ADI 低输入电流运放

OP-09 ADI 741型运放

OP-11 ADI 741型运放

OP-12 ADI 精密的低输入电流运放

OP-14 ADI 高性能双运放

OP-15 ADI 精密的JFET运放

OP-16 ADI 精密的JFET运放

OP-17 ADI 精密的JFET运放

OP-207 ADI 超低V os双运放

OP-215 ADI 高精度双运放

OP-22 ADI 可编程低功耗运放

OP-220 ADI 低功耗双运放

OP-221 ADI 低功耗双运放

OP-227 ADI 低噪低偏移双测量运放

OP-260 ADI 高速,电流反馈双运放

OP-27 ADI 低噪声精密运放

OP-270 ADI 低噪音精密双运放

OP-271 ADI 高速双运放

op-32 ADI 高速可编程微功耗运放

op-37 ADI 低噪声,精密高速运放

op-400 ADI 低偏置,低功耗四运放

op-42 ADI 高速,精密运放

op-420 ADI 微功耗四运放

op-421 ADI 低功耗四运放

op-471 ADI 低噪声,高速四运放

OP07 ADI 超低偏移电压运放

OP07C TI 高精度,低失调,电压型运放

OP07D TI 高精度,低失调,电压型运放

OP07Y TI 高精度,低失调,电压型运放

OP113 ADI 低噪声,低漂移,单电源运放OP162 ADI 15MHz满幅度运放

OP176 ADI 音频运放

OP177 ADI 超高精度运放

OP181 ADI 超低功耗,满幅度输出运放

OP183 ADI 5MHz单电源运放

OP184 ADI 精密满幅度输入输出运放

OP186 ADI 满幅度运放

op191 ADI 微功耗单电源满幅度运放

OP193 ADI 精密的微功率运放

OP196 ADI 微功耗,满幅度输入输出运放OP200 ADI 超低偏移,低功耗运放

OP213 ADI 低噪声,低漂移,单电源运放OP249 ADI 高速双运放

OP250 ADI 单电源满幅度输入输出双运放OP262 ADI 15MHz满幅度运放

OP27 TI 低噪声精密高速运放

op275 ADI 音频双运放

OP279 ADI 满幅度高输出电流运放

OP281 ADI 超低功耗,满幅度输出运放

op282 ADI 低功耗,高速双运放

OP283 ADI 5MHz单电源运放

OP284 ADI 精密满幅度输入输出运放

op285 ADI 9MHz精密双运放

op290 ADI 精密的微功耗双运放

op291 ADI 微功耗单电源满幅度运放

op292 ADI 双运放

OP293 ADI 精密的微功率双运放

op295 ADI 满幅度双运放

OP296 ADI 微功耗,满幅度输入输出双运放op297 ADI 低偏置电流精密双运放

OP37 TI 低噪声精密高速运放

OP413 ADI 低噪声,低漂移,单电源运放OP450 ADI 单电源满幅度输入输出四运放OP462 ADI 15MHz满幅度运放

op467 ADI 高速四运放

op470 ADI 低噪声四运放

OP481 ADI 超低功耗,满幅度输出运放

op482 ADI 低功耗,高速四运放

OP484 ADI 精密满幅度输入输出运放

op490 ADI 低电压微功率四运放

op491 ADI 微功耗单电源满幅度运放

op492 ADI 四运放

OP493 ADI 精密的微功率四运放

op495 ADI 满幅度四运放

OP496 ADI 微功耗,满幅度输入输出四运放op497 ADI 微微安培输入电流四运放

op77 ADI 超低偏移电压运放

op80 ADI 超低偏置电流运放

OP90 ADI 精密的微功耗运放

op97 ADI 低功耗,高精度运放

PM1012 ADI 低功耗精密运放

PM155A ADI 单片JFET输入运放

PM156A ADI 单片JFET输入运放

PM157A ADI 单片JFET输入运放

RC4136 TI 四路通用运放

RC4558 TI 双路通用运放

RC4559 TI 双路高性能运放

RM4136 TI 通用型四运放

RV4136 TI 通用型四运放

SE5534 TI 低噪运放

SSM2135 ADI 单电源视频双运放

SSM2164 ADI 低成本,电压控制四运放

TDA9203A ST IIC总线控制RGB前置运放

TDA9206 ST IIC总线控制宽带音频前置运放

TEB1033 ST 精密双运放

TEC1033 ST 精密双运放

TEF1033 ST 精密双运放

THS4001 TI 超高速低功耗运放

TL022 TI 双组低功率通用型运放

TL031 TI 增强型JFET低功率精密运放

TL032 TI 双组增强型JFET输入,低功耗,高精度运放TL034 TI 四组增强型JFET输入,低功耗,高精度运放TL051 TI 增强型JFET输入,高精度运放

