北欧国家高炉炼铁技术发展趋势

北欧国家高炉炼铁技术发展趋势
北欧国家高炉炼铁技术发展趋势

北欧国家高炉炼铁技术发展趋势

1 技术发展

芬兰鲁基(Ruukki)公司的1号高炉于2010年大修,2号高炉将于2011年大修。另外,2011年烧结厂关闭后,这两座高炉将全部使用球团矿冶炼。

在钢铁联合企业,高炉炼铁是能耗最高的环节。为了保持竞争力,必须减少高炉能耗和还原剂的使用。例如,鲁基和瑞典欧维克(Ovako)公司开发了喷吹重油技术来降低焦比,而瑞典SSAB公司乌克瑟勒松德(Oxelosund)厂采用了氧煤喷枪。同时,由于使用了高品位的铁矿石,北欧高炉普遍实现了低渣量冶炼。

2 氧煤喷枪

喷吹燃料代替部分焦炭,可以大幅度提高高炉利用系数和能源效率。喷吹燃料的高效燃烧是根本性的,是高喷吹量的主要问题。为了改善煤的燃烧,瑞典国家冶金研究院于20世纪90年代初开发了氧煤喷枪。通过单风口喷吹试验,SSAB公司乌克瑟勒松德厂4号高炉全部更换为氧煤喷枪。氧煤枪是内管走煤粉、外管通旋流氧气的同轴套管式直管,氧气对枪管同时起冷却作用。单风口大量喷煤试验表明燃烧十分稳定。乌克瑟勒松德4号高炉换成氧煤枪后,喷煤量由35kg/t增加到喷煤系统最大能力135kg/t。SSAB报告显示,在没有炉顶加压和没有无料钟布料条件下,高炉操作稳定,燃料比(煤+焦)较低,约为465kg/t。另外,由于减少了炉尘量,电除尘效果得到改善,高炉透气性提高。

试验高炉

1997年瑞典矿业公司(LKAB)投资500万欧元,在位于吕勒奥市的瑞典国家冶金研究院建造了试验高炉,这也是北欧研发投入最大的项目。该试验高炉工作容积为9立方米,日产铁水35吨。虽然当时建造试验高炉的目的只是为了LKAB公司内部球团的研究开发,但经过5个炉役的试验,其潜能就得到了发挥。LKAB公司和客户以及其他厂商(包括北欧和欧盟国家)在此做了大量研发项目的试验,包括矿石、焦炭、新型无料钟炉顶、高喷油和富氧、杂料喷吹、测量技术等,至今共进行了25个炉役的试验,每次试验平均运行8个星期。

风口喷吹造渣剂

风口喷吹碱性造渣剂是很有意义的技术开发,工作人员对喷吹高炉炉尘和转炉渣进行了实验室研究和半工业试验。

工作人员在试验高炉和SSAB公司吕勒奥3号高炉上进行了高炉炉尘喷吹试验,主要目的是为了循环利用和回收炉尘中的碳等能源。尽管存在管道磨损问题,但试验表明了该技术的可行性和有效性。喷吹转炉渣时,沿高炉高度方向,从炉腹到风口,炉渣的化学性能得到改善,特别是在使用高铁球团的低渣量冶炼时更是如此。通过风口喷吹造渣剂可以消除极端炉渣成分不合理而对高炉操作产生的影响。煤粉中的酸性灰分在回旋区外围形成不透液的凝固层,阻碍风口高度的煤气流分布。

同样,在使用高铁球团时加入石灰石和其他碱性熔剂,由于炉渣碱度特别高,炉腹渣的黏度和熔点会升高,也影响气流分布。通过喷吹转炉渣和其他碱性物料,可调节高炉炉渣成分,消除风口酸性渣和炉腹碱性渣的极端状况。

在LKAB试验高炉上成功进行了转炉渣喷吹试验,吨铁喷吹量为36.9kg,取得了渣比从136kg/t降低到101kg/t、焦比下降11kg/t的良好效果。同时,铁水硅含量降低了28%,并保持稳定。此外,排碱量和铁水硫含量并未受到明显影响。研究表明,与单独喷煤相比,煤粉和转炉渣混合喷吹会使回旋区疏松、深度变长。影响大规模试验的因素是须将大量转炉渣磨细。

2 含铁原料有效利用

目前北欧国家炼铁所用的铁矿石绝大部分来自瑞典LKAB公司位于拉普兰地区(Lapland)的高品位磁铁矿,该矿区的大规模开采始于20世纪初期,球团矿生产始于1955

年。目前,LKAB公司年产铁矿石2500万吨,其中84%为球团矿,其余为磁铁精矿。铁精矿含铁大于70%,而球团矿含铁约为67%。北欧高品位的磁铁矿用于生产含铁约63%的高铁烧结矿。由于环保问题,SSAB公司位于吕勒奥市的烧结厂已于1978年关闭,该公司另外位于乌克瑟勒松德的烧结厂和欧维克公司位于科沃哈的烧结厂于1995年关闭。鲁基公司的烧结厂计划2011年关闭。

1982年欧利文球团厂取代了烧结机,欧利文球团具有良好的高温性能,高炉用还原剂和渣量少。工作人员通过大量试验。开发出了高铁含量的酸性球团作为高炉用球团,和烧结矿一起使用。由于使用高品位球团矿,不但改善了高炉操作,降低了燃料消耗,而且用磁铁精矿生产球团比用赤铁矿生产球团减少了二氧化碳的排放。

返料压块代替烧结矿

烧结厂关闭后,原来由烧结厂处理的返料必须另寻途径。1993年以来,SSAB公司开发出了废料冷固结技术,并计划应用于鲁基公司。

追求炼钢零排放

要达到炼钢过程零排放,粉尘和污泥尤其是含锌粉尘必须循环利用。鲁基公司2000年开始研发Radust系统,该系统混合喷吹粉尘和燃料、氧,将危险有机物燃烧,火焰温度接近3000℃,大部分的Zn、Pb和碱金属挥发掉,产生的熔渣可以循环利用,产生的富一氧化碳尾气进行二次燃烧,重金属以氧化物形式通过粉尘回收。该技术成功进行了半工业试验,但还没有实现商业化。目前正在进行的项目是将各地的废弃物进行集中处理,转底炉是考虑采用的工艺,每年可处理50万吨,而目前北欧国家普遍采用填埋处理。采用一套大型设备集中处理,其投资比每个厂用小设备单独处理要低得多。

