日本高炉炼铁技术发展趋势1

日本高炉炼铁技术发展趋势1
日本高炉炼铁技术发展趋势1

日本高炉炼铁技术发展趋势

日本是世界上炼铁技术最先进的国家,也是生铁产量第二大国。日本的新日

铁和JFE产量规模排名世界第二和第三位。近几年,日本的高炉炼铁出现了以下一些新趋势。

一、高炉的大型化

日本在高炉大型化方面远远走在世界前列。日本目前运行的高炉为28座,其中4000m3以上的高炉达到22座,5000m3以上的有12座,平均炉容已达到4050m3。新日铁大分厂1号、2号高炉炉容为5775m3,是世界上最大的高炉。日本的大型高炉中,新建的很少,除2004年9月29日投产的住友公司鹿岛厂新1号高炉(5370m3)是日本近25年来唯一新建的大型高炉外,其余均是通过大修

进行扩容的。日本4000m3以上高炉统计见表1。

3

二、高炉的长寿技术

日本高炉的长寿技术领先于世界。从20世纪80年代后,日本高炉开发了一

系列长寿技术,高炉寿命显著延长。仓敷厂2号高炉寿命达到了24年,千叶厂6号高炉寿命为20年,住友和歌山厂4号(2700m3)和5号高炉(2700m3)开炉至今已分别运行了26年和20年,现在这两座高炉仍然在生产。最近开炉的高炉一代炉役设计寿命均在25年以上。

日本部分大型高炉长寿情况见表2。

注:和歌山厂4号高炉计划2009年7月停炉,届时一代炉龄将达27年,创高炉长寿新记录。

炉身下部和炉缸是限制高炉寿命的关键部位。近年来,日本高炉在炉身下部和炉缸部位采取了一系列长寿措施,改进了炉身冷却设备和炉底砖,实现了长寿化。比如,在高炉炉底以及炉腹至炉身上部全部采用铜冷却壁,炉身冷却壁可以在炉身修补过程中进行更换;在炉底侧壁引入了制冷机以强化冷却。炉底砖的改进主要从减少微气孔以提高抗铁水浸透性和提高热传导率两方面进行,最近又开发出含TiC的碳砖。

三、高炉的大修技术

近 10年间,日本有近20座高炉大修开炉。高炉大修时采用的最主要技术除了扩大炉容、长寿技术、出铁场作业自动化外,最主要的是缩短大修工期技术。

为了尽可能减少大修造成的减产,日本高炉开发了一种可缩短大修工期的大块施工法,即将高炉按垂直方向分解为3-4段,进行整体拆除、预制和安装,拆除时将砖衬和冷却装置一起吊下,安装时预先组装好砖衬后再整体装入炉壳内,最大限度地缩短大修工期。由于采用这种大块施工法,大修工期可从130天左右缩短到90天,甚至缩短至60天。福山厂5号高炉2005年大修时采用大块施工法,大修工期仅58天。因为预先在良好的操作条件下进行炉壳焊接作业,所以不仅提高了焊接质量,而且对安全施工也有很好的效果。

另外,为了降低大修费用,扩容时主要采取扩大炉径的方式,高炉的高度基本不变。这样,高炉的基础和框架等没有太大的变化。高度低、炉径大的高炉,料柱的透气性好,有利于提高产量。

炼铁的发展

炼铁的发展 由于人类对铁的需要量不断增加,人们把视线投向了地球本身,希望能在地球中找到所需要的铁,而不再是坐等“天外来客”的馈赠。为此人们作了不懈的努力。当人们学会了从矿石中提炼出铁以后,青铜时代就让位于铁器时代。在人类历史上,起过革命作用的原材料中铁应该居首位,无论在世界的哪个地区,冶铁技术的发明都是划时代的重大事件。 据研究,铁的大量出现是在公元前八世纪。在霍萨巴德的王宫贡物中(公元前720-705年)就发现了160吨铁,其中多是铁棒。公元前800年,欧洲转入早期铁器时期。炼铁知识传到不列颠,大约是在公元前500年。与此同时,约公元前400年,已由伊朗自东传到印度,也可能传到中国。欧洲早期铁器时代带触角木剑柄的剑与中国商周青铜剑之间就有很大的相似性。 制铁技术分为两部分:即冶炼和热锻。可能首先掌握并用于陨铁。 纯铁的熔点为1540℃。这个温度在公元19世纪前是不可能达到的。因此早期生产的锻铁都是固态铁。用木炭火在约1200℃的温度下,把铁矿石还原成基本上是纯的固态铁。还原出来的铁呈团块状,称为“坯铁”。这是一种固态铁、渣和未烧完木炭屑的混合物。有时要把这种坏铁破碎,靠敲击使小铁块相互分开。这种小铁块可以与其它部分区别开来。因为它们是可锻的,在敲击下变平。然后把它们放在锻炉加热,经过热锻,小铁块就能被锻接成大块。 早期的冶铁技术,大多采用“固体还原法”,即冶铁时,将铁矿石和木炭一层夹一层地放在炼炉中,点火焙烧,在650 ̄1000℃温度下,利用炭的不完全燃烧,产生一氧化碳,遂使铁矿石中的氧化铁被还原成铁。但是由于炭火温度不够高,致使被还原出的铁只能沉到炉底而不能保持熔化状态流出。人们只好待把铁炼成,炼炉冷却后,再设法将铁取出。这种铁块表面因夹杂渣滓而显粗糙,有的还不如青铜坚韧。后人们发现,炼出的铁反复加热,压延锤打,才能柔韧不脆。人们还发现再将红热的锻铁猛淬入冷水会变成坚韧的好铁,这种铁比青铜好。 最原始的炼铁炉是碗式炉。它只不过是在地上或岩石上挖出一个坑,风可以从鼓风器通过风嘴直接鼓入,碎矿石和木炭混装或分层装在烧红的炭火上,最高温度至少应达1150℃。这种炼炉没有出渣口,炉渣向下流到底部结成渣饼或渣底,有时则结成圆球,即渣球或渣粒。坯铁留在渣上面,在冶炼过程结束后,打