TL052 TI 双组增强型JFET输入,高精度运放

TL054 TI 四组增强型JFET输入,高精度运放

TL061 TI 低功耗JFET输入运放

TL061A ST 低功耗JFET单运放

TL061B ST 低功耗JFET单运放

TL062 TI 双路低功耗JFET输入运放

TL062A/B ST 低功耗JFET双运放

TL064 TI 四路低功耗JFET输入运放

TL064A/B ST 低功耗JFET四运放

TL070 TI 低噪JFET输入运放

TL071 TI 低噪声JFET输入运放

TL071A/B ST 低噪声JFET单运放

TL072 ST 低噪声JFET双运放

TL072A TI 双组低噪声JFET输入运放

TL072A/B ST 低噪声JFET双运放

TL074 TI 四组低噪声JFET输入运放

TL074A/B ST 低噪声JFET四运放

TL081 TI JFET输入运放

TL081A/B ST 通用JFET单运放

TL082 TI 双组JFET输入运放

TL082A/B ST 通用JFET双运放

TL084 TI 四组JFET输入运放

TL084A/B ST 通用JFET四运放

TL087 TI JFET输入单运放

TL088 TI JFET输入单运放

TL287 TI JFET输入双运放

TL288 TI JFET输入双运放

TL322 TI 双组低功率运放

TL33071 TI 单路,高转换速率,单电源运放

TL33072 TI 双路,高转换速率,单电源运放

TL33074 TI 四路,高转换速率,单电源运放

TL34071 TI 单路,高转换速率,单电源运放

TL34072 TI 双路,高转换速率,单电源运放

TL34074 TI 四路,高转换速率,单电源运放

TL343 TI 低功耗单运放

TL3472 TI 高转换速率,单电源双运放

TL35071 TI 单路,高转换速率,单电源运放

TL35072 TI 双路,高转换速率,单电源运放

TL35074 TI 四路,高转换速率,单电源运放TLC070 TI 宽带,高输出驱动能力,单电源单运放TLC071 TI 宽带,高输出驱动能力,单电源单运放TLC072 TI 宽带,高输出驱动能力,单电源双运放TLC073 TI 宽带,高输出驱动能力,单电源双运放TLC074 TI 宽带,高输出驱动能力,单电源四运放TLC075 TI 宽带,高输出驱动能力,单电源四运放TLC080 TI 宽带,高输出驱动能力,单电源单运放TLC081 TI 宽带,高输出驱动能力,单电源单运放TLC082 TI 宽带,高输出驱动能力,单电源双运放TLC083 TI 宽带,高输出驱动能力,单电源双运放TLC084 TI 宽带,高输出驱动能力,单电源四运放TLC085 TI 宽带,高输出驱动能力,单电源四运放TLC1078 TI 双组微功率高精度低压运放

TLC1079 TI 四组微功率高精度低压运放

tlc2201 TI 低噪声,满电源幅度,精密型运放TLC2202 TI 双组,低噪声,高精度满量程运放TLC2252 TI 双路,满电源幅度,微功耗运放TLC2254 TI 四路,满电源幅度,微功耗运放TLC2262 TI 双路先进的CMOS,满电源幅度运放TLC2264 TI 四路先进的CMOS,满电源幅度运放TLC2272 TI 双路,低噪声,满电源幅度运放TLC2274 TI 四路,低噪声,满电源幅度运放TLC2322 TI 低压低功耗运放

TLC2324 TI 低压低功耗运放

TLC251 TI 可编程低功率运放

TLC252 TI 双组,低电压运放

TLC254 TI 四组,低电压运放

TLC25L2 TI 双组,微功率低压运放

TLC25L4 TI 四组,微功率低压运放

TLC25M2 TI 双组,低功率低压运放

TLC25M4 TI 四组,低功率低压运放

TLC2652 TI 先进的LINCMOS精密斩波稳定运放

TLC2654 TI 先进的LINCMOS低噪声斩波稳定运放TLC271 TI 低噪声运放

TLC272 TI 双路单电源运放

TLC274 TI 四路单电源运放

TLC277 TI 双组精密单电源运放

TLC279 TI 双组精密单电源运放

TLC27L2 TI 双组,单电源微功率精密运放

TLC27L4 TI 四组,单电源微功率精密运放

TLC27L7 TI 双组,单电源微功率精密运放

TLC27L9 TI 四组,单电源微功率精密运放

TLC27M2 TI 双组,单电源低功率精密运放

TLC27M4 TI 四组,单电源低功率精密运放

TLC27M7 TI 双组,单电源低功率精密运放

TLC27M9 TI 四组,单电源低功率精密运放

TLC2801 TI 先进的LinCMOS低噪声精密运放

TLC2810Z TI 双路低噪声,单电源运放

TLC2872 TI 双组,低噪声,高温运放

TLC4501 TI 先进LINEPIC,自校准精密运放

TLC4502 TI 先进LINEPIC,双组自校准精密运放

TLE2021 TI 单路,高速,精密型,低功耗,单电源运放TLE2022 TI 双路精密型,低功耗,单电源运放

TLE2024 TI 四路精密型,低功耗,单电源运放

TLE2027 TI 增强型低噪声高速精密运放

TLE2037 TI 增强型低噪声高速精密去补偿运放

TLE2061 TI JFET输入,高输出驱动,微功耗运放

TLE2062 TI 双路JFET输入,高输出驱动,微功耗运放TLE2064 TI JFET输入,高输出驱动,微功耗运放

TLE2071 TI 低噪声,高速,JFET输入运放

TLE2072 TI 双路低噪声,高速,JFET输入运放

TLE2074 TI 四路低噪声,高速,JFET输入运放

TLE2081 TI 单路高速,JFET输入运放

TLE2082 TI 双路高速,JFET输入运放

TLE2084 TI 四路高速,JFET输入运放

TLE2141 TI 增强型低噪声高速精密运放

TLE2142 TI 双路低噪声,高速,精密型,单电源运放

TLE2144 TI 四路低噪声,高速,精密型,单电源运放

TLE2161 TI JFET输入,高输出驱动,低功耗去补偿运放TLE2227 TI 双路低噪声,高速,精密型运放

TLE2237 TI 双路低噪声,高速,精密型去补偿运放TLE2301 TI 三态输出,宽带功率输出运放

TLS21H62-3PW TI 5V,2通道低噪读写前置运放

TLV2221 TI 单路满电源幅度,5脚封装,微功耗运放

TLV2231 TI 单路满电源幅度,微功耗运放

TLV2252 TI 双路满电源幅度,低压微功耗运放

TLV2254 TI 四路满电源幅度,低压微功耗运放

TLV2262 TI 双路满电源幅度,低电压,低功耗运放

TLV2264 TI 四路满电源幅度,低电压,低功耗运放

TLV2322 TI 双路低压微功耗运放

TLV2324 TI 四路低压微功耗运放

TLV2332 TI 双路低压低功耗运放

TLV2334 TI 四路低压低功耗运放

TLV2341 TI 电源电流可编程,低电压运放

TLV2342 TI 双路LICMOS,低电压,高速运放

TLV2344 TI 四路LICMOS,低电压,高速运放

TLV2361 TI 单路高性能,可编程低电压运放

TLV2362 TI 双路高性能,可编程低电压运放

TLV2422 TI 先进的LINCMOS满量程输出,微功耗双路运放TLV2432 TI 双路宽输入电压,低功耗,中速,高输出驱动运放TLV2442 TI 双路宽输入电压,高速,高输出驱动运放

