八年级数学(上)几何证明中的辅助线添加方法

八年级数学(上)几何证明中的辅助线添加方法
八年级数学(上)几何证明中的辅助线添加方法

八年级数学(上)几何证明中的辅助线添加方法

数学组 田茂松

八年级数学的几何题,有部分题需要做出辅助线才能完成。有的时候,做不出恰当的辅助线,或者做不出辅助线,就没有办法完成该题的解答。为了能够更好的让学生在做几何题时得心应手,现在将八年级数学中几何题的辅助线添加方法总结如下。

常见辅助线的作法有以下几种:

1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.

4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目。

6.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 常见辅助线的作法举例:

例1 如图1,//AB CD ,//AD BC . 求证:AD BC =.

分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。 证明:连接AC (或BD )

∵//AB CD , //AD BC (已知)

∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等) 在ABC ?与CDA ?中

??

?

??∠=∠=∠=∠)(43)()(21已证公共边已证CA AC

∴ABC ?≌CDA ?(ASA ) ∴AD BC =(全等三角形对应边相等)

例2 如图2,在Rt ABC ?中,AB AC =,90BAC ∠=?,12∠=∠,CE BD ⊥的延长于E .求证:2BD CE =.

分析:要证2BD CE =,想到要构造线段2CE ,同时CE 与ABC ∠的平分线垂直,想到要将其延长。

证明:分别延长BA ,CE 交于点F .

∵BE CF ⊥ (已知) ∴90BEF BEC ∠=∠=?(垂直的定义) 在BEF ?与BEC ?中,

??

?

??∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE

A B

C

D

1

2

34

图1

D

A

E

F

12

图2

∴BEF ?≌BEC ?(ASA ) ∴1

2

CE EF CF ==

(全等三角形对应边相等) ∵90BAC ∠=?, BE CF ⊥(已知)

∴90BAC CAF ∠=∠=?, 190

BDA ∠+∠=?, 190BFC ∠+∠=? ∴BDA BFC ∠=∠ 在ABD ?与ACF ?中

???

??∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC

∴ABD ?≌ACF ?(AAS )∴BD CF =(全等三角形对应边相等) ∴2BD CE =.

例3 已知如图3,AC 、BD 相交于O 点,且AB CD =,AC BD =,求证:A D ∠=∠.

分析:要证A D ∠=∠,可证它们所在的三角形ABO ?和DCO ?全等,而只有AB CD =和对顶角两个条件,差一个条件,难以证其全等,只有另寻其它的三角形全等,由AB CD =,AC BD =,若连接BC ,则ABC ?和DCB ?全等,所以,证得A D ∠=∠.

证明:连接BC ,在ABC ?和DCB ?中 ???

??===)

()()

(公共边已知已知CB BC DB AC DC AB

∴ABC ?≌DCB ? (SSS) ∴A D ∠=∠ (全等三角形对应边相等)

例4 如图4,AB DC =,A D ∠=∠.求证:ABC DCB ∠=∠.

分析:由AB DC =,A D ∠=∠,想到如取AD 的中点N ,连接NB ,NC ,再由SAS 公理有ABN ?≌DCN ?,故BN C N =,ABN DCN ∠=∠.下面只需证NBC NCB ∠=∠,再取BC 的中点M ,连接MN ,则由SSS 公理有NBM ?≌△NCM ?,所以NBC NCB ∠=∠.

证明:取AD ,BC 的中点N 、M ,连接NB ,MN ,NC .则AN DN =,BM CM =. 在ABN ?和DCN ?中

??

?

??=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN

∴ABN ?≌DCN ?(SAS )

∴ABN DCN ∠=∠, BN CN =(全等三角形对应边、角相等) 在NBM ?与NCM ?中

D

C

B

A

O

图3

D

C

B

A

M

N

图4

???

??)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB

∴NBM ?≌NCM ?(SSS) ∴NBC NCB ∠=∠(全等三角形对应角相等)

∴NBC ABN NCB DCN ∠+∠=∠+∠,即ABC DCB ∠=∠.

例5 如图5,//AB CD ,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上, 求证:BC AB CD =+.