3 集成创新

要保持连续高效的钢铁生产,必须对各工序技术进行整合。北欧钢厂已付出了巨大的努力,对各钢厂内部生产系统、地区钢铁生产及与当地社区的关系进行了整合。

工艺综合评价

工艺综合是指系统优化方法的组合,特别关注能源消耗和环境影响,在瑞典已运用了夹点分析、火用分析和混合线性规划等方法。例如,SSAB的工艺综合评价模型已用来支撑企业决策,用1座较大高炉代替2座小高炉,并优化煤气利用,以应对可能出现的长期焦炭供应短缺。工艺综合方法用来评价能耗和二氧化碳排放,以及氧气高炉对北欧个别钢厂的影响。

热电联产

北欧最大的3个炼钢厂将过剩的煤气送到热电厂,而不是只用来发电,回收的热量用于地方供热。用于街区供热的能量回收效率为88%,约为发电效率的2倍(发电效率为33%)。这不仅减少了社会对能源的需求,对减少温室气体排放也有重要意义。

氧气高炉

2004年,欧洲启动了超低碳炼钢项目(UL‐COS),目标是减少钢铁生产过程二氧化碳排放量50%。这一项目的概念流程是采用氧气高炉,并与二氧化碳的捕集、贮存相结合。为减少高炉用碳量,将炉顶煤气脱除二氧化碳,得到的富一氧化碳煤气返吹到高炉内,可减少焦比100kg/t。20世纪80年代,氧气高炉在俄罗斯Tula公司已进行过成功操作,其工艺条件与目前的高喷煤比、高利用系数高炉有很大不同。ULCOS项目决定在北欧进行3个周期的氧气高炉试验,试验使用了LKAB球团、鲁基的烧结矿以及SSAB的焦炭和煤。

综上所述,北欧炼铁领域的研发将围绕三个主要方面进行:对现有高炉流程的持续改进;工艺集成革新;技术突破,氧气高炉是可能的技术方向。

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉炼铁节能浅谈

高炉炼铁节能浅谈 班级: 姓名: 学号:

摘要高炉炼铁节能工作应从三个主要方面着手:(1)加强生产操作和维护的管理,通过技术改造和技术创新,全面推进炼铁技术进步和节能环保工作;(2)重视高炉建设阶段工作,通过多方案比较,采用先进工艺技术及节能技术,包括工艺参数优化和设备选型精细化;(3)关注炼铁上下游工序衔接,选择合理的技术方案。 关键词高炉技术进步节能 1 前言 中国钢铁工业能耗占全国能源消耗的13%~14%。炼铁系统能耗在综合能耗中所占的比例为70%~75%。我国吨钢综合能耗与世界先进水平相比,约高出100 kgce/t。炼铁系统节能将成为我国钢铁工业21世纪技术进步的重点工作之一[2]。 高炉炼铁节能工作是一个复杂的系统性工程,既要有全面的前瞻性规划,也要有全方位的细致工作,需要较大的资金投入,同时也要解决好生产过程节能与环保以及企业经济效益的协调和统筹等方方面面的问题。 本文就有关高炉炼铁工艺几个环节中节能问题提出一些思考。 2 关注高炉炼铁上下游工序衔接环节的节能工作 2.1 高炉矿槽与烧结厂烧结矿筛分以及贮运工序衔接 降低烧结矿返矿率。减少烧结矿在运输环节的破碎率、配合高炉操作增加小矿的利用率。减少烧结矿的重烧率,降低烧结能耗,同时有利于提高烧结矿铁品位、减少厂际之间的往返运输量。烧结矿分级工作尽量在烧结厂进行,以利提高筛分效率,提高烧结矿成品率。成品烧结矿中的大部分不经过成品烧结矿槽,直接送高炉矿槽,减少烧结矿入槽过程破碎。烧结厂成品烧结矿槽作为储存和调剂生产不平衡之用。 2.2 焦化厂干熄焦焦粉及除尘灰用于高炉喷吹 高炉喷吹原煤质量要求较高,时有喷吹原煤供应紧张的情况,焦化干熄焦炉生产过程产生焦粉和除尘粉煤(CDQ粉——COKE DRY QUENCHING)品质可满足高炉喷吹煤的要求。有一些钢铁企业将CDQ粉作为废料外销。鞍钢在十年前已将CDQ粉作为喷吹原煤使用,武钢也于近期采用,年使用量~15万t。 干熄焦装置生产过程中产生的焦粉,其特点是小颗粒状,装卸料过程没有扬尘,物料成分接近焦炭,哈氏可磨性指数低(HGI36%),主要粒度组成在1mm以上;武钢CDQ粉工业分析数据:固定碳~86%,灰分~12%,挥发分~1.2%。 2.3 实现铁钢无缝对接

高炉炼铁工艺关键技术介绍

高炉炼铁工艺关键技术介绍 王维兴<中国金属学会北京100711) 136********yejinbu@https://www.360docs.net/doc/3f8446161.html, 钢铁工业是国民经济的基础产业,也是能源消耗的大户,约占我国总能耗的16.3%,占全国GDP的3.2%。随着我国工业化进程的快速发展,钢铁需求量还要增长,随之带来能耗的急剧增加,污染物排放加剧,产业发展与资源环境的矛盾日趋尖锐。因此,推进钢铁行业节能减排,对加快钢铁工业结构调整,切实转变钢铁工业发展方式,促进节约、清洁和可持续发展具有重要意义。 目前,铁矿石的价值与价格发生严重扭曲,铁矿石价格高居不下和钢材价格下跌,使钢铁企业微利或亏损。这种态势将会维持较长时间。为此,企业要加快技术改造、产品升级、结构调整,进行精细化管理,用系统工程<技术、经济、管理向结合,统筹规划等),科学地、可持续地发展企业。 炼铁系统能耗、污染物排放、生产成本约占钢铁联合企业的70%。所以,炼铁系统要完成钢铁企业节能减排,降低生产成本的重任。高炉的能耗占钢铁企业总能耗的近50%。高炉炼铁所需能源78%是由碳素<焦炭和煤粉=燃料比)燃烧提供的,热风提供19%的能量,炉料化学反应热占3%。因此,降低燃料比是炼铁节能减排、降低生产成本的主攻方向。 高炉炼铁是以精料为基础。精料水平对炼铁指标的影响率在70%,高炉操作占10%,企业管理占10%,设备运行状态占5%,外界因素占5%。当前,铁矿石品位下降是国内外大趋势,适度使用低