TLV2450 TI 满幅度输入/输出单运放

TLV2451 TI 满幅度输入/输出单运放

TLV2452 TI 满幅度输入/输出双运放

TLV2453 TI 满幅度输入/输出双运放

TLV2454 TI 满幅度输入/输出四运放

TLV2455 TI 满幅度输入/输出四运放

TLV2460 TI 低功耗,满幅度输入/输出单运放

TLV2461 TI 低功耗,满幅度输入/输出单运放

TLV2462 TI 低功耗,满幅度输入/输出双运放

TLV2463 TI 低功耗,满幅度输入/输出双运放

TLV2464 TI 低功耗,满幅度输入/输出四运放

TLV2465 TI 低功耗,满幅度输入/输出四运放

TLV2470 TI 高输出驱动能力,满幅度输入/输出单运放

TLV2471 TI 高输出驱动能力,满幅度输入/输出单运放

TLV2472 TI 高输出驱动能力,满幅度输入/输出双运放

TLV2473 TI 高输出驱动能力,满幅度输入/输出双运放

TLV2474 TI 高输出驱动能力,满幅度输入/输出四运放

TLV2475 TI 高输出驱动能力,满幅度输入/输出四运放

TLV2711 TI 先进的LINCMOS满量程输出,微功耗单路运放TLV2721 TI 先进的LINCMOS满量程输出,极低功耗单路运放TLV2731 TI 先进的LINCMOS满量程输出,低功耗单路运放TLV2770 TI 2.7V高转换速率,满幅度输出带关断单运放

TLV2771 TI 2.7V高转换速率,满幅度输出带关断单运放

TLV2772 TI 2.7V高转换速率,满幅度输出带关断双运放

TLV2773 TI 2.7V高转换速率,满幅度输出带关断双运放

TLV2774 TI 2.7V高转换速率,满幅度输出带关断四运放

TLV2775 TI 2.7V高转换速率,满幅度输出带关断四运放TS271 ST 可编程CMOS单运放

TS272 ST 高速CMOS双运放

TS274 ST 高速CMOS四运放

TS27L2 ST 低功耗CMOS双运放

TS27L4 ST 低功耗CMOS四运放

TS27M2 ST 低功耗CMOS双运放

TS27M4 ST 低功耗CMOS四运放

TS321 ST 低功率单运放

TS3V902 ST 3V满幅度CMOS双运放

TS3V904 ST 满幅度四运放

TS3V912 ST 3V满幅度CMOS双运放

TS3V914 ST 满幅度四运放

TS461 ST 单运放

TS462 ST 双运放

TS512 ST 高速精密双运放

TS514 ST 高速精密四运放

TS522 ST 精密低噪音双运放

TS524 ST 精密低噪音四运放

TS902 ST 满幅度CMOS双运放

TS904 ST 满幅度四运放

TS912 ST 满幅度CMOS双运放

TS914 ST 满幅度四运放

TS921 ST 满幅度高输出电流单运放

TS922 ST 满幅度高输出电流双运放

TS924 ST 满幅度高输出电流四运放

TS925 ST 满幅度高输出电流四运放

TS942 ST 满幅度输出双运放

TS951 ST 低功耗满幅度单运放

TS971 ST 满幅度低噪声单运放

TSH10 ST 140MHz宽带低噪声单运放

TSH11 ST 120MHz宽带MOS输入单运放

TSH150 ST 宽带双极输入单运放

TSH151 ST 宽带和MOS输入的单运放

TSH22 ST 高性能双极双运放

TSH24 ST 高性能双极四运放

TSH31 ST 280MHz宽带MOS输入单运放

TSH321 ST 宽带和MOS输入单运放

TSH93 ST 高速低功耗三运放

TSH94 ST 高速低耗四运放

TSH95 ST 高速低功耗四运放

TSM102 ST 双运放-双比较器和可调电压基准

TSM221 ST 满幅度双运放和双比较器

UA748 ST 精密单运放

UA776 ST 可编程低功耗单运放X9430 Xicor 可编程双运放

按应用分类的运算放大器选型指南

ADI 公司开发创新能源解决方案已逾十年。我们的高性能放大器产品组合在促进变电站设备中的电能质量监控方面起着重要作用,而且随着再生能源系统的最新发展,它们也有助于实现突破性的解决方案。 能源应用放大器 欲了解有关能源应用的更多信息,请访问:https://www.360docs.net/doc/5b7909928.html,/zh/energy 典型太阳能电池系统图 典型变电站自动化系统图

过程控制和工业自动化应用放大器 40多年来,工业过程控制系统设计者与ADI公司密切合作,以定义、开发、实施针对各种应用进行优化的完整信号链解决方案。我们提供基于业界领先技术和系统性专业技术的精密控制与监测解决方案,使过程控制同时具备可靠性与创新性。 欲了解有关过程控制和工业自动化应用的更多信息,请访问:https://www.360docs.net/doc/5b7909928.html,/zh/processcontrol

仪器仪表和测量应用放大器 ADI公司提供高性能模拟解决方案,用来检测、测量、控制各种传感器。我们的技术支持广泛的创新设备鉴别、测量液体、粉末、固体和气体。领先的放大器产品可帮助客户优化定性和定量仪器的性能。 网络分析仪框图 电子秤框图 欲了解有关仪器仪表和测量应用的更多信息,请访问:https://www.360docs.net/doc/5b7909928.html,/zh/instrumentation