分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,

即利用角平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题, 在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长 短的线段或在长的线段长截取一部分使之等于短的线段.但无论延长还是截取 都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证 明截取后剩下的线段与某条线段相等,进而达到所证明的目的. 简证:在此题中可在长线段BC 上截取BF AB =,再证明CF CD =,从而达到证明的目的.这里面用到了角平分线来构造全等三角形.另外一个全等自已证明,只要证明DEC FEC ∠=∠即可.此题的证明也可以延长BE 与CD 的延长线交于一点来证明.

例6 如图6,已知AB AD >, BAC DAC ∠=∠,CD BC =.求证:180ADC B ∠+∠=?. 分析:可由点C 向BAD ∠的两边作垂线,证明CBE ?≌CDF ?,进而得B CDF ∠=∠,从而得证

180ADC B ∠+∠=?.

证明:略

例7 如图,在ABC ?中,AD 是角平分线,AC AB BD =+, 求证:2B C ∠=∠. 分析:证法1 此题涉及到倍角关系,基本思路是构造等腰三角形,利用 等腰三角形的两个底角相等,由此可以在AC 上去一点E (如图6-1), 使AE AB =,容易证明ADE ?≌ADB ?,可得B AED ∠=∠,BD ED =,

又由AC AB BD =+,可知CE DE BD ==,得2B AED C ∠=∠=∠.

证法2 可以延长AB 到F (如图6-2),使BF BD =,连接DF .易证ACD ?≌AFD ?,从而C F ∠=∠,又2ABC F ∠=∠,问题得证.

证明:略

例8 如图8,ABC ?中,AD 是中线,延长AD

到E ,使DE AD =,DF 是DCE ?的中线.

已知ABC ?的面积为

2,求:CDF ?的面积.

解: 因为AD 是ABC ?的中线,所以11

212

2

ACD ABC S S ??=

=?=, 又因CD 是ACE ?的中线,故1

12

CDE ACD S S ??==,因DF 是CDE ?

的中线,所以111

122CDF CDE S S ??==?=. ∴CDF ?的面积为1

2

.

C B 图7 C

D C B A

图7-1 图5

B

C 图6 图8

八年级几何辅助线专题训练

常见的辅助线的作法 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4.垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形. 7.角度数为30度、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8. 面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.

D C B A E D F C B A 一、等腰三角形“三线合一”法 1.如图,已知△ABC 中,∠A =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BD 于E , 求证:CE=BD. 中考连接: (2014?扬州,第7题,3分)如图,已知∠AOB =60°,点P 在边OA 上, OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =( ) A . 3 B . 4 C . 5 D . 6 二、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3, 则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. E D C B A

(完整word版)八年级数学上册几何添辅助线专题

D C B A 全等三角形问题中常见的辅助线的作法(有答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可 以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或 40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二 条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 法构造全等三角形. 3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂 线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD

最新初中-数学几何图形的辅助线添加方法大全

最新初中-数学几何图形的辅助线添加方法 大全 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有

两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦

初二数学几何证明初步练习题含答案

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○ 1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○ 2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800 . 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13 求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为Δ BCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,分ABC ∠.求证:BD 平BC =AB +CD . 分析:在BC上截取BE=BA,连接D E.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=, 36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. 分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易 证ΔAGE ≌ΔAFE . ∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠, AC=AE.求证:ΔABC ≌ΔADE . C B A D E F D A B C B A E D N M B D A C 213E D B A

立体几何中添加辅助线的策略

立体几何中添加辅助线的主要策略:一是把定义或者定理中缺少的线、面、体补完整;二是要把已知量和未知量统一在一个图形中,如统一在一个三角形中,这样可以用解三角形的方法求得一些未知量,再如也可以统一在平行四边形或其他几何体中。下面加以说明。 一、添加垂线策略。 因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。 例1.在三棱锥ABC O-中,三条棱OA、OB、OC两两互相垂直,且OA=OB=OC,M是AB 边的中点,则OM与平面ABC所成的角的大小是________(用反三角函数表示)。 图1 解:如图1,由题意可设a OA=,则3 ABC O a 6 1 V ,a2 CA BC AB= = = = - ,O点在底面的射影D为底面ABC ?的中心,a 3 3 S 3 1 V OD ABC ABC O= = ? -。又a 6 3 MC 3 1 DM= =,OM与平面 ABC所成角的正切值是2 a 6 6 a 3 3 tan= = θ,所以二面角大小是2 arctan。 点评:本题添加面ABC的垂线OD,正是三棱锥的性质所要求的,一方面它构造出了正三棱锥里面的ODM Rt?,ODC Rt?,另一方面也构造出了OM与平面ABC所成的角。 二、添加平行线策略。 其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。 例2.如图2,在正方体 1 1 1 1 D C B A ABCD-中, 4 B A F D E B1 1 1 1 1 = =,则 1 BE与DF所成角的余弦值是() A. 17 15 B. 2 1 C. 17 8 D. 2 3