品位矿;我们应在“稳”、“均”、“少”、“好”等方面下功夫。 炼铁系统的关键生产技术介绍: 1.烧结、球团工序 低质矿预处理、预混合和强力混合技术、烧结机厚料层、防漏风、余热回收利用和高效低成本烟气净化技术。烧结机大型化、现代化的集成技术。 <1)加快推广的关键技术 1)原料综合技术经济评价技术(采购、物流、贮运和钢铁冶炼最终效益>和管理技术; 2)原、燃、辅料的高效加工(破碎、细磨、干燥、再细磨>技术; 3)高精度及微量精确自动称量配料设备及技术; 4)高效强力混合、高效强化造球和大型圆盘造球机高效強化造球、生球筛分、破碎技术; 5)高配比褐铁矿、高铁、低硅烧结技术; 6)提高烧结烟气和冷却废气的余热发电效率。 7)成熟、先进、经济的烧结烟气综合治理技术<脱硫、脱硝、除二噁英、除尘等)。 <2)需积极探索、研发、加快烧结工程化的关键技术 1)新型低漏风率、长寿命、高质量和高效节能型大型烧结机、带式焙烧机、链箅机-回转窑氧化球团成套设备设计和制造技术;

炼铁工序能耗现状和节能

我国炼铁工序能耗现状和节能 王维兴 (中国金属学会) 1、钢铁工业能耗现状 据统计,我国钢铁工业能耗占全国能源总耗的16.2%左右,GDP 值占全国3.2%。2011年前5个月重点钢铁企业吨钢综合能耗600.18 kgce/t,比去年同期下降1.01‰ 表1 2011年前5个月重点钢铁企业各工序能耗情况单位:kgce/t 说明:〈1〉因国家将电力析标系数从0.404kgce/度调整为 0.1229kgce/度,故造成约17%误差,使能耗指标失去连 续性。

〈2〉2010年全国重点钢铁企业产钢5.40亿吨,比上年同期增长11.09%,但重点大中型企业总能耗2009年度比去 年同期仅增长6.81%,说明全行业为节能做出了贡献。 〈3〉我国有一批企业专业工序能耗达到或接近国际水平。 2011年前5个月度工序能耗较低单位: 烧结工序:湘钢(40.04)。新余(42.16). 宣钢(42.24) 太钢(45.23) 重钢(46.54) 成钢(46.42) 宝钢八一 (40.79) 衡管(47.00) 三钢(47.18) 武钢(47.86)。 焦化工序: 建龙(61.29) 湘钢(62.83)新余(74.33)柳 钢(82.49) 太钢(82.78) 鞍钢(82.29)沙钢(84.11) 三 明(89.41) 南钢(89.58) 安钢(93.68)武钢(94.69). 炼铁工序:。涟钢(336.77),宣钢(362.27) 太钢(353.81) 邯钢(364.25),天铁(370.71),新余(374.98) 国丰(375.69) 冷 水江(382.70) 重钢(383.89) 衡管 (384.04),日照(384.19) 杭钢(384.33),建 龙(384.34) 张店(384.88). 〈4〉从表1可看出各企业之间的最高值与最低值工序能耗 水平差距很大,说明我国炼铁系统节能的潜力是很 大的。 〈5〉我国已经掌握相关专业先进的节能工艺、技术、装备、 以及操 作技术。本人认为,不必再向国外购买相关节能技术

北欧国家高炉炼铁技术发展趋势

北欧国家高炉炼铁技术发展趋势 1 技术发展 芬兰鲁基(Ruukki)公司的1号高炉于2010年大修,2号高炉将于2011年大修。另外,2011年烧结厂关闭后,这两座高炉将全部使用球团矿冶炼。 在钢铁联合企业,高炉炼铁是能耗最高的环节。为了保持竞争力,必须减少高炉能耗和还原剂的使用。例如,鲁基和瑞典欧维克(Ovako)公司开发了喷吹重油技术来降低焦比,而瑞典SSAB公司乌克瑟勒松德(Oxelosund)厂采用了氧煤喷枪。同时,由于使用了高品位的铁矿石,北欧高炉普遍实现了低渣量冶炼。 2 氧煤喷枪 喷吹燃料代替部分焦炭,可以大幅度提高高炉利用系数和能源效率。喷吹燃料的高效燃烧是根本性的,是高喷吹量的主要问题。为了改善煤的燃烧,瑞典国家冶金研究院于20世纪90年代初开发了氧煤喷枪。通过单风口喷吹试验,SSAB公司乌克瑟勒松德厂4号高炉全部更换为氧煤喷枪。氧煤枪是内管走煤粉、外管通旋流氧气的同轴套管式直管,氧气对枪管同时起冷却作用。单风口大量喷煤试验表明燃烧十分稳定。乌克瑟勒松德4号高炉换成氧煤枪后,喷煤量由35kg/t增加到喷煤系统最大能力135kg/t。SSAB报告显示,在没有炉顶加压和没有无料钟布料条件下,高炉操作稳定,燃料比(煤+焦)较低,约为465kg/t。另外,由于减少了炉尘量,电除尘效果得到改善,高炉透气性提高。 试验高炉 1997年瑞典矿业公司(LKAB)投资500万欧元,在位于吕勒奥市的瑞典国家冶金研究院建造了试验高炉,这也是北欧研发投入最大的项目。该试验高炉工作容积为9立方米,日产铁水35吨。虽然当时建造试验高炉的目的只是为了LKAB公司内部球团的研究开发,但经过5个炉役的试验,其潜能就得到了发挥。LKAB公司和客户以及其他厂商(包括北欧和欧盟国家)在此做了大量研发项目的试验,包括矿石、焦炭、新型无料钟炉顶、高喷油和富氧、杂料喷吹、测量技术等,至今共进行了25个炉役的试验,每次试验平均运行8个星期。 风口喷吹造渣剂 风口喷吹碱性造渣剂是很有意义的技术开发,工作人员对喷吹高炉炉尘和转炉渣进行了实验室研究和半工业试验。 工作人员在试验高炉和SSAB公司吕勒奥3号高炉上进行了高炉炉尘喷吹试验,主要目的是为了循环利用和回收炉尘中的碳等能源。尽管存在管道磨损问题,但试验表明了该技术的可行性和有效性。喷吹转炉渣时,沿高炉高度方向,从炉腹到风口,炉渣的化学性能得到改善,特别是在使用高铁球团的低渣量冶炼时更是如此。通过风口喷吹造渣剂可以消除极端炉渣成分不合理而对高炉操作产生的影响。煤粉中的酸性灰分在回旋区外围形成不透液的凝固层,阻碍风口高度的煤气流分布。 同样,在使用高铁球团时加入石灰石和其他碱性熔剂,由于炉渣碱度特别高,炉腹渣的黏度和熔点会升高,也影响气流分布。通过喷吹转炉渣和其他碱性物料,可调节高炉炉渣成分,消除风口酸性渣和炉腹碱性渣的极端状况。 在LKAB试验高炉上成功进行了转炉渣喷吹试验,吨铁喷吹量为36.9kg,取得了渣比从136kg/t降低到101kg/t、焦比下降11kg/t的良好效果。同时,铁水硅含量降低了28%,并保持稳定。此外,排碱量和铁水硫含量并未受到明显影响。研究表明,与单独喷煤相比,煤粉和转炉渣混合喷吹会使回旋区疏松、深度变长。影响大规模试验的因素是须将大量转炉渣磨细。 2 含铁原料有效利用 目前北欧国家炼铁所用的铁矿石绝大部分来自瑞典LKAB公司位于拉普兰地区(Lapland)的高品位磁铁矿,该矿区的大规模开采始于20世纪初期,球团矿生产始于1955