电机和电源控制应用放大器 针对电机和电源控制解决方案,ADI公司提供齐全的产品系列以优化系统级和应用导向设计。ADI公司的放大器产品在电流检测和电压检测应用中具有许多优势。 欲了解有关电机和电源控制应用的更多信息,请访问:https://www.360docs.net/doc/5b7909928.html,/zh/motorcontorl

健器械的未来。 脉搏血氧仪功能框图

小信号放大器选型指南

小信号放大器选型总结 李杨2011/12/30 一、小信号放大器选型的几项重要指标 ⑴、电源电压:根据实际需求选择具有合适的工作电压的放大器。 ⑵、放大器精度:放大器的精度主要与输入偏置电压( V)相关,并分别随温度 os 漂移,电源抑制比(PSRR)以及共模抑制比(CMRR)变化。精密型一般是指具有低输入偏执电压及低输入偏置电压温度漂移的运算放大器。放大小信号需要采用高精密度的运算放大器。 ⑶、增益带宽积(GWB):电压反馈型运算放大器的增益带宽积决定了其在某项 应用中的有效带宽。将增益带宽积除以应用中的实际闭环增益,便可大致估算出实际可用带宽。增益带宽积是恒定的常数。选择大带宽/转换速率(slew rate)的运算放大器,能够实现更低的失真,更卓越的线性度、更佳的增益准确度。 4、电压噪声:放大器产生的噪声将会限制系统的最大动态范围、准确度和分辨率。 地电压噪声能够改善精确度。 5、输出偏置电流:当与源阻抗或反馈阻抗相互作用将产生偏置误差。具有高源阻 抗或高反馈阻抗的应用,通常需要有较低的输入偏置电流。场效应(FET)输入及COMS运算放大器一般都能够提供很低的输入偏置电流。 6、转换速率:放大器的最大变化速率。当驱动大信号至高频时,转换速率是一个 很重要的参数。一个运算放大器的最大可用带宽取决于其转换速率。 二、运算放大器选择需要注意的问题 1、输入信号的幅度大小 为确保因输入信号而产生的错误最小化,微小输入信号需要高精度(例如低偏执电压)的放大器,以确保放大信号输出的电压范围涵盖了所需的放大输出的信号范围 2、放大器周围环境的变化 运算放大器对于温度的变化极为敏感,因此,考虑偏置电压随温度偏移很重要 3、共模电压 一般需要确保运算放大器工作在其共模电压范围内,并保证足够的共模抑制比(CMRR)。共模电压会导致额外的偏置电压。 4、电源电压是否会改变 电源电压的改变会影响到偏置电压,这对使用电池供电的放大器尤为重要。三、集成运放的主要技术指标 集成运放的输入级通常由差分放大电路组成,因此一般具有两个输入端以及一个输出端,还有其他以连接电源电压等的引出端。两个输入端中,一个与输出端为反相关系,另一个为同相关系,分别称为反相输入端和同相输入端。 运算放大器的符号如下图所示。其中反相输入端和同相输入端分别用符号“-”和“+”标明。

91常用电气设备选择的技术条件

9 电气设备选择 9.1 常用电气设备选择的技术条件和环境条件 9.1.1 电气设备选择一般原则[65,63] (1)应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展; (2)应按当地环境条件校核; (3)应力求技术先进和经济合理; (4)与整个工程的建设标准应协调一致; (5)同类设备应尽量减少品种; (6)选用的新产品均应具有可靠的试验数据,并经正比鉴定合格。 9.1.2 技术条件 选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。各种高压电器的一般技术条件如表9?1?1所示。 表9?1?1 选择电器的一般技术条件 注①悬式绝缘子不校验动稳定。

9.1.2.1 长期工作条件 (1)电压:选用的电器允许最高工作电压max U 不得低于该回路的最高运行电压z U ,即 max U ≥z U (9?1?1) 三相交流3kV 及以上设备的最高电压见表9?1?2。 (2)电流:选用的电器额定电流n I 不得低于所在回路在各种可能运行方式下的持续工作电流 z I ,即 n I ≥z I (9?1?2) 不同回路的持续工作电流可按表9?1?3中所列原则计算。 由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。 表9?1?2 额定电压与设备最高电压 kV 表9?1?3 回路持续工作电流

表9?1?4 套管和绝缘子的安全系数 注①悬式绝缘子的安全系数对应于一小时机电试验荷载,而不是破坏荷载。若是后者,安全系数则分别应为5.3和3.3。 高压电器没有明确的过载能力,所以在选择其额定电流时,应满足各种可能运行方式下回路持续工作电流的要求。 (3)机械荷载:所选电器端子的允许荷载,应大于电器引线在正常运行和短路时的最大作用力。 电器机械荷载的安全系数,由制造部门在产品制造中统一考虑。套管和绝缘子的安全系数不应小于表9?1?4所列数值。 9.1.2.2 短路稳定条件 (1)校验的一般原则: 1)电器在选定后应按最大可能通过的短路电流进行行动、热稳定校验。校验的短路电流一般取三相短路时的短路电流,若发电机出口的两相短路,或中性点直接接地系统及自耦变压器

仪表放大器的设计说明

目录 一、绪言 (7) 二、电路设计 (8) 设计要求 (8) 设计方案 (8) 1、电路原理 (8) 2、主要器件选择 (9) 3、电路仿真 (10) 三、电路焊接 (13) 四、电路调试 (14) 1、仪表放大电路的调试 (14) 2、误差分析 (15) 五、心得体会 (18) 六、参考文献 (19)

绪言 智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态围越宽越好。仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号围。本文从仪表放大器电路的结构、原理出发,设计出仪表放大器电路实现方案,通过分析,为以后进行电子电路实验提供一定的参考。 在同组成员帅威、智越的共同努力下,大家集思广益,深入探讨了实验过程中可能出现的各种问题,然后分工负责个部分的工作,我和帅威负责前期的电路设计和器件的采购,后期的焊接由智越完成,最后的调试由我们三个人共同完成。本报告在做实验以及其他同学提出的富有建设性意见的基础上由我编写,报告中难免会有不足或疏漏之处,还望大家指正为谢!