初二几何中常用辅助线的添加

一. 教学内容: 寒假专题——初二几何中常用辅助线的添加 【典型例题】 (一)添加辅助线构造全等三角形 例1. 已知:AB∥CD,AD∥BC。 求证:AB=CD 分析:证明线段相等的方法有:(1)中线的定义;(2)全等三角形的对应边相等;(3)等式的性质。 在本题中,我们可通过连结AC,构造全等三角形来证明线段相等。 证明:连结AC ∵AB∥CD,AD∥BC ∴∠1=∠3,∠2=∠4 在△ABC和△CDA中 ∴△ABC≌△CDA(ASA) ∴AB=CD (二)截长补短法引辅助线 当已知或求证中涉及到线段a、b、c有下列情况时:,如直接证不出来,可采用截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等,这两种方法放在一起叫截长补短法。 通过线段的截长补短,构造全等把分散的条件集中起来。 例2. 如图,△ABC中,∠ACB=2∠B,∠1=∠2。 求证:AB=AC+CD 证法一:(补短法) 延长AC至点F,使得AF=AB 在△ABD和△AFD中 ∴△ABD≌△AFD(SAS) ∴∠B=∠F ∵∠ACB=2∠B

∴∠ACB=2∠F 而∠ACB=∠F+∠FDC ∴∠F=∠FDC ∴CD=CF 而AF=AC+CF ∴AF=AC+CD ∴AB=AC+CD 证法二:(截长法) 在AB上截取AE=AC,连结DE 在△AED和△ACD中 ∴△AED≌△ACD(SAS) 例3. 如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于E,证明:BD=2CE。 分析:这是一道证明一条线段等于另一条线段的2倍的问题,可构造线段2CE,转化为证两线段相等的问题,分别 延长BA,CE交于F,证△BEF≌△BEC,得,再证△ABD≌△ACF,得BD=CF。 证明:分别延长BA、CE交于点F ∵BE⊥CF ∴∠BEF=∠BEC=90° 在△BEF和△BEC中

初二数学-几何证明题

初二数学-几何证明 1如图,在平行四边形中,点 E , F 是对角线BD 上两点,且BF DE . (1) 写出图中每一对你认为全等的三角形; (2) 选择(1)中的任意一对全等三角形进行证明. 2、如图,E 、F 是平行四边形 ABCD 对角线BD 上的两点,给出下列三个条件:① BE = DF ; ②/ AEB =Z DFC ;③AF // EC 。请你从中选择一个适当的条件 ________________________ ,使四 边形AECF 是平行四边形,并证明你的结论。 3、如图△ ADF 和厶BCE 中,/ A= / B ,点D 、E 、F 、C 在同一直线上, 有如下三个关系式: ① AD=BC :② DE=CF :③ BE // AF 。 1)请用其中两个关系式作为条件,另一个作为结论,写出一个你认为正确的命题. (用序号 写出命题书写形式,如:如果O ,那么◎ 2)选择(1)中你写出的命题,说明它正确的理由. 4、如图,在菱形 ABCD 中,/ A=60 ° , AB=4 , E 是边 AB 上一动 点,过点 E 作EF 丄AB 交AD 的延长线于点 F ,交BD 于点M .请判 断厶DMF 的形状,并说明理由. 匚 C

