Matlab实现混沌系统的控制

Matlab实现混沌系统的控制
Matlab实现混沌系统的控制

基于MATLAB 的各类混沌系统的计算机模拟

混沌是非线性系统所独有且广泛存在的一种非周期运动形式, 其覆盖面涉及到自然科学和社会科学的几乎每一个分支。1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。为什么会出现这种情况呢?这是混沌在作怪!

“混沌”译自英语中“chaos”一词,原意是混乱、无序,在现代非线性理论中,混沌则是泛指在确定体系中出现的貌似无规则的、类随机的运动。

混沌现象是普遍的,就在我们身边,是与我们关系最密切的现象,我们就生活在混沌的海洋中。一支燃着的香烟,在平稳的气流中缓缓升起一缕青烟,突然卷成一团团剧烈搅动的烟雾,向四方飘散;打开水龙头,先是平稳的层流,然后水花四溅,流动变的不规则,这就是湍流;一个风和日丽的夏天,突然风起云涌,来了一场暴风雨。一面旗帜在风中飘扬,一片秋叶从树上落下,它们都在做混沌运动。可见混沌始终围绕在我们的周围,一直与人类为伴。

1.混沌的基本概念

1. 混沌: 目前尚无通用的严格的定义, 一般认为,将不是由随机性外因引起的, 而是由确定性方程(内因)直接得到的具有随机性的运动状态称为混沌。

2. 相空间: 在连续动力系统中, 用一组一阶微分方程描述运动, 以状态变量(或状态向量)为坐标轴的空间构成系统的相空间。系统的一个状态用相空间的一个点表示, 通过该点有唯一的一条积分曲线。

3. 混沌运动: 是确定性系统中局限于有限相空间的高度不稳定的运动。所谓轨道高度不稳定, 是指近邻的轨道随时间的发展会指数地分离。由于这种不稳定性, 系统的长时间行为会显示出某种混乱性。

4. 分形和分维: 分形是 n 维空间一个点集的一种几何性质, 该点集具有无限精细的结构, 在任何尺度下都有自相似部分和整体相似性质, 具有小于所在空间维数 n 的非整数维数。分维就是用非整数维——分数维来定量地描述分形的基本性质。

5. 不动点: 又称平衡点、定态。不动点是系统状态变量所取的一组值, 对于这些值系统不随时间变化。在连续动力学系统中, 相空间中有一个点0x , 若满足当 t →∞时, 轨迹0()x t x →, 则称0x 为不动点。

6. 吸引子: 指相空间的这样的一个点集 s (或一个子空间) , 对s 邻域的几乎任意一点, 当t →∞时所有轨迹线均趋于s, 吸引子是稳定的不动点。

7. 奇异吸引子: 又称混沌吸引子, 指相空间中具有分数维的吸引子的集合。该吸引集由永不重复自身的一系列点组成, 并且无论如何也不表现出任何周期性。混沌轨道就运行在其吸引子集中。

8. 分叉和分叉点: 又称分岔或分支。指在某个或者某组参数发生变化时, 长时间动力学运动的类型也发生变化。这个参数值(或这组参数值)称为分叉点, 在分叉点处参数的微小变化会产生不同性质的动力学特性, 故系统在分叉点处是结构不稳定的。

9. 周期解: 对于系统1()n n x f x += , 当n →∞时,若存在n i n x x ξ+== , 则称该系统有周期i 解ξ 。不动点可以看作是周期为1的解, 因为它满足1n n x x +=。

10. 初值敏感性:对初始条件的敏感依赖是混沌的基本特征,也有人用它来定义混沌:混沌系统是其终极状态极端敏感地依赖于系统的初始状态的系统。敏感依赖性的一个严重后果就在于,使得系统的长期行为变得不可预见。

2.MATLAB 中的龙格—库塔(Runge-Kutta )实现

MA TLAB (Matrix Laboratory )是MathWorks 公司开发的,目前国际上最流行应用最广的科学与工程计算机软件之一。MA TLAB 软件以矩阵运算为基础,把计算,可视化,程序设计等有机的融合在一起,具有出色的数值计算能力和强大的图形处理功能。

基于Runge —Kutta 法,MA TLAB 提供了求解微分方程数值解的函数,一般调用格式是:

[,]23(@,,[,]45(@,,0)t y o d e f n a m e t s p a n y t y o d e f n a m e t s p a n y