第一章电路设计 一、设计要求 1、电路放大倍数>3000倍 2、输入电阻>3000kΩ 3、输出电阻<300Ω 二、设计方案 1、电路原理 仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,RF和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。由公式可见,电路增益的调节可以通过改变Rg阻值实现。

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

设备选型

设备选型是水泥工厂设计非常重要的步骤,设备选型的优良也直接影响着水泥生产的成本节约,以及材料的减少,效率的提高。 车间设备选型一般步骤如下: 1、确定车间的工作制度,确定设备的年利用率。 2、选择主机的型式和规格,根据车间要求的小时产量、进料性质、产品质量要求以及其他技术条件,选择适当型式和规格的主机设备,务必使所选的主机技术先进,管理方便,能适应进料的情况,能生产出质量符合要求的产品。同时,还应考虑设备的来源和保证。 3、标定主机的生产能力,同类型规格的设备,在不同的生产条件下(如物料的易磨性、易烧性、产品质量要求以及具体操作条件等),其产量可以有很大的差异。所以,在确定了主机的型式和规格后,应对主机的小时生产能力进行标定。即根据设计中的具体技术条件,确定设备的小时生产能力。标定设备生产能力的主要依据是:定型设备的技术性能说明;经验公式(理论公式)的推算;与同类型同规格生产设备的实际生产数据对比。 4、计算主机的数量 ·h h l G n G = 式中:n ——主机台数, h G ——要求主机小时产量(t/h ), ·h l G ——主机标定台时产量(t/h )。 5、核算主机的年利用率 主机的实际年利用率和每周实际运转小时数,可用公式 ·h h l G nG ηη?= 式中:η?——主机的实际年利用率, η——预定的主机年利用率。 水泥厂主机年利用率选择参考表2-1, 表2-1 水泥厂主机年利用率(以小数表示) 主机名称 周别 每日工作班数 适宜利用率 备注 石灰石破碎 不连续周 1 0.24—0.28 也可连续周

石灰石破碎 不连续周 2 0.48—0.58 回转烘干机 连续周 3 0.70—0.80 生料磨(圈流) 连续周 3 0.70—0.78 生料磨(开流) 连续周 3 0.70—0.80 机械立窑 连续周 3 0.80—0.85 旋窑 连续周 3 0.82—0.88 水泥磨(圈流) 连续周 3 0.70—0.82 水泥磨(开流) 连续周 3 0.75—0.85 水泥包装 不连续周 1 0.24—0.28 水泥散装 不连续周 2 0.48—0.56 一, 破碎设备 1,石灰石破碎设备 一般石灰和石灰石大量用做建筑材料,也适用于工业的原料。石灰石可直接加工成石料和烧制成生石灰。石灰石刚开采出来粒度较大,并且大小不一,需要使用石灰石破碎机进行破碎后再运输使用。 (1)确定破碎车间的工作制度 石灰石破碎车间采用二班制,每班工作6.5小时,每年工作290天。 (2)根据车间运作班制和主机运转小时数,确定主机的年利用率: 232902 6.5 0.4387608760k k k η????= == 式中:k ——每年工作日数, 2k ——每日工作班数, 3k ——每班主机运转小时数。 (3)主机要求小时产量: 1.31331551250 600/2902 6.50.9y H gG G t h dntk ?= = =??? ,/H G t h 要求主机小时产量 ,/y G t y 烧成车间年产熟料量 ,0.8~1,0.9k 供料不平衡系数在之间取值这里取 ,d 每年工作日数 , n 每年工作班数

运放关键参数及选型原则

运放参数解释及常用运放选型 集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下:

输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

如何选择运放

如何选择运放? 您坐下来为您的电路选择合适的运算放大器(op amp) 时,首先要做的便是确定系统通过该放大器进行传输的信号带宽。一旦您确定下来这一点,您便可以开始寻找正确的放大器。来自高速设计专家的告诫是:您应该避免使用相对您的应用而言速度过快的模拟器件。因此,您要尽量选择一种闭环带宽稍高于信号最大频率的放大器。 它听起来好像是一种较好的产品选择方案,但是这种设计方法将可能会给您的应用板带来灾难性的后果。在实验室中,您可能会发现当您将应用最大频率的输入正弦波信号置入系统时,您放大器的输出信号并未穿过希望的全刻度模拟范围。信号增益远低于预期。您放大器的转换速率(slew rate ——SR)等级超出所需。另外,您并没有驱动放大器输出至电源轨中。哪里出错了呢? 不要再反复检查您的电阻值了!在增益单元中设计某个放大器时,为这项工作选择备选放大器时您需要了解一些事情。例如,您的信号最大带宽(SBW) 是多少?放大器闭环噪声增益(NG)是多少,以及考虑中的放大器的增益带宽产品(GBWP,我认为应该是增益带宽积GBW更合适) 是什么?另外,您想要容许多少增益误差?闭环噪声增益就是放大器增益,就像一个小电压源与运算放大器同相输入串联。 让我们通过例子来说明这个问题。例如,以1 MHz信号带宽(SBW) 开始,图1 所示放大器电路噪声增益(NG = 1 + 9R/R)为10V/V。图1还显示了具有相对于该电路刚好足够带宽的放大器的开