5、.如图,在口ABCD中,E为BC边上一点,且AB AE . (1)求证:△ ABC◎△ EAD . (2)若AE 平分/ DAB,/ EAC 25°,求/ AED 的度数. 6、如图,在等边△ ABC中,点D为AC中点,以AD为边作菱形ADEF,且AF // BC , 连结FC交DE于点G . 求证:△ ADB AFC ; 7、如图.在梯形纸片ABCD中.AD // BC, AD>CD .将纸片沿过点D的直线折叠,使点C 落在AD上的点C’处,折痕DE交BC于点E.连结C乍 ⑴求证:四边形CD C'E是菱形; ⑵若BC = CD+AD,试判断四边形ABED的形状,并加以 证明;

初中平面几何常见添加辅助线的方法(完整资料).doc

此文档下载后即可编辑 初中几何辅助线做法 辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 一、见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 二、在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 三、对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四、在解决圆的问题中 1、两圆相交连公共弦。 2、两圆相切,过切点引公切线。 3、见直径想直角 4、遇切线问题,连结过切点的半径是常用辅助线 5、解决有关弦的问题时,常常作弦心距。

八年级上数学几何证明练习题

C A B C D E P 图 ⑴八年级数学(上)几何证明练习题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求 证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证: MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。 (1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明); (2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。 6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD , 连结EC 、ED ,求证:CE=DE 7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。 A B C O M N

几何证明习题答案 1. 连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度, 又由平行关系得,四边形RPQA为矩形,所以AQ=RP, △BRP也是等腰直角三角行,即BR=PR,所以AQ=BR 由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ, ∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度, 所以△RDQ是等腰RT△。 2. 作AG平分∠BAC交BD于G ∵∠BAC=90°∴∠CAG= ∠BAG=45° ∵∠BAC=90°AC=AB ∴∠C=∠ABC=45° ∴∠C=∠BAG ∵AE⊥BD ∴∠ABE+∠BAE=90° ∵∠CAF+∠BAE=90°∴∠CAF=∠ABE ∵AC=AB ∴△ACF ≌△BAG ∴CF=AG ∵∠C=∠DAG =45°CD=AD ∴△CDF ≌△ADG ∴∠CDF=∠ADB 3. 易证△ABM≌△NAC.∠NAM=∠NAE+∠BAM=∠NAE+ANE=90° 4. 略 5.(1)因为直角三角形的斜边中点是三角形的外心, 所以O到△ABC的三个顶点A、B、C距离相等; (2)△OMN是等腰直角三角形。 证明:连接OA,如图, ∵AC=AB,∠BAC=90°,∴OA=OB,OA平分∠BAC,∠B=45°, ∴∠NAO=45°,∴∠NAO=∠B, 在△NAO和△MBO 中, AN=BM ,∠NAO=∠B ,AO=BO , ∴△NAO≌△MBO,∴ON=OM,∠AON=∠BOM, ∵AC=AB,O是BC的中点,∴AO⊥BC, 即∠BOM+∠AOM=90°,∴∠AON+∠AOM=90°, 即∠NOM=90°,∴△OMN是等腰直角三角形. 6. 延长CD到F,使DF=BC,连结EF ∵AE=BD ∴AE=CF ∵△ABC为正三角形∴BE=BF ∠B=60° ∴△EBF为等边三角形∴角F=60°EF=EB 在△EBC和△EFD中 EB=EF(已证)∠B=∠F(已证)BC=DF(已作) ∴△EBC≌△EFD(SAS)∴EC=ED 7. 周长为10.

(完整版)初中数学_巧添辅助线__解证几何题

巧添辅助线 解证几何题 [引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以 归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。 一、倍角问题 研究∠α=2∠β或∠β=1 2 ∠α问题通称为倍角问题。倍角问题分两种情形: 1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=1 2 ∠α,然后证明∠1=∠β;或把 ∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一) 2、 ∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。倍角三角形问题常用构 造等腰三角形的方法添加辅助线(如图二) [例题解析] 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。 求证:∠DBC= 1 2 ∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°-12 ∠BAC 。 ∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90° -∠C=90° -(90° - 12∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2 ∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠ A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

初二数学辅助线常用做法及例题(含答案)

D C B A 常见的辅助线的作法 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可 以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或 40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二 条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 法构造全等三角形. 3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂 线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等 例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD