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

钢铁生产新技术

钢铁生产新技术 摘要:无论是长流程钢厂还是短流程钢厂,其消耗大量原燃辅料生产出钢铁产品的特点,决定了其必须把节能减排作为实现“绿色钢铁”和可持续发展的重要内容。钢铁工业做好节能减排工作,除了要拥有先进的管理理念,不断采用节能减排新技术设备、优化现有工艺设备也是重要的方面。钢铁生产流程复杂,生产工序比较多,包括烧结、焦化、炼铁、炼钢、连铸、热轧和冷轧等,只有做好每个工序的节能减排工作以及工序之间的科学衔接,才能真正实现钢铁生产的节能减排。 关键词:钢铁,生产流程,节能减排,科学衔接 正文:从广义的角度来看,炼铁生产分为三个工序:烧结、焦化和炼铁。在钢铁企业中,炼铁系统的能耗约占70%左右,单是高炉就占了总能耗的50%左右。另外,烧结、焦化系统生产过程中产生的排放物对环境也会造成较大的影响。因此,做好炼铁生产的节能减排工作,对降低吨铁成本、提高钢铁企业的竞争力、建设节约型企业、改善环境均具有非常重要的意义。 1、烧结工序 对于烧结过程来说,除尘和废气处理是比较重要的两个方面。其中,废气处理是目前钢铁行业面临的一个重大课题。除一氧化碳、二氧化碳、硫氧化物和氮氧化物这类典型的燃烧产物外,烧结过程中还会产生二口恶英、呋喃等产物,其回收处理需要安装综合气体净化设备。近年来,有关方面不断进行工艺技术创新,谋求先进适用的解决方案,并取得一系列进展。 [1] MEROS工艺。MEROS(Maximized Emission Reduction of Sintering)通过一系列处理工艺,能将烧结废气中的粉尘、酸性气体、有害金属元素和有机复合物等脱除到令企业满意的水平。MEROS工艺由下述工序组成:吸收剂喷入烧结废气流当中,在调节反应器内进行废气调节,在布袋除尘器内进行废气除尘,粉尘循环返回废气流中,用增压风机从MEROS系统中抽取烧结废气。2005年~2006年,经过在建成的示范工厂进行的大量试验,验证了MEROS工艺在技术和经济上的可行性。随着工业规模的MEROS装置的运行,工厂的排放不仅可以满足今天的环保标准,而且还可以满足将来的环保标准。 eposint系统。在eposint工艺中,从选定风箱中抽出烟气用于再循环。该工艺可以灵活应对各种不同运行工况,并可极大地减少从烟囱外排废气中的粉尘和污染物单位排放量。 EOS系统。EOS是一种回收利用烧结工序废气的优化排放的烧结技术系统,在有关钢厂应用后表明,可明显减少废气排放量。 [2] 此外,日本有关钢厂还开发成功高温还原性能好的低二氧化硅、低氧化镁和低氧化铝的烧结矿技术,保证了高炉的顺行和节能。同时,利用环形炉对高炉不便利用的含锌高的粒尘,在脱锌处理的同时制成直接还原球团矿,加入高炉后比烧结矿的节焦效果更好。 2、焦化工序 对于焦化工序来说,近年来比较成熟的先进技术有: 干熄焦。干熄焦是干法熄灭炽热焦炭的简称,英文缩写为CDQ。干法就是不用水熄红焦,其原理是用冷惰性气体在专有的容器内与炽热的红焦进行热交换。焦炭冷却后,循环的惰性气体将焦炭热量带出并进行回收,对钢铁企业有较大的节能和环保效益。 煤干燥和预成型技术。该技术可以实现节能和扩大廉价非黏结煤的利用。 SCOPE21焦炉。该新型焦炉是为了提高焦炉生产效率而开发的新一代焦炉设备,该焦炉设备可以大幅缩短生产时间,生产效率较一般焦炉提高2.4倍,能源消耗降低20%。[3] 3、高炉炼铁 对于高炉生产而言,近年来有以下几个趋势值得关注: 大型化、高效化。这是近年来以及未来高炉设备的主要发展趋势。目前,世界上5000

我国高炉喷煤技术的现状及发展趋势

邯钢1000m3高炉提高喷煤比的探索 刘伟,樊泽安,王飞,徐俊杰 (河北钢铁集团邯郸钢铁公司炼铁部,河北邯郸056015) 摘要:邯钢4#高炉(有效容积1000m3)经过不断探索,加强原燃料管理、高炉的操作和维护,使喷煤比逐月提高、焦比和综合焦比不断下降。喷煤比由2008年的130.6 kg/t提高到2009年6月的163.1 kg/t,焦比由361kg/t下降到了305kg/t,综合焦比由524kg/t下降到了500kg/t,取得了良好的经济效益。 关键词:高炉;喷煤比;探索 引言 邯钢4#高炉有效容积917m3,2007年、2008年虽然炉况长期稳定顺行,但由于燃料变化比较大,有时甚至一天就变换数次焦炭,各项指标未达到最好水平,平均日产2600t上下,一级品率70%,焦比361kg/t,煤比130kg/t,焦丁比16kg/t风温1100℃,平均[Si]0.61%。进入2009年以来,4#高炉以“低耗高产”举措应对当前市场挑战,进一步探索好的经济技术指标成效显著,通过监督改善原燃料质量、适时调整煤气流分布、降低入炉焦比、提高富氧、增加喷煤、高风温协调互补、适当提高炉渣碱度等措施,基本实现了全捣固焦冶炼的长期稳定顺行,并实施了低硅冶炼,取得了很好的经济技术指标。2009年4月以来,平均日产达到2700t以上,利用系数达到3.0,一级品率93.45%,焦比降到305kg/t,煤(全无烟煤)比达到160kg/t以上,中焦比达到18kg/t,焦丁比达到16kg/t,风温达到1135℃,平均[Si]达到0.43%以下。通过优化高炉操作技术经过不断实践和探索,在喷吹全无烟煤的情况下煤比达到160kg/t以上实属难得(见表1)。 表1 4高炉生产指标 利用系/t. (m-2. d-1) 煤 比 /kg.t-1 入 炉焦比 /kg.d-1 焦 丁比 /kg.d-1 中 焦比 /kg.d-1 风 温/℃ R 2 [ Si]/% 20 08 2.88 6 1 30.6 361 14 20 1 107 1 .15 .61 20 09.4 3.0 1 51.7 327 16 18 1 132 1 .13 .44 20 3.001308 17 18 110