==

其中fname 是定义的函数文件名,该函数文件必须返回一个列向量。Tspan 形式是[t0,tf],表示求解区间,y0是初始状态向量。这两个函数分别采用“二阶,三阶Runge —Kutta 法”和“四阶,五阶Runge —Kutta 法”,并采用自适应的求解方法,即当解的变化较慢时采用较大的步长,从而使计算速度很快,当解的变化较快时步长会自动变小长,从而使计算精度很高。在MA TLAB 中,一般选取四阶的龙格库塔方法。

3.Lorenz 混沌系统

美国气象学家洛伦兹(E.N.Lorenz )于1963年在大气科学杂志上提出第一个表现奇异吸引子的动力学系统。该混沌系统模型可以用下列微分方程组描述:

)

()(z xy b dt

dz xz y ax dt dy y x c dt dx -=--=--= 利用MA TLAB 数学软件对上面微分方程求解,进行数值模拟。首先建立M -文件 Lorenz.m 定义脚本函数,然后编程调用,其中x (1)表示x ,x (2)表示y ,x (3)表示z ,程序如下:

function r=lorenz(t,x) global a; global b; global c;

r=[-c*(x(1)-x(2));a*x(1)-x(2)-x(1)*x(3);b*(x(1)*x(2)-x(3))]; clear; global a; global b; global c; b=8/3;c=10;

t0=[0,100];f0=[1,1,1]; for a=10:30

[t,x]=ode45(@lorenz,t0,f0); a

subplot(3,1,1);

plot(t,x(:,1),'r',t,x(:,2),'g',t,x(:,3),'b');

title('Lorenz 模型变量时域响应');legend('x','y','z'); xlabel('t');

subplot(3,1,2);

plot3(x(:,1),x(:,2),x(:,3));

title('Lorenz模型相图');xlabel('x');ylabel('y');zlabel('z');

grid on;

subplot(3,1,3);

plot(x(:,1),x(:,3));

title('Lorenz模型X—Z平面相图'); xlabel('x');ylabel('z');

grid on;

pause;

end

1. 固定参数b和c,设置初始值f0 和计算时间t0,通过改变参数a 可以发现系统逐步进入混沌状态的过程。

2. Lorenz 吸引子

当a=28时,系统已经完全进入混沌状态,此时出现双涡旋吸引子,如下所示:

3. 倍周期:

通过系数的调试可以得到Lorenz混沌的一个单倍周期和两个多倍周期,如下:

4.初值敏感性:

保持初值x0和y0不变,即x0=y0=1,改变z0为1.001,千分之一的变化会引起系统行为的显著改变,如下图所示:

4.Rossler 混沌系统

Rossler 系统是化学反应系统的简化模型,是非线性动力学中非常著名的方程,该混沌系统模型可以用下列微分方程组描述

)

(a x z c dt

dz x by dt dy z y dt dx -+=-=-=

同样地,利用MA TLAB 编程求解(程序见附录),可以对该模型进行分析。 1. 逐步改变参数,观察其进入混沌状态。

2.Rossler吸引子:

通过调整参数和初始值,可以得到单倍周期和2倍周期,如下图:

初值敏感性:

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌 仿真研究 班级: 姓名: 学号:

摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract This paper introduce s the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in C hua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words:chaos phenomenon;Chua’s circuit;Simulation

用Matlab观察分岔与混沌现象

M a t l a b 实验报告 实验目的:用Matlab 观察分岔与混沌现象。 题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的Feigenbaum 图 算法设计: 1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在[0,3],考虑到y 的值有正有负,所以把y 的坐标限制在 [-3,3]。 2、根据课本上给的例题,编写程序代码来绘图。 程序代码: clear;clf; hold on axis([0,3,-3,3]); grid for a=0:0.005:3 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像: 结果分析:在λ取值在[0,0.3]区间内时,y 的值保持在0,然后开始上升,在λ取值在0.75附近时,开始分岔为两支。从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。并可能重复,这就是混沌的遍历性。 进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围

到[0,6],再进一步观察图像。程序代码如下: clear;clf; hold on axis([0,6,-6,6]); grid for a=0:0.05:6 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像: 分析:由图像可见,随着 取值范围的增大,图像呈现出周期性的特点。 总结:1、当取值范围比较小,不足以发现图像规律时,可以考虑扩大变量的取值范围。 2、由于图像是由大量点构成的,所以在编程的时候注意循环 语句的应用。