初中几何辅助线大全-最全

三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中 ∵?? ???=∠=∠∠=∠)()() (已知已证公共角AC BD CAE DBE E E ∴△DBE ≌△CAE (AAS ) ∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。 (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 分析:要证BD =2CE ,想到要构造线段2CE ,同时 A E F A B C D E 1 7-图O

CE 与∠ABC 的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F 。 ∵BE ⊥CF (已知) ∴∠BEF =∠BEC =90° (垂直的定义) 在△BEF 与△BEC 中, ∵ ?? ???∠=∠=∠=∠)() () (21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE= 2 1 CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知) ∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中 ?? ? ??∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC ∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE 四、取线段中点构造全等三有形。 例如:如图11-1:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 分析:由AB =DC ,∠A =∠D ,想到如取AD 的中点N ,连接NB ,NC ,再由SAS 公理有△ABN ≌△DCN ,故BN =CN ,∠ABN =∠DCN 。下面只需证∠NBC =∠NCB ,再取BC 的中点M ,连接MN ,则由SSS 公理有△NBM ≌△NCM ,所以∠NBC =∠NCB 。问题得证。 证明:取AD ,BC 的中点N 、M ,连接NB ,NM ,NC 。则AN=DN ,BM=CM ,在△ABN 和△DCN 中 ∵ ?? ???=∠=∠=)() () (已知已知辅助线的作法DC AB D A DN AN 1 11-图D C B A M N

上海初二数学几何证明练习之全等三角形

上海初中数学几何证明练习之全等三角形 一、填空题(每小题2分,共20分) 1.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 2.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌ (第1题) (第 2题) (第4题) 3.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 4.如图,AD 、A′D′分别是锐角△ABC 和△A′B′C′中BC 与B′C′边上的高,且AB = A′B′,AD = A′D′,若使△ABC ≌△A′B′C′,请你补充条件 (只需填写一个你认为适当的条件) 5. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形 完全重合. 6. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向 的长度DF 相等,则∠ABC +∠DFE =___________度 (第6题) (第7题) (第8题) 7.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点, 则DN +MN 的最小值为__________. 8.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________. 9.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm , M N D C B A E D C B A

(完整)八年级数学上几何证明中的辅助线添加方法

八年级数学(上)几何证明中的辅助线添加方法 数学组 田茂松 八年级数学的几何题,有部分题需要做出辅助线才能完成。有的时候,做不出恰当的辅助线,或者做不出辅助线,就没有办法完成该题的解答。为了能够更好的让学生在做几何题时得心应手,现在将八年级数学中几何题的辅助线添加方法总结如下。 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目。 6.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 常见辅助线的作法举例: 例1 如图1,//AB CD ,//AD BC . 求证:AD BC =. 分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。 证明:连接AC (或BD ) ∵//AB CD , //AD BC (已知) ∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等) 在ABC ?与CDA ?中 ?????∠=∠=∠=∠)(43) ()(21已证公共边已证CA AC ∴ABC ?≌CDA ?(ASA ) ∴AD BC =(全等三角形对应边相等) 例2 如图2,在Rt ABC ?中,AB AC =,90BAC ∠=?,12∠=∠,CE BD ⊥的延长于E .求证:2BD CE =. 分析:要证2BD CE =,想到要构造线段2CE ,同时CE 与ABC ∠的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F . ∵BE CF ⊥ (已知) ∴90BEF BEC ∠=∠=?(垂直的定义) 在BEF ?与BEC ?中, ?????∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE A B C D 1234图1 D A E F 12图2

初二几何辅助线添加方法

初中数学辅助线 1.三角形问题添加辅助线方法 方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。 方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。 2.平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等. 3.梯形中常用辅助线的添法 梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有: (1)在梯形内部平移一腰。 (2)梯形外平移一腰 (3)梯形内平移两腰 (4)延长两腰 (5)过梯形上底的两端点向下底作高 (6)平移对角线 (7)连接梯形一顶点及一腰的中点。 (8)过一腰的中点作另一腰的平行线。 (9)作中位线 当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。 作辅助线的方法 一:中点、中位线,延线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可

八年级数学上册几何添辅助线专题

D C B A For personal use only in study and research; not for commercial use 全等三角形问题中常见的辅助线的作法(有答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可 以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三 角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或 40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 法构造全等三角形. 3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂 线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等

相关文档
最新文档