炼铁高炉冶金技术的应用与发展

炼铁高炉冶金技术的应用与发展 改革开放以来,随着我国经济社会的高速发展,我国的冶金技术取得了巨大的进步,使得冶金炼铁效率得到了极大的提高,钢铁的生产质量也有了质的飞跃,有效的支撑了我国社会主义事业的发展,满足了经济社会发展的需要。 标签:炼铁高炉;冶金技术;应用;发展 前言 近年来,我国炼铁行业在经济快速发展的带动下,各方面都取得不错的进步,冶金技术在炼铁高炉中的普遍应用,更是明显的提高了经济效益,不仅促进了炼铁的发展,还促进了炼铁技术向节能环保方面的发展,在一定程度上提高了企业的竞争力,适应了经济市场的环境变化。因此,对炼铁高炉中的冶金技术有必要进行总结和进一步研究。 1 冶金技术及我国高炉炼铁的发展概况 从上世纪70年代末,我国全面引进先进的钢铁生产装备和技术开始,到现在发展了30多年,其技术日臻完善,提高了钢铁生产的效率。进入新世纪以来我国高炉炼铁利用系数呈现先升后降的趋势,显示出我国钢材业由供不应求逐渐转向供大于需的局面。并且根据有关数据显示,随着市场竞争和环保的需求,我国高炉炼铁的燃料也出现喷煤比高,焦比和燃料比降低的态势。而一些先进的高炉炼铁的燃料比已经低于490.00kg/t,焦比将近300kg/t,而高炉煤比则控制在一定的范围内,说明随着先进的冶金技术大规模的应用于高炉炼铁,我国高炉炼铁技术已经有了一个质的提升。 冶金技术主要是指从铁矿石等矿物中提取金属及其金属化合物,然后使用科学的加工方法将提取出的金属或其化合物制成具有一定性能的金属材料的过程和工艺。通常,常见的现代冶金技术主要有三种,即湿法冶金技术、电冶金技术和火法冶金技术。 首先,湿法冶金技术是指在溶液里进行冶金的过程,其温度一般要求不高。湿法冶金技术的步骤主要有:第一,浸出,是指使用能与矿石中金属反应的溶液,对矿石进行浸泡反应,金属通常以离子的形式呈现在溶液中,然后提取分离出来的金属。需要注意的是,在对比较复杂的矿石提取时,需要对矿石进行预处理,使金属成为混合物后在进行浸出提取。第二,净化,该过程主要对分离出来的含有金属的溶液进行处理,去除杂质的过程。第三,制备金属,对不含杂质的溶液进行电离、氧化还原反应等方法提取出所需要金属的过程。 其次,电冶金技术是指利用电能将所需金属提取出来的一种方法。电冶金技术可以分为电热和电化冶金两种,电热冶金主要是指将电能转化为热能来提取金属的过程,而电化冶金技术是指将溶液或熔体中的金属通过电化学反应进行提

北欧国家高炉炼铁技术发展趋势

北欧国家高炉炼铁技术发展趋势 1 技术发展 芬兰鲁基(Ruukki)公司的1号高炉于2010年大修,2号高炉将于2011年大修。另外,2011年烧结厂关闭后,这两座高炉将全部使用球团矿冶炼。 在钢铁联合企业,高炉炼铁是能耗最高的环节。为了保持竞争力,必须减少高炉能耗和还原剂的使用。例如,鲁基和瑞典欧维克(Ovako)公司开发了喷吹重油技术来降低焦比,而瑞典SSAB公司乌克瑟勒松德(Oxelosund)厂采用了氧煤喷枪。同时,由于使用了高品位的铁矿石,北欧高炉普遍实现了低渣量冶炼。 2 氧煤喷枪 喷吹燃料代替部分焦炭,可以大幅度提高高炉利用系数和能源效率。喷吹燃料的高效燃烧是根本性的,是高喷吹量的主要问题。为了改善煤的燃烧,瑞典国家冶金研究院于20世纪90年代初开发了氧煤喷枪。通过单风口喷吹试验,SSAB公司乌克瑟勒松德厂4号高炉全部更换为氧煤喷枪。氧煤枪是内管走煤粉、外管通旋流氧气的同轴套管式直管,氧气对枪管同时起冷却作用。单风口大量喷煤试验表明燃烧十分稳定。乌克瑟勒松德4号高炉换成氧煤枪后,喷煤量由35kg/t增加到喷煤系统最大能力135kg/t。SSAB报告显示,在没有炉顶加压和没有无料钟布料条件下,高炉操作稳定,燃料比(煤+焦)较低,约为465kg/t。另外,由于减少了炉尘量,电除尘效果得到改善,高炉透气性提高。 试验高炉 1997年瑞典矿业公司(LKAB)投资500万欧元,在位于吕勒奥市的瑞典国家冶金研究院建造了试验高炉,这也是北欧研发投入最大的项目。该试验高炉工作容积为9立方米,日产铁水35吨。虽然当时建造试验高炉的目的只是为了LKAB公司内部球团的研究开发,但经过5个炉役的试验,其潜能就得到了发挥。LKAB公司和客户以及其他厂商(包括北欧和欧盟国家)在此做了大量研发项目的试验,包括矿石、焦炭、新型无料钟炉顶、高喷油和富氧、杂料喷吹、测量技术等,至今共进行了25个炉役的试验,每次试验平均运行8个星期。 风口喷吹造渣剂 风口喷吹碱性造渣剂是很有意义的技术开发,工作人员对喷吹高炉炉尘和转炉渣进行了实验室研究和半工业试验。 工作人员在试验高炉和SSAB公司吕勒奥3号高炉上进行了高炉炉尘喷吹试验,主要目的是为了循环利用和回收炉尘中的碳等能源。尽管存在管道磨损问题,但试验表明了该技术的可行性和有效性。喷吹转炉渣时,沿高炉高度方向,从炉腹到风口,炉渣的化学性能得到改善,特别是在使用高铁球团的低渣量冶炼时更是如此。通过风口喷吹造渣剂可以消除极端炉渣成分不合理而对高炉操作产生的影响。煤粉中的酸性灰分在回旋区外围形成不透液的凝固层,阻碍风口高度的煤气流分布。 同样,在使用高铁球团时加入石灰石和其他碱性熔剂,由于炉渣碱度特别高,炉腹渣的黏度和熔点会升高,也影响气流分布。通过喷吹转炉渣和其他碱性物料,可调节高炉炉渣成分,消除风口酸性渣和炉腹碱性渣的极端状况。 在LKAB试验高炉上成功进行了转炉渣喷吹试验,吨铁喷吹量为36.9kg,取得了渣比从136kg/t降低到101kg/t、焦比下降11kg/t的良好效果。同时,铁水硅含量降低了28%,并保持稳定。此外,排碱量和铁水硫含量并未受到明显影响。研究表明,与单独喷煤相比,煤粉和转炉渣混合喷吹会使回旋区疏松、深度变长。影响大规模试验的因素是须将大量转炉渣磨细。 2 含铁原料有效利用 目前北欧国家炼铁所用的铁矿石绝大部分来自瑞典LKAB公司位于拉普兰地区(Lapland)的高品位磁铁矿,该矿区的大规模开采始于20世纪初期,球团矿生产始于1955