环频率响应;或者您认为合适的开环频率响应。放大器GBWP 为16 MHz。 由图1 所示可知,像它这样的运算放大器可以支持1 MHz 频率10 V/V (20 dB) 的增益,但我们需要进一步研究。SBW 开环增益曲线的增益为: 在我们的例子中,1 MHz频率下放大器的开环增益(AVOL-SBW) 等于16 V/V。但是,没什么好抱怨的。该电路的闭环增益误差等于NG/(AOL-SBW + NG)。在我们的例子中,1 MHz 闭环增益误差等于0.385,即38.5% 的增益误差! 就该电路而言,如果您想要容许放大器0.05 的增益误差,同时您知道因产品和温度的不同,放大器的GBWP 会改变30% 最大值,则您需要一个具有247 MHz GBWP 的放大器。产品选择部分的指导公式如下:

ADI《仪表放大器应用工程师指南》中文版

下面是我上月25号整理的,当时偶然发现我就趋值班的时间整理了一下,现在整理一下供大家点评。下面有下划线的地方是我修改过的(方括号[]内是原译和本人观点),我觉得这样比较通顺一点,正文中的黑体处属于准确性明显不足的地方。今天还发现了一个明显是错误的地方,呆会帖出来,大家看看是不是? 信号放大与 CMR [原译:仪表放大器是一种放大两输入信号电压之差而抑制对两输入端共模的任何信号的器件。----观点:原文说得好好的,但译出了一种洋味,特别是那个“对”字,纯属多余又影响理解。|| 原文:An instrumentation amplifier is a device that amplifies the dif ference between two input signal voltages while rejecting any signals that are common to both inputs. 抑制这两个输入端共模信号的器件,因此,仪表放大器在从传感器和其它信号源提取微弱信号时提供非常重要的功能。 共模抑制(CMR)是指抵消任何共模信号([原译:两输入端电位相同----观点:两个输入端的电位|| 原文:the same potential on both inputs])同时放大差模信号(两输入端的电位差)的特性,这是仪表放大器所提供的最重要的功能(阅读附注:也可以说是表现最突出、最有吸引力的功能/性能)。[原译:DC 和交流(AC)CMR 两者都是仪表放大器的重要技术指标----观点:意思没错,就是有点“涩”,翻译时加上CMR的中文意思更多方便更语言化一点,但那个“两者”是没有必要加进去了。|| 原文:Both dc and ac common-mode rejection are important in-amp specifications.]直流和交流的共模抑制CMR都是它的重要技术指标。[原译:使用现代任何质量合格的仪表放大器都能将由于DC 共模电压(即,出现在两输入端的DC 电压)产生的任何误差减小到80 dB 至120 dB。----观点:理由同上句,但读者要注意原文并没有说交流共模抑制也能达到8 0~120dB。|| 原文:Any errors due to dc common-mode voltage (i.e., dc v oltage present at both inputs) will be reduced 80 dB to 120 dB by any mo dern in-amp of decent quality 共模电压(即出现在两输入端的直流电压)产生的任何误差减小到80~120dB。 然而,[原译:如果AC CMR 不够大会产生一种很大的时变误差。因为它通常随着频率产生很大变化,所以要在仪表放大器的输出端消除它是困难的。幸好大多数现代单片集成电

运放分类及选型

运放分类及选型 对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。 对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小) 运算放大器大体上可以分为如下几类: 1、 通用型运放 2、 高阻型运放 3、 低温漂型运放 4、 高速型运放 5、 低功耗型运放 6、 高压大功率型运放 1、 通用型运放 其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A μ,LM358(双运放),LM324及场效应管为输入级的LF356. 2、 高阻型运放 这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。 这类运放有LF356、LF355、LF347、CA3130、CA3140等 3、 低温漂型运放 在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。底温漂型运放就是为此设计的。 目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。 4、 高速型运放 在快速A/D 及D/A 以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大。高速型运放的主要特点是具有高的转换速率和宽的频率响应。 常见的运放有LM318、175A μ等。其SR=50~70V/ms 5、 低功耗型运放 由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。 常用的低功耗运放有TL-022C ,TL-160C 等。 6、 高压大功率型运放 运放的输出电压主要受供电电源的限制。在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。 高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。D41运放的电源电压可达V 150±,791A μ运放的输出电流可达1A 。 Not e1:精密运放是指漂移和噪声非常低、增益和共模抑制比非常高的运放。这类运放的温度漂移一般低于C V ? /1μ Note 2:高输入阻抗运放是指采用结型场效应管或MOS 管做的输入级集成运放。它的一个附带特性是转换速度比较高。高输入阻抗运放应用十分广泛,如采样-保持电路、积分器、对数放大器、测量放大器、带通滤波器等。

(完整版)TI常用运放芯片型号

CA3130 高输入阻抗运算放大器Intersil[DA TA] CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器MC14573 ICL7650 斩波稳零放大器 LF347(NS[DATA])带宽四运算放大器KA347 LF351 BI-FET单运算放大器NS[DA TA] LF353 BI-FET双运算放大器NS[DA TA] LF356 BI-FET单运算放大器NS[DA TA] LF357 BI-FET单运算放大器NS[DA TA] LF398 采样保持放大器NS[DATA] LF411 BI-FET单运算放大器NS[DATA] LF412 BI-FET双运放大器NS[DA TA] LM124 低功耗四运算放大器( 军用档 ) NS[DATA]/TI[DATA] LM1458 双运算放大器NS[DATA] LM148 四运算放大器NS[DATA] LM224J 低功耗四运算放大器(工业档 ) NS[DATA]/TI[DA TA] LM2902 四运算放大器NS[DATA]/TI[DATA] LM2904 双运放大器NS[DATA]/TI[DA TA] LM301 运算放大器 NS[DATA] LM308 运算放大器 NS[DATA] LM308H运算放大器(金属封装)NS[DATA] LM318 高速运算放大器NS[DATA] LM324(NS[DATA]) 四运算放大器HA17324,/LM324N(TI) LM348 四运算放大器NS[DATA] LM358 NS[DATA]通用型双运算放大器HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA] LM386-1 NS[DATA]音频放大器NJM386D,UTC386 LM386-3 音频放大器NS[DATA] LM386-4 音频放大器NS[DATA] LM3886 音频大功率放大器NS[DATA] LM3900 四运算放大器 LM725 高精度运算放大器NS[DATA] LM733 带宽运算放大器 LM741 NS[DATA]通用型运算放大器HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器TI[DATA] NE5534 高速低噪声单运算放大器TI[DATA] NE592 视频放大器 OP07-CP 精密运算放大器TI[DA TA] OP07-DP 精密运算放大器TI[DATA] TBA820M小功率音频放大器ST[DATA] TL061 BI-FET单运算放大器 TI[DATA] TL062 BI-FET双运算放大器TI[DATA] TL064 BI-FET四运算放大器TI[DATA]