高炉炼铁工序能耗的计算方法

高炉炼铁工序能耗计算方法 发布时间:2011-9-5 来源:中国钢铁企业网作者:王维兴阅读:【收藏此页】【打印】【复制 网址】【字号:大中小】 【中国钢铁企业网/报道】日前,中国钢铁企业网特邀专家顾问王维兴就高炉炼铁工序能耗计算方法作了以下解析: 1.高炉炼铁工序能耗计算统计范围 原燃料供给:矿槽卸料、称量料斗和计量、料车或皮带上料、仪表显示和控制、照明等用电;空调用电、冬季取暖用蒸汽等能源用量。 高炉本体:焦炭(包括小块焦)、煤粉、电力、蒸汽、压缩空气、氧气、氮气、水(新水、软水等)等。 渣铁处理:炉渣处理用电和水,冲渣水余热要进行回收利用。 鼓风:分电力鼓风或气动鼓风。鼓风能耗一般占炼铁总能耗的10%。1m?风需要用能耗0.030kgce/ m?.正常冶炼条件下,高炉消耗1吨燃料,需要2400m?的风量。 热风炉:要求漏风率≤2%、漏风损失应≤5%、总体热效率≥80%、风温大于1200℃,寿命大于25年。 烧炉用高炉煤气折标煤系数0.1143kgce/m3; 转炉煤气折标煤系数0.2286kgce/m3; 焦炉煤气折标煤系数0.6kgce/m3。 热风炉用电力和其它能源工质:蒸汽、压缩空气、水等。 煤粉喷吹:煤粉制备干燥介质,宜优先采用热风炉废气; 用电力、氮气、蒸汽、压缩空气、空调和采暖用能等。 设计喷煤能力要大于180kg/t. 碾泥:用电力和其它能源工质。 除尘和环保:主要是电力(大企业环境保护用电力占炼铁用电的30%左右)、水等。, 铸铁机:电力、水等。 扣除项目:回收利用的高炉煤气,热值按实际回收量计算; TRT余压发电量(电力0.1229kgce/kwh) 2.炼铁工序能耗计算方法

非高炉炼铁工艺发展现状

万方数据

万方数据

非高炉炼铁工艺发展现状 作者:王振智 作者单位:中冶天工上海十三冶建设有限公司设备安装分公司,上海,201900 刊名: 中国高新技术企业 英文刊名:CHINA HIGH TECHNOLOGY ENTERPRISES 年,卷(期):2011(2) 参考文献(7条) 1.王保利发展直接还原铁是解决废钢资源短缺的有效途径 1998(02) 2.钱晖;周渝生HYL-III直接还原技术[期刊论文]-世界钢铁 2005(01) 3.Oehlberg R J;Arthur G.McKee FIOR process for direct reduction of iron ore 1974(04) 4.阴继翔煤基直接还原技术的发展[期刊论文]-太原理工大学学报 2000(03) 5.Borl é e J;Steyls D;Colin R COMET:a coal-based process for the production of high quality DRI from iron ore fines 1999(03) 6.余琨原矿原煤冶炼-21世纪与高炉竞争的炼铁方式[期刊论文]-东北大学学报(自然科学版) 1998(04) 7.徐国群Corex技术的最新发展与发展前景[期刊论文]-炼铁 2004(23) 本文读者也读过(7条) 1.宁振.郑志强.NING Zhen.ZHENG Zhiqiang浅谈非高炉冶炼技术的发展前景[期刊论文]-科技传播2011(11) 2.崔胜楠.杨吉春对非高炉炼铁技术发展现状的综述[期刊论文]-科技信息2011(6) 3.唐恩.周强.翟兴华.阮建波适合我国发展的非高炉炼铁技术[期刊论文]-炼铁2007,26(4) 4.储满生.赵庆杰.CHU Man-sheng.ZHAO Qing-jie中国发展非高炉炼铁的现状及展望[期刊论文]-中国冶金2008,18(9) 5.庞建明.郭培民.赵沛.Pang Jianming.Guo Peimin.Zhao Pei煤基直接还原炼铁技术分析[期刊论文]-鞍钢技术2011(3) 6.花皑.崔于飞.吴培珍.李可卿.HUA Ai.CUI Yu-fei.WU Pei-zhen.LI Ke-qing直接还原铁的制造工艺及设备[期刊论文]-工业加热2011,40(1) 7.周渝生.钱晖.张友平.冯华堂非高炉炼铁技术的发展方向和策略[期刊论文]-世界钢铁2009,9(1) 本文链接:https://www.360docs.net/doc/3f8446161.html,/Periodical_zggxjsqy201102025.aspx

降低高炉炼铁燃料比技术措施方案

整体解决方案系列 降低高炉炼铁燃料比技术 措施 (标准、完整、实用、可修改)

编号:FS-QG-32785降低高炉炼铁燃料比技术措施Technical Measures to Reduce the Blast Furnace Ironmaking Fuel Ratio 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目 标管理科学化、制度化、规范化,特此制定 钢铁产业节能减排的工作重点是在炼铁系统。由于炼铁系统的能耗占钢铁联合企业总能耗的70%左右。节能减排的工作思路是:首先要抓好减量化用能,体现出节能要从源头抓起;其次是要进步能源利用效率;第三是进步二次能源回收利用水平。降低高炉炼铁燃料比就是体现出企业节能工作是要从源头抓起,对企业的节能工作是有着重大意义。 1.降低炼铁燃料比是进步高炉利用系数的正确途径 炼铁学理论上是:高炉利用系数=冶炼强度÷燃料比。也就是说,进步利用系数有两个办法。一个是进步冶炼强度,另一个是降低燃料比。我国中小高炉实现高利用系数主要是采用进步冶炼强度的办法。采用配备大风机,大风量操纵高炉,进行高冶炼强度生产,来实现高利用系数。这种做法就带来高炉的能耗高,不符合钢铁产业要节能降耗的工作思路,