近年日本炼铁工序的节能环保技术简介汇总

近年日本炼铁工序的节能环保技术简介 日本在钢铁发展达到顶峰的上世纪70年代,曾拥有高炉~70座,年炼铁能力~1.1亿t。石油危机以后从节能的角度出发,对小型落后的高炉采取了大幅度关停的措施,到1995年仅保留高炉31台。最为突出的是新日铁釜山厂,由钢铁联合企业变为只剩1个线材工厂并依靠外部供坯生产的钢铁厂;广烟厂和堺厂由于高炉关停后只有靠转炉吹氧喷煤熔化废钢铁炼钢。对保留生产的高炉也全面实施了节能环保技术,如高炉顶压发电、热风炉利用余热提高风温、烧结机利用余热发电以及用喷煤粉全部代替了喷油,并达到了100kg/t以上的水平,这些措施均对能耗达到国际先进水平作出了很大的贡献。同时在含铁粉尘用于烧结机配料和高炉渣用于水泥等方面也进步很快,1995年的利用率已达到96%左右。 1995年以后为了贯彻“世界21世纪议程”中提出的可持续发展方针以及以减排CO2为中心的节能环保企业2010年志愿计划,除了开展高炉喷吹废塑料代煤和开发直接还原铁技术以合理利用资源和能源外,还利用90年代后期钢铁需求疲软导致高炉低利用系数生产的有利时机,大力开发扩大喷吹煤粉以代焦炭而降低成本的技术,部分高炉月度喷煤比高达254~266kg/t铁,具体情况如表1所示。 表1 日本喷煤比较高的高炉各项指标 由此,在1998年和1999年,日本全国喷煤比也创造了129.5kg/t和 132.9kg/t的历史新纪录。2000年以后随着钢产量和生铁产量的上升而高炉又减少了3座(中山制钢关停2×850m3高炉和JFE钢铁千叶分厂关停2000m3高炉),由于利用系数的提高,喷煤比开始略有下降,具体见表2。 表2 近年日本高炉产量和燃比指标的变化 由于高炉开工座数由2001年之前的31座和平均炉容3800m3,减少为2005年的28座,加上不少高炉大修扩容,2005年平均单炉容积为4004m3,最大炉容为5775m3。2005年全国的平均利用系数为2.03。 为了适应今后钢产量继续增长对铁水产量的要求,日本钢铁企业鉴于高炉的传统炼铁工艺乃高能耗工艺且节能潜力已接近极限,因此不愿新建高炉而采取了扩大废钢铁利用量的措施。除无高炉的新日铁广烟厂和堺厂采用了转炉吹氧喷煤化铁炼钢外,有高炉的新日铁名古屋厂和JFE钢铁京滨厂正在筹建用焦炭熔化废钢铁的50万t/a竖炉中,能耗和CO2排放量仅为高炉产铁水的1/2,投资仅百亿日元,也比新建高炉低,且可充分利用日本废钢铁有余的资源优势。 鉴于高炉顶压发电、利用余热、提高风温和改善原燃料等常规节能技术我国各厂都在推广应用,故不在此进行介绍。本文重点介绍具有日本特色的废物循环利用技术和直接还原铁生产技术,以供大家参考。

非高炉炼铁工艺发展现状

万方数据

万方数据

非高炉炼铁工艺发展现状 作者:王振智 作者单位:中冶天工上海十三冶建设有限公司设备安装分公司,上海,201900 刊名: 中国高新技术企业 英文刊名:CHINA HIGH TECHNOLOGY ENTERPRISES 年,卷(期):2011(2) 参考文献(7条) 1.王保利发展直接还原铁是解决废钢资源短缺的有效途径 1998(02) 2.钱晖;周渝生HYL-III直接还原技术[期刊论文]-世界钢铁 2005(01) 3.Oehlberg R J;Arthur G.McKee FIOR process for direct reduction of iron ore 1974(04) 4.阴继翔煤基直接还原技术的发展[期刊论文]-太原理工大学学报 2000(03) 5.Borl é e J;Steyls D;Colin R COMET:a coal-based process for the production of high quality DRI from iron ore fines 1999(03) 6.余琨原矿原煤冶炼-21世纪与高炉竞争的炼铁方式[期刊论文]-东北大学学报(自然科学版) 1998(04) 7.徐国群Corex技术的最新发展与发展前景[期刊论文]-炼铁 2004(23) 本文读者也读过(7条) 1.宁振.郑志强.NING Zhen.ZHENG Zhiqiang浅谈非高炉冶炼技术的发展前景[期刊论文]-科技传播2011(11) 2.崔胜楠.杨吉春对非高炉炼铁技术发展现状的综述[期刊论文]-科技信息2011(6) 3.唐恩.周强.翟兴华.阮建波适合我国发展的非高炉炼铁技术[期刊论文]-炼铁2007,26(4) 4.储满生.赵庆杰.CHU Man-sheng.ZHAO Qing-jie中国发展非高炉炼铁的现状及展望[期刊论文]-中国冶金2008,18(9) 5.庞建明.郭培民.赵沛.Pang Jianming.Guo Peimin.Zhao Pei煤基直接还原炼铁技术分析[期刊论文]-鞍钢技术2011(3) 6.花皑.崔于飞.吴培珍.李可卿.HUA Ai.CUI Yu-fei.WU Pei-zhen.LI Ke-qing直接还原铁的制造工艺及设备[期刊论文]-工业加热2011,40(1) 7.周渝生.钱晖.张友平.冯华堂非高炉炼铁技术的发展方向和策略[期刊论文]-世界钢铁2009,9(1) 本文链接:https://www.360docs.net/doc/c74806191.html,/Periodical_zggxjsqy201102025.aspx