(完整版)基于MATLAB的混沌序列图像加密程序

设计题目:基于MATLAB的混沌序列图像加密程序 一.设计目的 图像信息生动形象,它已成为人类表达信息的重要手段之一,网络上的图像数据很多是要求发送方和接受都要进行加密通信,信息的安全与保密显得尤为重 要,因此我想运用异或运算将数据进行隐藏,连续使用同一数据对图像数据两次异或运算图像的数据不发生改变,利用这一特性对图像信息进行加密保护。 熟练使用matlab运用matlab进行编程,使用matlab语言进行数据的隐藏加密,确保数字图像信息的安全,混沌序列具有容易生成,对初始条件和混沌参数敏感等特点,近年来在图像加密领域得到了广泛的应用。使用必要的算法将信息进行加解密,实现信息的保护。 .设计内容和要求 使用混沌序列图像加密技术对图像进行处理使加密后的图像 使用matlab将图像信息隐藏,实现信息加密。 三.设计思路 1. 基于混沌的图像置乱加密算法 本文提出的基于混沌的图像置乱加密算法示意图如图1所示 加密算法如下:首先,数字图像B大小为MX N( M是图像B的行像素数,N是图像B的列像素数),将A的第j行连接到j-1行后面(j=2,3, A,M,形成长度为MX N的序列C。其次,用Logistic混沌映射产生一个长度为的混沌序列{k1,k2,A,kMX N},并构造等差序列D: {1,2,3, A,MX N-1,MX N}。再次,将所

产生的混沌序列{kl, k2. A, kMX N}的M N个值由小到大排序,形成有序序列{k1', k2'. A' kMX N' },确定序列{k1, k2, A, kMX N}中的每个ki在有序序列{k1', k2', A , kMX N' }中的编号,形成置换地址集合 {t1 , t2 , A, tM X N},其中ti为集合{1 , 2, A, MX N}中的一个;按置换地址集合{t1 , t2 , A, tM X N}对序列C进行置换,将其第i个像素置换至第ti列, i=1 , 2, A, MX N,得到C'。将等差序列D做相同置换,得到D'。 最后,B'是一个MX N 的矩阵,B' (i ,j)=C ' ((i-1) X M+j),其中i=1 , 2, A, M j=i=1 , 2, A, N,则B'就是加密后的图像文件。 解密算法与加密算法相似,不同之处在于第3步中,以序列C'代替随机序列{k1, k2, A, kMX N},即可实现图像的解密。 2. 用MATLAB勺实现基于混沌的图像置乱加密算法 本文借助MATLAB^件平台,使用MATLAB!供的文本编辑器进行编程实现加密功能。根据前面加密的思路,把加密算法的编程分为三个主要模块:首先,构造一个与原图a等高等宽的矩阵b加在图像矩阵a后面形成复合矩阵c: b=zeros(m1, n1); ifm1>=n1 ifm1> n1 fore=1: n1 b=(e,e); end else fore=1: n1 end fore=1:( n1-m1) b((m1+e-1),e)=m1+e-1 end end c=zeros(m1*2, n1); c=zeros(m1*2,1); c=[b,a]; 然后,用Logitic映射产生混沌序列:

连续时间混沌系统MATLAB程序和SIMULINK模型

第6章连续时间混沌系统 本章讨论连续时间混沌系统的基本特点与分析方法,主要包括混沌数值仿真和硬件实验方法简介、混沌系数平衡点的计算、平衡点的分类与性质、相空间中的轨道、几类典型连续混沌系统的介绍、混沌机理的分析方法、用特征向量空间法寻找异宿轨道、Lorenz系统及混沌机理定性分析、Lorenz映射、Poincare截面、Chua系统及其混沌机理定性分析、时间序列与相空间重构等内容。 6.1 混沌数值仿真和硬件实验方法简介 混沌的数值仿真主要包括MA TLAB编程、SIMULINK模块构建、EWB仿真以及其他一些相关的软件仿真或数值计算等方法,从而获取混沌吸引子的相图、时域波形图、李氏指数、分叉图和功率谱等。混沌的硬件实验主要包括模拟/数字电路设计与硬件实验、现场可编程门阵列器件(FPGA)、数字信号处理器(DSP)等硬件实现方法来产生混沌信号。本节仅对各种数值仿真方法作简单介绍。 1)混沌系统的MA TLAB数值仿真 该方法主要根据混沌系统的状态方程来编写MA TLAB程序。现举二例来说明这种编程方法。(1)已知Lorenz系统的状态方程为 dx/dt=-a(x-y) dy/dt=bx-xz-y dz/dt=-cz+xy 式中a=10,b=30,c=8/3。 MA TLAB仿真程序如下: >> %************************************************** Function dxdt=lorenz(t,x) %除符号dxdt外,还可用其他编程者习惯的有意义的符号 A=10; B=30; C=8/3; dxdt=zeros(3,1); dxdt(1)=-A*(x(1)-x(2)); dxdt(2)=B*x(1)-x(1).*x(3)-x(2); dxdt(3)=x(1)*x(2)-C*x(3); %************************************************* options=odeset('RelTol',1e-6,'AbsTol',[ 1e-6 1e-6 1e-6]); t0=[0 200]; x0=[0.02,0.01,0.03]; [t,x]=ode45('lorenz',t0,x0,options); %************************************************** n=length(t) n1=round(n/2) %n1=1; %************************************************** figure(1); plot(t(n1:n,1),x(n1:n,1));