应当予以纠正。目前大型高炉吨铁所消耗的风量在1200m3以下,宝钢为950m3左右。而一些小高炉的吨铁风耗是在1400m3左右,甚至有大于1500m3的现象。燃烧1kg标准煤要2.5m3的风,鼓风机产生1m3风要消耗0.85kg标准煤。大风量,高冶炼强度操纵的高炉,燃料比就要升高。所以说小高炉的燃料比要比大高炉高30~50kga。钢铁产业要实现"十一五"期间GDP能耗要降低20%,主要工作方向就是要在降低炼铁燃料比上下功夫!由于高炉炼铁工序的能耗要占联合企业总能耗的50%左右。 2.高炉炼铁燃料比的现状 国际先进水平的炼铁燃料比是在500kg/t以下,领先水平是在450kg/t左右。20xx年我国重点钢铁企业高炉炉炼铁的燃料比为529kg/t,首钢为464kg/t,宝钢为484kg/t,太钢为491kg/t,武钢为488kg/t,鞍钢为500kg/t,最高的企业达到673kg/t。这说明,我国已把握了先进的高炉炼铁技术,但是炼铁企业发展不平衡,尚有较大的节能潜力。 高炉炼铁的燃料比是:进炉焦比+喷煤比+小块焦比。喷煤比是不计算量换比。这样企业之间进行对比才公道科学。

降低高炉炼铁燃料比的技术措施

降低高炉炼铁燃料比的技术措施 钢铁产业节能减排的工作重点是在炼铁系统。由于炼铁系统的能耗占钢铁联合企业总能耗的70%左右。节能减排的工作思路是:首先要抓好减量化用能,体现出节能要从源头抓起;其次是要进步能源利用效率;第三是进步二次能源回收利用水平。降低高炉炼铁燃料比就是体现出企业节能工作是要从源头抓起,对企业的节能工作是有着重大意义。 1.降低炼铁燃料比是进步高炉利用系数的正确途径 炼铁学理论上是:高炉利用系数=冶炼强度÷燃料比。也就是说,进步利用系数有两个办法。一个是进步冶炼强度,另一个是降低燃料比。我国中小高炉实现高利用系数主要是采用进步冶炼强度的办法。采用配备大风机,大风量操纵高炉,进行高冶炼强度生产,来实现高利用系数。这种做法就带来高炉的能耗高,不符合钢铁产业要节能降耗的工作思路,应当予以纠正。目前大型高炉吨铁所消耗的风量在1200m3以下,宝钢为950m3左右。而一些小高炉的吨铁风耗是在1400m3左右,甚至有大于1500m3的现象。燃烧1kg标准煤要2.5m3的风,鼓风机产生1m3风要消耗0.85kg标准煤。大风量,高冶炼强度操纵的高炉,燃料比就要升高。所以说小高炉的燃料比要比大高炉高30~50kga。钢铁产业要实现“十一五”期间GDP能耗要降低20%,主要工作方向就是要在降低炼铁燃料比上下功夫!由于高炉炼铁工序的能耗要占联合企业总能耗的50%左右。 2.高炉炼铁燃料比的现状 国际先进水平的炼铁燃料比是在500kg/t以下,领先水平是在450kg/t左右。2007年我国重点钢铁企业高炉炉炼铁的燃料比为529kg/t,首钢为464kg/t,宝钢为484kg/t,太钢为491kg/t,武钢为488kg/t,鞍钢为500kg /t,最高的企业达到673 kg/t。这说明,我国已把握了先进的高炉炼铁技术,但是炼铁企业发展不平衡,尚有较大的节能潜力。 高炉炼铁的燃料比是:进炉焦比+喷煤比+小块焦比。喷煤比是不计算量换比。这样企业之间进行对比才公道科学。但是,个别企业没有计进小块焦用量,失往了企业的能源平衡。

高炉操作节能技术

高炉操作节能技术 1、科学布料节能 怎样解决煤气流和炉料运动之间的矛盾? 通过合理的布料制度和送风制度,可以科学地解决煤气流和炉料逆行运动的矛盾,使煤气流分布合理,炉况稳定顺行,实现节焦增产的作用。 高炉炼铁为什么要选择装料制度? 选择装料制度的目的就是要达到炉喉径向矿石和焦炭的合理控制,已实现合理的煤气流分布,保持高炉稳定顺行,煤气的能量得到充分利用,达到高炉炼铁高产、节能、长寿的结果。科学的装料制度可以实现高精度煤气流分布,有较好的节能效果。 怎样评价煤气流分布科学合理? 煤气流分布有三种类型:边缘发展型、双峰型和中心发展型。随着炼铁原燃料质量的改善,高炉操作水平的提高,从控制边缘与中心气流均发展的“双峰”式煤气流分布向边缘煤气CO2含量略高于中心的“平峰”式煤气曲线。综合煤气中CO2含量从16%~18%发展为18%~22%。宝钢4000M3级高炉达到23%以上。 如何实现合理布料? 使用无料钟炉顶设备可以灵活布料,进行多种形式布料,达到理想效果。采用环形布料(单环或多环),并要使用溜槽倾角的多角档位数。小于1000M3高炉一般选用5~7个角位,1000~2000M3高炉一般选用8~10个角位,大于2000M3高炉一般选用10~12个角位。不同容积的高炉,需要确定不同焦炭平台宽度和厚度,中心漏斗的焦炭量和滚向中心的矿石量。使用大矿批量上料之后,高炉内的焦批层高要在0.5M左右,宝钢4000M3级高炉焦层厚度在800~1000mm。 料线提高后对布料起到什么作用? 料线提高后,炉料堆尖向中心移动,有疏松边缘煤气流的作用。料线深度与上部炉型、炉料性能等有关,一般为1~2米。 合理煤气流分布时,炉顶温度在什么水平? 煤气流分布没有一个固定的模式,随着高炉生产条件的变化和技术进步的需求而要不断调整。希望边缘煤气CO2含量要高于中心,而且差距较大的“展翅”型煤气分布曲线。高炉中心煤气温度在500℃以上,边缘要大于100℃。 2、高风温节能 风闻升高100℃对高炉炼铁有什么影响? 热风温度升高100℃会使风口前理论燃烧温度升高60℃,炉内压差升高5kPa;基础风温在950℃时,可节焦20kg/t,基础风温在1050~1150℃时,可节焦10kg/t。风温升高100℃,可允许多喷吹煤粉约30kg/t。 用低热值高炉煤气烧炉如何实现高风温? 采用蓄热式燃烧技术,将助燃空气和煤气预热到500℃以上,再去烧热风炉,是可以实现1200℃以上的高风温。