钢铁冶炼技术的发展

钢铁冶炼技术的发展 我国古代冶铁术发展得很早。中国和埃及、巴比伦、印度都是最先进入铁时代的国家。中国最早在什么年代开始会炼铁尚无定论,但从考古发现知道,早在3300年前,人们就有意识地使用铁了。1972年,河北出土一把商代的铜钺,铜钺上有铁刃,已经全部锈成氧化铁。其年代在公元前14世纪前后,属殷墟文化早期。这说明当时的人们认识到了铁的部分功能,并且能够进行锻造加工。还有一些考古发现的那个年代的铁刃铜兵器。这些发现都表明,最迟在商朝中叶,我国人民已经掌握了铁的锻造工艺。从考古发掘的结果来看,我国最早人工冶炼的铁器约出现于公元前6世纪,即春秋末期。出土铁器中农具和手工业工具占绝大部分;铁器的质地既有锻成的块炼铁,也有铸造的生铁。人类冶炼铁矿石制作铁器,推测是在公元前1500~2000年间。这个时期的炼铁方法,是把铁矿石放在简单的火坑里,加上木炭燃烧加热升温,得到的温度在铁的液化点之下,产品铁块中含有渣,再把铁块中的渣用锻打的方式挤出,锻成块炼铁。这种由铁矿石直接得到产品的方法实际上就是直接炼铁法。为了得到液态的铁水,需要提高炉子的温度,想提高炉温就需要增大炉子高度,从而产生了现代高炉的雏形。炉子高了,炉内的料层对空气流通的阻力增大,因此必须强制向炉内鼓风,从而发展出了各种各样的鼓风方式。到了15世纪(意大利文艺复兴时代),强制送风的高炉(熔矿炉)在莱茵河上游出现。用这种方法得到了熔融状态的铁水。由于这种方法使用大量的木炭作为还原剂及燃料,造成了森林的枯竭,为此1709年前后英国人A.Darby开发出了用煤制造的焦碳代替木炭的高炉,这种还原方法一直持续至今。另外,继续增大鼓风效率,使得原始炼铁炉的高度继续增加,渐渐演变成为现代的高炉。现代的巨型高炉和最早形成的高炉相比,规模、生产率和装备条件上有天壤之别,但冶炼原理仍然基本相同。为了使铁能够锻造,需要把生铁中所含的碳去掉一部分或大部分,于是出现了当时的炼钢法—炒钢法。我国东汉时期就有了炒钢的文字记载,地下发掘出的实物也证明,至迟在东汉时炒钢就出现了。生铁中的碳被氧化后熔点升高,而温度升高炉内金属逐渐成为半熔的状态,取出锻打成坯,挤出其中的渣子。含有一些碳的就是钢,碳非常低的就是熟铁。由于很难控制金属中的碳,大多一直炒到底成为熟铁,炒钢法也称为炒熟铁法。炒钢法的出现标志着钢铁冶炼技术进入了一个新阶段—“二步法”诞生,也就是铁矿石在高炉中用焦炭还原并且渗碳成为生铁,生铁经过氧化脱碳成为熟铁或钢。欧洲产业革命迎来了钢的大生产时代,发明了几种钢的熔融精炼法。1856年发明酸性底吹转炉法(贝塞麦法)、1879年发明碱性底吹转炉法(托马斯法)、1856年发明平炉法(西门子-马丁法)、1899年发明电炉法(埃鲁法);从此进入了以铁水作为原料高效精炼钢水的大生产时代。

直接还原炼铁技术的最新发展doc

直接还原炼铁技术的最新发展 作者: 胡俊鸽,吴美庆,毛艳丽, 钢铁研究 摘要撰写人TsingHua 出版日期:2006年4月30日 直接还原铁可以作为电炉、高炉和转炉的炉料。DRI代替优质废钢更适合于生产对氮和有害元素有严格要求的钢种,如用于石油套管、钢丝绳、电缆线等的钢种。近年,由于钢铁市场升温,废钢资源呈现世界性紧缺。2003年,我国钢铁企业生产回收的废钢铁和非生产回收废钢铁合计为1502万t;而全年炼钢消耗废钢与辅助炼钢消耗废钢之和为4 750万t。显然,国内的废钢缺口很大。未来几年,随着国际市场废钢资源的短缺,世界对废钢的需求量将不断增长。当今,在废钢资源全球性紧缺、国际市场价格频频上扬的情况下,对于我国来说,寻找废钢替代品已迫在眉捷。直接还原铁和热压块铁是最好的废钢替代品。1直接还原炼铁技术发展状况2003年世界直接还原铁总量为4900万t。比2002年增加了10%,不同工艺所生产直接还原铁所占份额如下:Midrex 为64.6%,HyLⅢ为18.4%,HyLⅠ为1.3%,Finmet为5.2%,其他气基为0.4%,煤基为10.2%。直接还原工艺根据还原剂不同可分为气基和煤基。气基直接还原工艺中,竖炉Midrex、Arex(Midrex改进型)和HyLⅢ工艺、反应罐法Hy LⅠ、流化床法Fior和Finmet工艺,都已获得了工业应用,流化床法Fior、Cir cored和碳化铁法在工业上应用不久就停产了。煤基直接还原法中,获得工业应用的有回转窑法和转底炉法(Inmet-co、Fastmet、Sidcomet、DRylron),新开发的多层转底炉Primus工艺已于2003年2月投产。 1.1气基直接还原工艺气基还原工艺可分为使用球团矿或者块矿的工艺和使用铁矿粉的工艺。各种气基直接还原铁工艺发展状况如表1所示。表1各种气基直接还原铁工艺发展状况工艺装备工艺特点所用原料目前状况研究发展F ior(委内瑞拉)4个流化床反应器生产能耗高于竖炉Midrex和HyLⅢ铁矿粉Side tur厂于1976年投产,1985年开始,年产量达到35万t~41万t。由于市场原因于2000年停产。由委内瑞拉和奥钢联进一步发展成FinmetFinmet(奥钢联和委内瑞拉)4个流化床反应器铁矿靠重力从较高反应器流向较低反应器直接使用矿粉,是Fior 的进一步改进,比Fior能耗低、人员需求少。与Fior相比,其还原气体中H2含量少,CO没被氧化去。在Finmet工艺中,矿粉在流化床第一段被还原过程产生的热气体预热,其较高的CO含量可以提高热平衡,并使HBI的w(C)达3%。铁矿