Matlab实现混沌系统的控制

基于MATLAB 的各类混沌系统的计算机模拟 混沌是非线性系统所独有且广泛存在的一种非周期运动形式, 其覆盖面涉及到自然科学和社会科学的几乎每一个分支。1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。为什么会出现这种情况呢?这是混沌在作怪! “混沌”译自英语中“chaos”一词,原意是混乱、无序,在现代非线性理论中,混沌则是泛指在确定体系中出现的貌似无规则的、类随机的运动。 混沌现象是普遍的,就在我们身边,是与我们关系最密切的现象,我们就生活在混沌的海洋中。一支燃着的香烟,在平稳的气流中缓缓升起一缕青烟,突然卷成一团团剧烈搅动的烟雾,向四方飘散;打开水龙头,先是平稳的层流,然后水花四溅,流动变的不规则,这就是湍流;一个风和日丽的夏天,突然风起云涌,来了一场暴风雨。一面旗帜在风中飘扬,一片秋叶从树上落下,它们都在做混沌运动。可见混沌始终围绕在我们的周围,一直与人类为伴。 1.混沌的基本概念 1. 混沌: 目前尚无通用的严格的定义, 一般认为,将不是由随机性外因引起的, 而是由确定性方程(内因)直接得到的具有随机性的运动状态称为混沌。 2. 相空间: 在连续动力系统中, 用一组一阶微分方程描述运动, 以状态变量(或状态向量)为坐标轴的空间构成系统的相空间。系统的一个状态用相空间的一个点表示, 通过该点有唯一的一条积分曲线。 3. 混沌运动: 是确定性系统中局限于有限相空间的高度不稳定的运动。所谓轨道高度不稳定, 是指近邻的轨道随时间的发展会指数地分离。由于这种不稳定性, 系统的长时间行为会显示出某种混乱性。 4. 分形和分维: 分形是 n 维空间一个点集的一种几何性质, 该点集具有无限精细的结构, 在任何尺度下都有自相似部分和整体相似性质, 具有小于所在空间维数 n 的非整数维数。分维就是用非整数维——分数维来定量地描述分形的基本性质。 5. 不动点: 又称平衡点、定态。不动点是系统状态变量所取的一组值, 对于这些值系统不随时间变化。在连续动力学系统中, 相空间中有一个点0x , 若满足当 t →∞时, 轨迹0()x t x →, 则称0x 为不动点。 6. 吸引子: 指相空间的这样的一个点集 s (或一个子空间) , 对s 邻域的几乎任意一点, 当t →∞时所有轨迹线均趋于s, 吸引子是稳定的不动点。 7. 奇异吸引子: 又称混沌吸引子, 指相空间中具有分数维的吸引子的集合。该吸引集由永不重复自身的一系列点组成, 并且无论如何也不表现出任何周期性。混沌轨道就运行在其吸引子集中。 8. 分叉和分叉点: 又称分岔或分支。指在某个或者某组参数发生变化时, 长时间动力学运动的类型也发生变化。这个参数值(或这组参数值)称为分叉点, 在分叉点处参数的微小变化会产生不同性质的动力学特性, 故系统在分叉点处是结构不稳定的。 9. 周期解: 对于系统1()n n x f x += , 当n →∞时,若存在n i n x x ξ+== , 则称该系统有周期i 解ξ 。不动点可以看作是周期为1的解, 因为它满足1n n x x +=。 10. 初值敏感性:对初始条件的敏感依赖是混沌的基本特征,也有人用它来定义混沌:混沌系统是其终极状态极端敏感地依赖于系统的初始状态的系统。敏感依赖性的一个严重后果就在于,使得系统的长期行为变得不可预见。