运放参数说明(加选型和例子)

1、输入失调电压(Input Offset Voltage) V OS 若将运放的两个输入端接地,理想运放输出为零,但实际运放输出不为零。此时,用输出电压除以增益得到的等效输入电压称为输入失调电压。 其值为数mV,该值越小越好,较大时增益受到限制。 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在 1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 本文来自: https://www.360docs.net/doc/5b7909928.html, 原文网址: https://www.360docs.net/doc/5b7909928.html,/info/analog/3366_2.html 2、输入失调电压的温漂(Input Offset Voltage Drift),又叫温度系数 TC V OS 一般为数uV/.C 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 本文来自: https://www.360docs.net/doc/5b7909928.html, 原文网址: https://www.360docs.net/doc/5b7909928.html,/info/analog/3366_2.html 3、输入偏置电流(Input Bias Current) I BIAS 运放两输入端流进或流出直流电流的平均值。 对于双极型运放,该值离散性较大,但却几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

运放选型指南

小信号放大器选型指南 小信号放大器选型的几项重要指标 ⑴、电源电压:根据实际需求选择具有合适的工作电压的放大器。 ⑵、放大器精度:放大器的精度主要与输入偏置电压(osV)相关,并分别随温度漂移,电源抑制比(PSRR)以及共模抑制比(CMRR)变化。精密型一般是指具有低输入偏执电压及低输入偏置电压温度漂移的运算放大器。放大小信号需要采用高精密度的运算放大器。⑶、增益带宽积(GWB):电压反馈型运算放大器的增益带宽积决定了其在某项应用中的有效带宽。将增益带宽积除以应用中的实际闭环增益,便可大致估算出实际可用带宽。增益带宽积是恒定的常数。选择大带宽/转换速率(slew rate)的运算放大器,能够实现更低的失真,更卓越的线性度、更佳的增益准确度。 4、电压噪声:放大器产生的噪声将会限制系统的最大动态范围、准确度和分辨率。地电压噪声能够改善精确度。 5、输出偏置电流:当与源阻抗或反馈阻抗相互作用将产生偏置误差。具有高源阻抗或高反馈阻抗的应用,通常需要有较低的输入偏置电流。场效应(FET)输入及COMS运算放大器一般都能够提供很低的输入偏置电流。 6、转换速率:放大器的最大变化速率。当驱动大信号至高频时,转换速率是一个很重要的参数。一个运算放大器的最大可用带宽取决于其转换速率。 二、运算放大器选择需要注意的问题 1、输入信号的幅度大小 为确保因输入信号而产生的错误最小化,微小输入信号需要高精度(例如低偏执电压)的放大器,以确保放大信号输出的电压范围涵盖了所需的放大输出的信号范围 2、放大器周围环境的变化 运算放大器对于温度的变化极为敏感,因此,考虑偏置电压随温度偏移很重要 3、共模电压一般需要确保运算放大器工作在其共模电压范围内,并保证足够的共模抑制比(CMRR)。共模电压会导致额外的偏置电压。 4、电源电压是否会改变 电源电压的改变会影响到偏置电压,这对使用电池供电的放大器尤为重要。 三、集成运放的主要技术指标 集成运放的输入级通常由差分放大电路组成,因此一般具有两个输入端以及一个输出端,还有其他以连接电源电压等的引出端。两个输入端中,一个与输出端为反相关系,另一个为同相关系,分别称为反相输入端和同相输入端。 运算放大器的符号如下图所示。其中反相输入端和同相输入端分别用符号“-”和“+”标明 为了描述集成运放的性能,提出了许多项技术指标,现将常用的几项分别介绍如下: 一、开环差模电压增益Aod Aod是指运放在无外加反馈情况下的直流差模增益,一般用对数表示,单位为分贝。Aod是决定运放精度的重要因素,理想情况下希望Aod为无穷大。实际集成运放一般Aod为100dB 左右,高质量的集成运Aod可达140dB以上。 二、输入失调电压U10 它的定义是,为了使输出电压为零,在输入端所需要加的补偿电压。其数值表征了输入级差分对管UBE(或场效应管UGS)失配的程度,在一定程度上了反映温漂的大小。一般运放的U10值为1~10mV,高质量的在1mV以下。 三、输入失调电压温漂ΑU10

运放关键参数及选型原则

集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下: 输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 偏置电流值也限制了输入电阻和反馈电阻数值不可以过大, 使其在电阻上的压降与运算电压可比而影响了运算精度。或者不能提供足够的偏置电流, 使放大器不能稳定的工作在线性范围。如果设计要求一定要用大数值的反馈电阻和输入电阻, 可以考虑用 J-FET 输入的运放。同样是电压控制的还有 MOSFET 器件, 可以提供更小的输入漏电流。