日本钢铁技术现状及二氧化碳减排发展

日本钢铁技术现状及二氧化碳减排发展 来源:王小天 文章发表时间:2010-04-06 全球变暖是世界各国面临的一个严峻问题。气候变暖影响着人类的生存和发展,应对这一难题是世界各国共同的责任,因此必须站在新的高度强调国际间的技术合作,以及向发展中国家转让技术。在二氧化碳减排方面,不能低估炼铁工艺在整个钢铁工序中的作用。可以毫不夸张地讲,钢铁工业未来的发展依赖于未来炼铁技术的进步。因此,既要从短期着手又要从长远角度出发,针对局部区域和全球范围研究开发炼铁工艺技术。在日本,钢铁工业面临降低能耗的任务是到2010年能源消耗在1990年的基础上下降10%。为实现这一目标,日本钢铁业者一直致力于炼铁新工艺、新技术的开发。 1日本炼铁技术现状 自1983年开始应用煤粉喷吹技术直至2000年,日本高炉喷煤比在不断增加。在此期间,主要的经营目标之一就是大量使用廉价原料,例如从澳大利亚进口了大约50%的铁矿石,渣量大,大量劣质煤的使用虽然降低了生产成本,但导致还原剂消耗普遍超过500kg/t。然而,由于全球气候变暖问题的日益加剧和产能提高的需要,自2000年起至2007年,高炉操作目标已经转为降低还原剂消耗。降低还原剂消耗的工作主要集中在大型高炉上,特别是由于原燃料的变化,高炉操作需要做出相应调整。2007年日本喷煤比接近130kg/t,低于其它国家。主要原因是日本所用焦炭质量发生了变化。如果盲目提高喷煤比,可能会影响高炉较高的利用系数。 但是从2008年下半年开始,由于全球经济危机的爆发,高炉操作条件彻底改变,高炉利用系数也大幅度降低。未来经济复苏的前景仍不明朗,一些高炉已经关停。所以近期钢铁行业的二氧化碳排放量显著降低。尽管如此,降低高炉还原剂消耗仍然被视作重要操作目标之一。 2 针对二氧化碳减排的研究 1996年,日本铁钢联盟JISF根据《京都议定书》制定了环境保护行动计划,把减少温室气体排放作为应对全球变暖的措施之一。因此,该计划主要应用了以下温室气体减排措施: 1) 在1990年的基础上,到2010年实现钢铁行业能耗下降10%; 2) 通过政府建立回收机构,实现高炉回收利用100万t废塑料。 据测算,降低能耗10%相当于减少二氧化碳排放量9%。同样,高炉回收利用100万t废塑料相当于减少二氧化碳排放量1.5%。

浅谈我国炼铁技术现状

浅谈我国炼铁技术现状 摘要:随着重工业的不断发展,各种大型的设备也不断的投入了各种生产之中,高炉便是其中一种。高炉对焦炭质量的要求日益提高。主焦煤的短缺,已制约了中国高炉大型化的进程。中国在大力推广捣固炼焦、干熄焦、煤调湿等技术,以缓解我国主焦煤资源的短缺,并满足高炉的需求。 关键词:我国炼铁;技术现状 一、中国炼铁工业发展现状 近5年来,中国炼铁工业处于高速发展阶段,全国铁生产量从2005年的3.43亿吨,增长到2009年的5.43亿吨,增长了2.00亿吨,增幅达58.18%。在这5年期间,中国炼铁生产技术也取得了长足进展。2010年前十个月全国铁产量为4.96亿吨,比上年增8.27%,预计全年可接近6亿吨。 1、重点钢铁企业高炉焦比不断下降 焦炭粉末多会造成高炉炉料透气性变差,压差升高,风量减少,不允许多喷吹煤粉;同时,粉末增多,也容易被高炉煤气带出炉外,造成高炉除尘灰中含碳量增加,也就造成焦炭的高炉利用率的下降,焦比升高;焦炭易粉化,会造成炉缸内焦炭粒度变小,甚至会有较多的焦末,这会造成炉缸不活跃,直接使高炉鼓的风吹不透炉缸中心,还会使炉缸中心容易堆积;一些中小高炉有过使用m10指标差的焦炭,曾出现高炉休风后,不易恢复风量,延长炉况处理时间的案例。也曾出现过某座小高炉全使用土焦炼铁,休风后,就吹

不进风的现象。就是因为焦炭粉化后,炉缸内焦炭之间没有多少空隙。 2、重点钢铁企业喷煤比得到提高 提高高炉喷煤比是炼铁系统结构优化的中心环节,是世界炼铁技术发展的主流。高炉喷吹煤粉是节约焦炭、降低炼铁成本的重要措施之一,同时可以改善钢铁工业能源结构,缓解我国主焦煤资源短缺的矛盾。多喷煤,少用焦炭,就可以少建焦炉,从而降低炼铁系统的建设投资和生产运行费用,并减少焦炉生产过程中对环境的污染,还可大大提高钢铁企业的劳动生产率和市场竞争力。 3、重点钢铁企业热风温度不断提高 重点钢铁企业高炉热风温度是连年提高,且增幅较大,有力地促进炼铁焦比的不断降低。热风温度在950~1050℃区间时,升高100℃,可降低炼铁焦比约15kg/t;风温在1050~1150℃区间时,升高100℃,可降低炼铁焦比约10kg/t。高风温是降低焦比的有效手段。 热风温度提供的热量是由用45%高炉煤气燃烧换来的,且钢铁企业内拥有大量的高炉煤气。所以说热风是个炼铁廉价的能源,要得到充分利用。高炉炼铁所需要的热量有78%是由碳素(焦炭和煤粉)燃烧提供,有19%是由热风来提供,约3%是由炉料化学热提供。我们炼铁工作者要珍惜高风温有降焦比的作用! 4、中国加快了高炉大型化进程 据统计,中国现有高炉均为1400多座,大于1000 m3以上容积