非高炉炼铁工艺发展现状_王振智

2011.01 57 摘要: 文章阐述了非高炉炼铁技术的发展现状及分类,并对主要工艺流程法作了较为详细的介绍,并对各种工艺流程的特点进行了分析,展望了非高炉炼铁技术在新世纪的发展前 景。 关键词: 非高炉炼铁;直接还原;熔融还原;二步法熔融还原;转底炉法中图分类号: TF557 文献标识码:A 文章编号:1009-2374(2011)03-0057-02非高炉炼铁工艺发展现状 王振智 (中冶天工上海十三冶建设有限公司设备安装分公司,上海 201900) 高炉炼铁发展至今,因其必须使用储量有限的焦炭为主要燃料,需要以一定粒径的块状铁矿石入炉冶炼等原因,面临着能源、环境、投资等方面的困扰。近几十年来世界各国的冶金工作者们一直致力于研究和改进各种非高炉炼铁技术。 一、非高炉炼铁生产工艺技术 直接还原和熔融还原是两种最主要的非高炉炼铁思路,他们较高炉炼铁具有更多的优势,因而具有较大的发展空间。直接还原分为气基和煤基直接还原,其中气基直接还原主要是气基竖炉法、气基流化床法,是利用天然气经裂化产出的H 2和CO作为还原剂,在竖炉中将铁矿石在固态温度下还原而成海绵铁,目前主要方法有Midrex和HYL法两种。煤基直接还原是用煤作还原剂在回转窑或循环流化床中将铁矿石在固态温度下还原成海绵铁,其中回转窑工艺是最成熟、应用最广的方法,具有代表性的是SL/RN法。熔融还原法是以煤炭为主要能源,使用天然富矿、人造富矿(烧结矿或球团矿)取代高炉生产液态生铁的方法。 二、直接还原工艺 (一)气基直接还原工艺 Midrex技术和HYL-III技术占直接还原铁产量的85%以上,是直接还原铁的两大主流技术。两者均采用逆流移动床作为反应器,还原气为天然气,天然气经转化炉变成H 2+CO的混合气,进入还原竖炉与氧化球团矿反应,最终金属化率>90%。HYL-III技术的特点是其还原温度比Midrex技术高约50℃~100℃(Midrex技术还原温度为800℃~900℃),另外,HYL-III反应器内压力>0.55MPa,其高温、高压、高氢气浓度的条件保证其高的还原速率。 Midrex技术和HYL-III技术具有污染较小,能耗低的特点,但都只解决了不使用焦炭这一个问题,仍必须使用球团矿,另外我国天然气资源严重缺乏,这两 种工艺难以适应我国国情。 图1 Midrex 竖炉结构示意图 F i o r 法和C i r c o f e r 法均采用流化床技术。Circofer法工艺原理:粉矿经过两段预热后进入反应器,在高于900℃的温度下被还原。反应器由流化床反应炉、再循环旋风收尘器和气化器组成。还原反应器中的流态化介质为还原性气体。在气化器中,煤与氧发生氧化,气体和再循环物料将反应热带入还原反应器内,氧化铁被还原为金属铁。目前流化床技术存在的问题是粉矿粘结及其对设备带来的损害。 (二)煤基直接还原工艺 煤基直接还原工艺主要包括回转窑法(如SL-RN 法)和转底炉法(如COMET法)。 SL-RN法工艺原理:铁矿石或球团矿与煤粉同时由窑尾加入窑内,借助于炉体的倾斜和转动,使炉料向窑头方向运动,经过预热带、还原带而得到产品。 COMET法是一种转底炉法,1997年由比利时的CRM 公司开发的一种用粉矿和煤生产优质海绵铁的工艺,工艺原理:采用转底炉,将煤层和铁矿粉交替铺在炉床上,通过煤气烧嘴加热。这样的混合物可使温度很快上升到1300℃以上。此工艺可以使用粉矿,但煤层和铁矿粉的交替铺层必然导致其生产率低的弱点。煤基直接还原有着自己的特点,我国煤资源丰富,此工 交流园地 E xchange Field DOI:10.13535/https://www.360docs.net/doc/3f8446161.html,ki.11-4406/n.2011.03.015

高炉炼铁原料

高炉炼铁原料 1.铁矿石和燃料 高炉炼铁必备的三种原料中,焦炭作为燃料和还原剂,是主要能源;熔剂,如石灰石,主要用来助熔、造渣;铁矿石则是冶炼的对象。这些原料是高炉冶炼的物质基础,其质量对冶炼过程及冶炼效果影响极大。 铁矿石 铁矿石分类及特性 高炉冶炼用的铁矿石有天然富矿和人造富矿两大类,含铁量在50%以上的天然富矿经适当破碎、筛分处理后可直接用于高炉冶炼。贫铁矿一般不能直接入炉,需要破碎、富矿并重新造块,制成人造富矿(烧结矿或球团矿)再入高炉。人造富矿含铁量一般在55%~65%之间。由于人造富矿事先经过焙烧或者烧结高温处理,因此又称为熟料,其冶炼性能远比天然富矿优越,是现代高炉冶炼的主要原料。天然块矿统称成为生料。 我国富矿储量很少,多数是含Fe30%左右的贫矿,需要经过富矿才能使用。A.矿石和脉石 能从中经济合理的提炼出金属来的矿物成为矿石。如铁元素广泛地、程度不同地分布在地壳的岩石和土壤中,有的比较集中,形成天然的富铁矿,可以直接利用来炼铁;有的比较分散,形成贫铁矿,用于冶炼及困难又不经济。随着选矿和冶炼技术的发展,矿石的来源和范围不断扩大。含铁较低的贫矿经过富选也可用于炼铁。 矿石中除了用来提炼金属的有用矿物外,还含有一些工业上没有提炼价值的矿物或岩石,称为脉石。对冶炼不利的脉石矿物,应在选矿和其他处理过程中尽

量去除。但矿石中脉石的结构和分布直接影响矿石的选冶性能。如果含铁矿物结晶颗粒比较粗大,则在选矿过程中易于实现有用矿物的单体分离;反之,如果含铁矿物呈颗粒结晶嵌布在脉石中,则要进一步细磨矿石才能分离出有用单体。 B.天然矿石的分类及特性 天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿等几种,主要矿物组成及特征见下表。 磁铁矿,主要含铁矿物为Fe3O4,具有磁性。其化学组成可视为Fe2O3* FeO,其中FeO 30%,Fe2O3 69%,Tfe 72.4%, O27.6%。磁铁矿颜色为灰色或黑色,由于其结晶结构致密,所以还原性比其他铁矿差。磁铁矿的熔融温度为:1500-1580摄氏度。这种矿物与TiO2和V2O5共生,叫钒钛磁铁矿;只与TiO2共生的叫钛磁铁矿,其他常见混入元素还有镍、铬、钴等。在自然界中纯磁铁矿很少见,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。假象赤铁矿仍保留着磁铁矿的外形,但Fe3O4已被氧化成Fe2O3的矿石。一般用TFe / FeO的比值来区分: TFe / FeO = 2.33 为纯磁铁矿石 TFe / FeO < 3.5 为磁铁矿石 TFe / FeO = 3.5~7.0 为半假象赤铁矿石 TFe / FeO > 7.0 为假象赤铁矿石 式中TFe –矿石含铁总量(又称全铁)