如何选择仪表放大器_仪表放大器的选择分析

如何选择仪表放大器_仪表放大器的选择分析 什么是仪表放大器这是一个特殊的差动放大器,具有超高输入阻抗,极其良好的CMRR,低输入偏移,低输出阻抗,能放大那些在共模电压下的信号。 随着电子技术的飞速发展,运算放大电路也得到广泛的应用。仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益组件,具有差分输入和相对参考端的单端输出。与运算放大器不同之处是运算放大器的闭环增益是由反相输入端与输出端之间连接的外部电阻决定,而仪表放大器则使用与输入端隔离的内部反馈电阻网络。仪表放大器的 2 个差分输入端施加输入信号,其增益即可由内部预置,也可由用户通过引脚内部设置或者通过与输入信号隔离的外部增益电阻预置。 仪表放大器构成原理仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR 要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)Rf/R3。由公式可见,电路增益的调节可以通过改变Rg阻值实现。 仪表放大器特点●高共模抑制比 共模抑制比(CMRR)则是差模增益(A d)与共模增益(Ac)之比,即:CMRR = 20lg

设备选型

第五章设备选型 设备选型与计算是选煤厂设计中的重要步骤。选型的好坏,不仅体现设计人员和设计本身的水平,更重要的是关系到选煤厂投产后的生产效率。近年来,我国选煤设备发展迅猛,设备的品种、规格日渐繁多,国产的、引进的、仿制的应有尽有。随着科学技术的发展和原煤入选量增大,选煤设备向大型化、高效化方向发展。由于地方小煤矿的崛起,各种小型的、成套的选煤设备也随之发展起来。这使设备选择的范围更宽,但难度也相应增大。这就需要更好地了解各种设备的性能及适用条件,正确计算与选型。 5.1 工艺设备选型与计算的原则和规定 5.1.1 设备选型与计算的任务及原则 设备选型与计算的任务是根据已经确定的工艺流程及各作业的数、质量,并考虑原煤特征和对产品的需求,选出适合生产工艺要求的设备型号与台数,从而使选煤厂投产后达到设计所要求的各项生产指标。 设备选型时应注意以下几项原则: (1)所选设备的型号与台数,应与所设计厂型相匹配,尽量采用大型设备,充分考虑机组间的配合,使设备与厂房布置紧凑,便于生产操作。 (2)所选设备的类型应适合原煤特征和产品质量要求。 (3)做到技术先进、性能可靠,应优先选用高效率、低能耗、成熟可靠的新产品。 (4)经济实用,综合考虑节能、使用寿命和物品备件等因素,尽可能选用同类型、同系列的设备产品,以便于维修和备件的更换。优先选用具有“兼容性”的系列设备,以便于新型设备对老型设备的更换,也便于更新和改扩建。 (5)在设备选用过程中,要贯彻国家当前的技术经济政策,考虑长远规划。设备招标应考虑性能价格比,切忌一味最求低价格。 (6)噪声应小于85dB。 5.1.2 设备生产能力与台数的确定原则 (1)设备生产能力的确定原则 在设计中常用的确定设备能力的方法有:单位负荷定额,产品目录保证值以及理论计算公式或经验公式。

运放的应用实例和设计指南

1.1运放的典型设计和应用 1.1.1运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

二阶有源低通滤波电路的画法和截止频率 2) 运放在电压比较器中的应用 R785K1 ACH_BF1 FREN1 U85PS2801-1 12 43 R273 1K R274 1K C213 22nF FREN1 R292200K -+ U87B LM393DR2G 567 R2751K 图 电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计 如图所示,恒流原理分析过程如下: U5B (上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A (上图中上边的运放)有: V5 V3=;

常用运放选型表

器件名称制造商简介 μA741 TI 单路通用运放 μA747 TI 双路通用运放 AD515A ADI 低功耗FET输入运放 AD605 ADI 低噪声,单电源,可变增益双运放 AD644 ADI 高速,注入BiFET双运放 AD648 ADI 精密的,低功耗BiFET双运放 AD704 ADI 输入微微安培电流双极性四运放AD705 ADI 输入微微安培电流双极性运放 AD706 ADI 输入微微安培电流双极性双运放AD707 ADI 超低漂移运放 AD708 ADI 超低偏移电压双运放 AD711 ADI 精密,低成本,高速BiFET运放 AD712 ADI 精密,低成本,高速BiFET双运放 AD713 ADI 精密,低成本,高速BiFET四运放 AD741 ADI 低成本,高精度IC运放 AD743 ADI 超低噪音BiFET运放 AD744 ADI 高精度,高速BiFET运放 AD745 ADI 超低噪音,高速BiFET运放 AD746 ADI 超低噪音,高速BiFET双运放 AD795 ADI 低功耗,低噪音,精密的FET运放AD797 ADI 超低失真,超低噪音运放 AD8022 ADI 高速低噪,电压反馈双运放 AD8047 ADI 通用电压反馈运放 AD8048 ADI 通用电压反馈运放 AD810 ADI 带禁用的低功耗视频运放 AD811 ADI 高性能视频运放 AD812 ADI 低功耗电流反馈双运放 AD813 ADI 单电源,低功耗视频三运放 AD818 ADI 低成本,低功耗视频运放 AD820 ADI 单电源,FET输入,满幅度低功耗运放AD822 ADI 单电源,FET输入,满幅度低功耗运放AD823 ADI 16MHz,满幅度,FET输入双运放 AD824 ADI 单电源,满幅度低功耗,FET输入运放AD826 ADI 高速,低功耗双运放 AD827 ADI 高速,低功耗双运放 AD828 ADI 低功耗,视频双运放 AD829 ADI 高速,低噪声视频运放 AD830 ADI 高速,视频差分运放 AD840 ADI 宽带快速运放 AD841 ADI 宽带,固定单位增益,快速运放 AD842 ADI 宽带,高输出电流,快速运放 AD843 ADI 34MHz,CBFET快速运放 AD844 ADI 60MHz,2000V/μs单片运放

相关文档
最新文档