我国钢铁工业主要技术发展方向_王国栋(上)

世界金属导报/2017年/12月/5日/第F01版 我国钢铁工业主要技术发展方向 王国栋 编者按:本报今年11月21日第44期刊登了对中国工程院院士王国栋的专访。王院士在访谈中就钢铁工业技术发展方向、存在的问题、解决问题的途径等进行了系统阐述。本文是对上文中提出的钢铁工业应当主要把握的技术发展方向的进一步深化,详细介绍了11个钢铁技术发展方向。 钢铁工业作为最主要的原材料工业,最根本任务就是以最低的资源能源消耗,以最低的环境生态负荷,以最高的效率和劳动生产率向社会提供足够数量且质量优良的高性能钢铁产品,满足社会发展、国家安全、人民生活的需求。要完成这样一个任务,我认为,钢铁工业应当把握以下几个主要技术发展方向: 1流程创新绿色发展 1.1钢铁生产全流程一体化控制 钢铁工业是典型的流程工业,最终产品质量的优劣,是由全流程的各个环节共同确定的。要想获得稳定、优良的材料质量,必须针对每一个工艺环节,进行全流程、一体化控制。控制要素包括温度(含冷却速度)、变形条件、成分、夹杂物(洁净度、种类)控制水平、排放、能源消耗等等; 1)减量化、低成本、低排放的钢铁材料与生产工艺设计 谈钢铁材料开发,离不开材料开发的四面体关系。材料的“成分、工艺、组织、性能”这四个要素构成的四面体关系告诉我们,材料的工艺和成分决定材料的组织与性能。过去通常的办法是:如果材料的性能达不到要求,可以增添某一种或某几种合金元素,或者采用后续的热处理工艺进行调整。这两种办法都是“增量化”的办法,或者消耗昂贵的合金元素,或者消耗能源与资源。 但是,材料设计的绿色化新理念要求我们做到“减量化、低成本、高性能”。在钢铁材料开发过程中,我们要把这个绿色化新理念全面融入四面体关系中。要做到:①资源节约型的成分设计,尽量减少合金元素含量,或使用廉价元素代替昂贵元素;②要采用节省资源和能源、减少排放、环境友好的减量化加工工艺方法;③从市场中发现新的组织和性能需求,逆向倒推,促进工艺技术创新和新型材料的创制;④量大面广产品的升级换代和高端产品的规模化生产,都要遵循绿色化理念。由此可见,关键工艺技术的创新与开发,在新材料的开发中占据了越来越重要的地位,材料和产品开发特别要注重关键共性工艺技术的创新。 我们现在使用的钢铁材料和它们的生产工艺,是过去几十年来不断开发出来的,由于开发当时技术水平和支撑条件的限制,在节省资源和能源方面以及减少排放和污染方面考虑不周,甚至未予考虑,急切需要改进、甚至颠覆的地方很多,技术创新、提升水平的空间很大。今天,环境、生态问题已经迫在眉睫,资源、能源问题更是刻不容缓,过去几十年发展起来的技术必须进行脱胎换骨的改造与提升;另一方面,技术进步和研究条件已经发生了翻天覆地的变化,为对这些产品及其生产过程进行改造甚至重造,提供了极好的支撑条件。我们已经有条件进行这样一场革命! 2)实行“精料方针”和“源头治理” 钢铁生产过程最重要的任务就是除去钢中的杂质,生产具有必要洁净度控制的和规定化学成分的钢铁产品。现有的冶炼过程虽然对作为原料的铁矿石和作为燃料的煤炭进行了粗略的处理,仍然有大量的有害元素残留于钢中,然后在后续的炼铁、炼钢、精炼过程中一点点除去。针对这种情况,行业里提出了“精料方针”,期望在入炉冶炼之前,尽量提高原料的洁净度。但是,碍于种种条件的限制,仍然是“泥沙俱下”,大量的有害元素进入到炉中,在随后的冶炼过程中,不得不建设大量的巨型设备,采用各种复杂的工艺,一点点地去除钢中的各种有害杂质,极大地增加了冶炼的负担和