高炉炼铁技术简易计算1

高炉炼铁技术简易计算题 1.有效容积1260m 3高炉,矿批重30t,焦批重8t,压缩率为15%。 求:从料面到风口水平面的料批数(冶炼周期),(r 矿取1.8t/ m 3,r 焦取0.5 t/ m 3,工作容积取有效容积的85%) 答案: 有效系数有效容积工作容积?=85.01260?=﹦1071 m 3 压缩率 焦炭堆比重焦炭批重矿石堆比重矿批重量 每批料的炉内体积??? ? ??+= ()%1515.00.88.10.30-??? ? ??+=﹦27.77m 3 每批料在炉内体积工作容积到达风口平面的料批数= 77 .271071 = ≈39 经过39批料到达风口平面。 2.620m 3高炉焦批3850kg ,焦丁批重200kg ,矿批15000kg 每小时喷煤8000kg ,每小时跑6批料,求焦炭综合负荷。 答:条件中没有给出焦炭含水分百分数,既将焦炭按干焦进行计算,如果有水分百分数还要扣除水分折合为干焦量后进行计算 () 批料焦丁量批料煤量批干焦炭重量批料矿量 焦炭综合负荷++= 2 .06 0.885.300 .15++= ﹦2.79 3.烧结矿碱度从1.25降到1.15,已知烧结矿含SiO 2为13.00%,矿批为20t/批,如全部使用烧结矿,如何调整石灰石用量?(石灰石有效CaO 为50%) 答案:此为自溶性烧结或者是低碱度烧结时的现场计算,目前已经非常少见 ()石灰石有效率 现碱度原碱度烧结矿石批重每批料需要加减石灰石-??? =10002SiO 也可以分步计算石灰石用量:

50.0/15.125.11000%00.13)(石量一吨烧结矿需要加石灰-??=﹦26 kg 当矿石批重为20t 时,全部使用烧结矿时,每批加石灰时26×20=520kg/批 每批加石灰石520 kg 。 4.544m 3高炉正常的日产量1300t 生铁,风量1150m 3/min 。某天因上料系统出现故障减风至800m 3/min ,两小时后恢复正常,问减风影响生铁产量多少? 答案: ?? ? ??-??= 正常时风量水平减风时风量水平正常风量水平减风累计时间日产量减风影响生铁产量24 ()1150 80011502241300 -??= ﹦33 t 减风影响生铁产量33t 。 5.380m 3高炉干焦批重3.2t ,焦炭含碳85%,焦碳燃烧率为70%,大气湿度1%,计算风量增加200m 3/min 时,每小时可多跑几批料? 答案: 每批料需氧气量: 12 24 .221000?? ???=焦炭燃烧率焦炭含碳量干焦批重每批料需要氧量 12 24 .2270.085.010002.3?????=﹦1776.4m3 加风后氧量增加: 大气湿度) (风量增加量加风后氧量增加?+?=29.021.0 )(%0.129.021.0200?+?=﹦42.58m 3 /min 每小时可多跑料: 60?= 每批料需要氧量加风后氧量增加每小时多跑料批数601776 58 .42?=﹦1.44批 每小时可多跑1.44批。 6.已知风量3200m 3/min ,鼓风湿度3%,富氧率3%,煤气中含N 253.5%,求高炉煤气发生量?

高炉节能降耗

高炉节能降耗 摘要:高炉节能的措施一是增加廉价的热源,二是降低热消耗或减少热损失。高炉节能的途径和方向主要是以顺行为基础,以低热消耗或减少热损失为手段; 以能源的二次回收利用获得节能最大化。 1 概述 目前的国际、国内的经济环境和钢铁行业产能过剩的现状,给钢铁企业的生存和发展带来的巨大的压力,节能降耗是企业的经济效益最大化和竞争力不断增强的有效手段,高炉节能的措施一是增加廉价的热源。二是降低热消耗或减少热损失。高炉节能的途径和方向,主要是以顺行为基础,以低热消耗或减少热损失为手段。 2 增加廉价热源 2.1 提高热风温度 高炉内热量来源于两方面,一是风口前碳素的燃烧放出的化学热,二是热风带入的物理热。后者增加,前者减少,焦比即可降低,碳素燃烧放出的化学热不能在炉内全部利用。高炉内的热量有效利用率随冶炼操作水平而变化,一般为80%左右。提高热风温度是降低焦比和强化冶炼的重要措施,采用喷吹技术后,使用高风温更为迫切。高风温能为提高喷吹量和喷吹效率创造条件。据统计,风温在950℃~1350℃之间,每提高100℃可降低焦比8—20kg,增加产量2%~3%。提高风温还可加快风口前焦炭的燃烧速度,热量更集中于炉缸,使高温区域下移,中温区域扩大,有利于间接还原发展,直接还原度降低,有利于降低焦比。 2.2 提高煤比 提高煤比和提高置换比,可以降低焦比,利用焦炭和煤的差价获得经济效益,富氧高风温大喷煤量技术,可实现高炉喷煤比在200kg/t铁以上。高炉喷吹煤粉是炼铁系统结构优化的中心环节,可以实现节焦增产、炼铁环境友好的效果,同时可降低生铁成本。提高煤比后煤气量增大,初始煤气分布发生变化,为保证两道合适的煤气流,在适当开放中心,抑制边缘的同时,防止中心过吹和边缘过重,给顺行带来困难,在实际的操作当中煤比的提高限度应当根据焦炭质量、富养率等因素来确定,以保证合理的理论燃烧温度和煤气流的分布,避免热制度、造渣制度和煤气分布的失常来破坏高炉的顺行,提高煤比的措施有以下几点:(1)提高热风温度:热风温度升高l00℃,可使炉缸理论燃烧温度升高60℃,允许多喷30~40kg/t煤粉。 (2)进行富氧鼓风:富氧率提高1%,炉缸理论燃烧温度升高40~50℃,允许多喷煤粉20~30kg/t。