非高炉炼铁工艺发展现状_王振智

2011.01 57 摘要: 文章阐述了非高炉炼铁技术的发展现状及分类,并对主要工艺流程法作了较为详细的介绍,并对各种工艺流程的特点进行了分析,展望了非高炉炼铁技术在新世纪的发展前 景。 关键词: 非高炉炼铁;直接还原;熔融还原;二步法熔融还原;转底炉法中图分类号: TF557 文献标识码:A 文章编号:1009-2374(2011)03-0057-02非高炉炼铁工艺发展现状 王振智 (中冶天工上海十三冶建设有限公司设备安装分公司,上海 201900) 高炉炼铁发展至今,因其必须使用储量有限的焦炭为主要燃料,需要以一定粒径的块状铁矿石入炉冶炼等原因,面临着能源、环境、投资等方面的困扰。近几十年来世界各国的冶金工作者们一直致力于研究和改进各种非高炉炼铁技术。 一、非高炉炼铁生产工艺技术 直接还原和熔融还原是两种最主要的非高炉炼铁思路,他们较高炉炼铁具有更多的优势,因而具有较大的发展空间。直接还原分为气基和煤基直接还原,其中气基直接还原主要是气基竖炉法、气基流化床法,是利用天然气经裂化产出的H 2和CO作为还原剂,在竖炉中将铁矿石在固态温度下还原而成海绵铁,目前主要方法有Midrex和HYL法两种。煤基直接还原是用煤作还原剂在回转窑或循环流化床中将铁矿石在固态温度下还原成海绵铁,其中回转窑工艺是最成熟、应用最广的方法,具有代表性的是SL/RN法。熔融还原法是以煤炭为主要能源,使用天然富矿、人造富矿(烧结矿或球团矿)取代高炉生产液态生铁的方法。 二、直接还原工艺 (一)气基直接还原工艺 Midrex技术和HYL-III技术占直接还原铁产量的85%以上,是直接还原铁的两大主流技术。两者均采用逆流移动床作为反应器,还原气为天然气,天然气经转化炉变成H 2+CO的混合气,进入还原竖炉与氧化球团矿反应,最终金属化率>90%。HYL-III技术的特点是其还原温度比Midrex技术高约50℃~100℃(Midrex技术还原温度为800℃~900℃),另外,HYL-III反应器内压力>0.55MPa,其高温、高压、高氢气浓度的条件保证其高的还原速率。 Midrex技术和HYL-III技术具有污染较小,能耗低的特点,但都只解决了不使用焦炭这一个问题,仍必须使用球团矿,另外我国天然气资源严重缺乏,这两 种工艺难以适应我国国情。 图1 Midrex 竖炉结构示意图 F i o r 法和C i r c o f e r 法均采用流化床技术。Circofer法工艺原理:粉矿经过两段预热后进入反应器,在高于900℃的温度下被还原。反应器由流化床反应炉、再循环旋风收尘器和气化器组成。还原反应器中的流态化介质为还原性气体。在气化器中,煤与氧发生氧化,气体和再循环物料将反应热带入还原反应器内,氧化铁被还原为金属铁。目前流化床技术存在的问题是粉矿粘结及其对设备带来的损害。 (二)煤基直接还原工艺 煤基直接还原工艺主要包括回转窑法(如SL-RN 法)和转底炉法(如COMET法)。 SL-RN法工艺原理:铁矿石或球团矿与煤粉同时由窑尾加入窑内,借助于炉体的倾斜和转动,使炉料向窑头方向运动,经过预热带、还原带而得到产品。 COMET法是一种转底炉法,1997年由比利时的CRM 公司开发的一种用粉矿和煤生产优质海绵铁的工艺,工艺原理:采用转底炉,将煤层和铁矿粉交替铺在炉床上,通过煤气烧嘴加热。这样的混合物可使温度很快上升到1300℃以上。此工艺可以使用粉矿,但煤层和铁矿粉的交替铺层必然导致其生产率低的弱点。煤基直接还原有着自己的特点,我国煤资源丰富,此工 交流园地 E xchange Field DOI:10.13535/https://www.360docs.net/doc/c74806191.html,ki.11-4406/n.2011.03.015

炼铁技术发展

**炼铁发展综述 摘要:**公司自2005年以来,推行稳本固基、苦练内功、转变思维、审时度势,随机应变等一系列管理理念,以提高高炉装备水平为保障,通过狠抓“精料”工作、积极探索炼铁新技术、开创性的发展炼铁新理论,以及计算机辅助管理,使炼铁生产获得了高水平发展,高炉主要技术经济指标显著改善。 关键词:炼铁管理理念技术进步精整炉料高炉装备高炉操作制度 The Development of Iron-making of**Steel Abstract: Since 2005, the implementation of ** Steel iron company is stabilization of the solid base, Obtain, change thinking,, deal with the situation and act according to circumstances and a series of management concepts in order to improve the level of equipment for the protection of blast furnace, by implementing the "concentrate materials " work , and actively explore new iron-making technology, pioneering the development of new iron-making theory, as well as computer-aided management, which makes it reach a high level development of iron production , main technical and economic indicators of blast furnace improve significantly. Key words:iron-making,management concepts,technological improvement,finishing furnace, blast furnace equipment ,blast furnace operating system 近几年,**炼铁的快速发展,引起了业界同行的关注,特别是08年金融危机来临后,**炼铁凭借其铁前低成本优势,使得**钢铁能率先走出困境,成为行业的少有赢利企业,短短几年里,高炉经济技术指标由同行垫底走向处于领先水

中国炼铁技术发展评述

中国炼铁技术发展评述 王维兴 近年来,中国炼铁处于高速发展阶段。2007年全国生铁产量达到4.6944亿t,占世界总产量的49.74%,比上年度增长15.19%,其增幅低于钢产量的同期增幅。2007年,全国重点钢铁企业(指71家)产铁3.69亿t,比上年增长13.74%,其他企业产铁1.20亿t,增长19.60%。地方企业铁产量增速高于大中型钢铁企业。2008年前8月全国产铁3.2912亿t,比上年度增长6.50%,降低了发展势头。近2个月发展势头有较大的减缓,市场变得疲软:高炉炼铁技术经济指标出现全面下滑,这是近年来所没过有的,对钢铁企业节能减排产生较大的负面影响,各级领导应引起高度重视,及时采取有效措施,否则难以完成国家提出的节能减排任务。要认识到,炼铁系统的能耗占企业总能耗的70%。 预计,2008年我国钢产量将达到5.2亿t,生铁产量将达到4.9亿t。今年,我国炼铁生产能力将超过6亿t,尚有约6000万t的生产能力属于淘汰之列(主要是300m3以下容积的小高炉)。近两个月,因金融危机和市场变化,钢材销售不畅,一些企业出现亏损,进行停产压产,生产形势发展出现大逆转。全国高炉炼铁形势发生了巨大变化,产量下降,生产指标进行调整,进入理性发展阶段(前一阶段为粗放式经营)。 1 中国高炉结构 上述情况表明,地方炼铁厂的发展势头仍处于高于全国大中型钢铁企业的发展。马钢和太钢建成4063m3高炉,使我国拥有7座4000m3级高炉。目前在建的有4座4000m3级高炉(本钢、鞍钢、太钢、莱钢),沙钢、京唐公司在建5800m3级高炉和5500m3级高炉。一批大于2500m3级高炉在建设,大大地推动了我国高炉大型化进程,但一批小于1000m3级高炉也在建设。 我国有1300多座高炉,大于1000m3容积的高炉约有150座,300~1000m3高炉约500多座,小于300m3的约有600多座。全国约有980多家炼铁企业。这说明,我国炼铁产业集中度低,高炉平均炉容偏小,是处于不同层次、不同结构、多种生产技术水平共同发展阶段,且处于高速发展阶段。预计我国生铁产量的顶峰为6亿t以上。淘汰落后进展缓慢,难度较大。近两个月,一些企业停了部分

相关文档
最新文档