---非高炉炼铁现状趋势方向 周渝生

1.1 非高炉炼铁主题 高炉炼铁已经发展了几百年,目前在高产、低耗、长寿、效率、优质包括节能、环保等许多方面都有长足的进步,是目前世界上炼铁界占绝对统治地位的炼铁工艺。 但高炉炼铁工艺的进步并不能完全克服它与生俱来的固有的缺点,这就是它对优质冶金焦和人造块矿的强烈的依赖。正因为如此,决定了它的流程比较长即从炼焦、烧结或球团最终到高炉的长流程;决定了它的能耗比较高即需要经过冷态—热态—冷态—热态的反复的转换;也决定了它的污染比较严重,炼焦和烧结一直是冶金工厂中污染排放大户。 更严峻的是主焦煤的资源极为有限而且分布地域不均匀,仅占我国煤资源产储量的25%左右。尽管我国是煤资源的大国,但是随着我国钢铁产量的飞跃发展(目前的产能已经达到 4.7亿吨/年)据有关方面的预测我国的炼焦煤资源只够使用30年。30年后炼焦煤匮乏的将来我们如何生产钢铁?这一问题已经明明白白的摆在我们的面前! 2010年我国的粗钢产量已达到62665万吨,其中约有三分之一是能耗高、污染大的小高炉生产的,对环境造成严重的破坏,国家《钢铁产业发展政策》严格地规定了新建钢厂和现有钢厂淘汰落后的标准规范。另一方面又明确规定“支持企业跟踪、研究、开发和采用直接还原、熔融还原等钢铁生产流程前沿技术”。这一政策为非高炉炼铁技术的发展开拓了广阔的空间。 开发非高炉炼铁技术的主要目的就是要摆脱对冶金焦的依赖,扩大利用非炼焦煤的使用比例并推进冶金能源、资源的高效循环利用,它的目标还在于扩大直接使用低成本难选的低品质(含有过高的氧化硅、氧化镁、氧化铝、磷或硫中的一种或二种杂质)天然块矿或粉矿炼铁。这样可以使原料资源可利用的选择范围进一步拓宽,工艺流程大为缩短,生产成本更有竞争力,投资和污染大幅度降低,是一种清洁的炼铁技术,对钢铁工业的可持续发展具有十分重要的意义。 目前我国的经济发展正面临着以科学的发展观,走循环经济可持续发展道路的转型期。钢铁行业既是我国主导的基础工业又是能耗和污染的大户,而非高炉炼铁技术的诸多优点正是我国钢铁行业调整结构、降低能耗和污染的重要技术。随着宝钢引进COREX技术,韩国POSCO开发Finex技术的强劲势头,国内钢铁界正在形成一股开发、研究、发展、引进非高炉炼铁技术的热潮,并逐渐形成十分强劲的技术需求。 1.1.1直接还原技术的现状与差距 迄今为止,国际上商业化实绩较突出和有一定国际影响的直接还原工艺包括:MIDREX、HYL-Ⅲ、FINMET、FASTMET、RN等。但就还原剂的种类而言,可以分为气基直接还原和煤基直接还原。按生产装置的类型来分类,可以分为:竖炉法、流化床法、回转窑法、转底炉法和隧道窑法。世界上气基直接还原主要在天然气储量丰富、价格低廉的地区得到应用和发展。由于我国天然气价格昂贵气基直接还原一直没有得到发展,首钢正在策划在焦炉煤气富裕的产焦地区建设50万吨/年焦炉煤气HYL-Ⅲ-ZR零重整的气基直接还原装置,但大多数地区因为缺乏还原煤气,只能考虑如何用煤来进行铁矿石的直接还原。由于直接用煤的煤基直接还原回转窑工艺,生产规模较小,而且容易结圈。所以,用煤制气连接气基直接还原工艺受到人们的青睐,宝钢研究院1999年结题的BL法生产直接还原铁工艺就是这一类型技术开发的尝试。随着COREX技术的发展,作为COREX煤气的应用,经过适当的变换后与气基直接还原工艺相连接,生产直接还原铁技术也有新的发展,如南非撒旦那的COREX-Midrex直接还原联合流程。印度JINDAL公司正在奥里萨邦设计建设60万吨/年用鲁奇煤制气--竖炉直接还原工艺生产直接还原铁工程。为了推进含铁固体废物再利用,新日铁先后在君津制铁所和広畑制铁所各

炼铁新技术作业

当前非传统高炉炼铁技术的发展及研究现状1学号: 1)北京科技大学冶金生态与工程学院, 北京100083 ?, E-mail:3902@https://www.360docs.net/doc/3f8446161.html, 摘要首先分析了传统高炉炼铁技术发展面临的困扰和障碍,然后叙述了目前非高炉炼铁技术中的直接还原和熔融还原技术,综述了非高炉炼铁技术发展的现状。着重介绍了走向工业生产和即将进入工业生产的Corex 工艺和Finex 技术的优缺点和存在问题。最后叙述了高炉炼铁新技术中的氧气高炉,着重介绍了国内外氧气高炉的工业化试验情况。 关键词炼铁技术;高炉;直接还原;熔融还原;氧气高炉;工业化实验 The current untraditional blast furnace ironmaking technology development and research status Sxxxxxxei1 1)School of of metallurgical and ecological engineering, University of Science and Technology Beijing, Beijing 100083, China ?SxxN xei, E-mail:3xxx0802@https://www.360docs.net/doc/3f8446161.html, ABSTRACT Firstly, analyzes the problems and barriers to developing the traditional blast furnace ironmaking technology, then introduced the direct reduction and smelting reduction technology in currentnon-blast-furnace iron making technology, summarizes the present situation of the non-blast-furnace iron making technology development.Focus on the advantages and disadvantages and the existing problems of Corex process and of Finex technology whichapplied or will be applied to industrial production. Finally describes the oxygen blast furnace of new technology ofblast furnace ironmaking, focus onthe industrial test stage of oxygen blast furnace at home and abroad. KEY WORDS ironmaking technology; blast furnace; direct reduction; smelting reduction;oxygen blast furnace; industrialization experiment 1传统高炉发展面临的困扰和障碍 (1) 必须使用焦炭为主要燃料 高炉炼铁必须使用焦炭。焦炭不仅是高炉还原剂和热量的主要来源,而且是炉内维持料柱的骨架。大量的冶金焦是现代高炉炼铁不可或缺的燃料。 ①焦煤的资源越来越少。焦煤的供应即使像我国这样富有焦煤资源的国家,其供应也越来越紧张和困难。特别是焦炭价格成倍上升,导致了生铁成本的大幅上升。这已成为远离焦煤产地的钢铁企业发展的瓶颈。由于资源是不可再生的,从长远的角度看,这种状况是不可能逆转的。同时也应为后代多留一些,不能用之竭尽。 ②为保证高炉炼铁焦炭的来源还必须配有相应的建设焦炉生产设施。不但其投资费用相当昂贵,而且现代焦炉生产焦炭的工艺仍对人类的生态和环境造成了很大的污染,很难从根本上克服。所以,在发达国家已是明令禁止新建和严格控制生产。在我国大量使用焦炭,大规模的建设焦炉生产焦炭,对环境所造成污染,也已到了不能容忍的程度。 (2) 必须以一定粒级的块状铁矿石入炉冶炼 高炉采用竖炉鼓风冶炼技术,块状的焦炭和块矿石组成透气的料柱,并通过风口燃烧

相关文档
最新文档