用Matlab观察分岔与混沌现象

Matlab 实验报告 实验目的:用Matlab 观察分岔与混沌现象。 题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的Feigenbaum 图 算法设计: 1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在[0,3],考虑到y 的值有正有负,所以把y 的坐标限制在[-3,3]。 2、根据课本上给的例题,编写程序代码来绘图。 程序代码: clear;clf; hold on axis([0,3,-3,3]); grid for a=0:0.005:3 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像:

结果分析:在λ取值在[0,0.3]区间内时,y的值保持在0,然后开始上升,在λ取值在0.75附近时,开始分岔为两支。从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。并可能重复,这就是混沌的遍历性。 进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围到[0,6],再进一步观察图像。程序代码如下: clear;clf; hold on axis([0,6,-6,6]); grid for a=0:0.05:6 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end

数字分析 matlab程序

subplot(2,2,1) x=0.578;c=0.5; hold on; for k=1:60 x y=c*x*(1-x); y plot(x,y,'bd') title('研究一般迭代公式的复杂行为混沌现象') x=y; k=k+1 end subplot(2,2,2) x=0.578;c=1.5; hold on; for k=1:60 x y=c*x*(1-x); y plot(x,y,'g*') title('研究一般迭代公式的复杂行为混沌现象') x=y; k=k+1 end subplot(2,2,3) x=0.578;c=2.5; hold on; for k=1:60 x y=c*x*(1-x); y plot(x,y,'k+') title('研究一般迭代公式的复杂行为混沌现象') x=y; k=k+1 end subplot(2,2,4) x=0.578;c=4; hold on; for k=1:60 x y=c*x*(1-x); y plot(x,y,'ro')

title('研究一般迭代公式的复杂行为混沌现象') x=y; k=k+1 end x = 0.5780 y = 0.1220 k = 2 x = 0.1220 y = 0.0535 k = 3 x = 0.0535 y = 0.0253

k = 4 x = 0.0253 y = 0.0123 k = 5 x = 0.0123 y = 0.0061 k = 6 x = 0.0061 y = 0.0030

k = 7 x = 0.0030 y = 0.0015 k = 8 x = 0.0015 y = 7.5413e-004 k = 9 x = 7.5413e-004 y =

用Matlab观察分岔与混沌现象

用M a t l a b观察分岔与 混沌现象 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

M a t l a b 实验报告 实验目的:用Matlab 观察分岔与混沌现象。 题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的 Feigenbaum 图 算法设计: 1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在 [0,3],考虑到y 的值有正有负,所以把y 的坐标限制在[-3,3]。 2、根据课本上给的例题,编写程序代码来绘图。 程序代码: clear;clf; hold on axis([0,3,-3,3]); grid for a=0::3 x=[]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause for i=101:150 plot(a,x(i),'k.'); end end 图像: 结果分析:在λ取值在[0,]区间内时,y 的值保持在0,然后开始上升,在λ取值在附近时,开始分岔为两支。从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。并可能重复,这就是混沌的遍历性。

进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围到[0,6],再进一步观察图像。程序代码如下: clear;clf; hold on axis([0,6,-6,6]); grid for a=0::6 x=[]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause for i=101:150 plot(a,x(i),'k.'); end end 图像: 分析:由图像可见,随着λ取值范围的增大,图像呈现出周期性的特点。总结:1、当取值范围比较小,不足以发现图像规律时,可以考虑扩大变量的取值范围。 2、由于图像是由大量点构成的,所以在编程的时候注意循环语句的应 用。

一个超混沌系统在MATLAB环境下的仿真实现

毕业设计(论文) 题目一个超混沌系统在MATLAB环 境下的仿真实现 系(院)物理与电子科学系 专业物理学 班级2005级1班 学生姓名XXX 学号2005080119 指导教师XXX 职称 二〇一一年六月十八日 独创声明

本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 二〇一〇年六月一十八日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 二〇一〇年六月一十八日

一个超混沌系统在MATLAB环境下的仿真实现 摘要 在混沌、超混沌理论研究成果的基础上,利用外加驱动信号方法改进一个四阶超混沌系统,通过对外界驱动信号频率的控制,实现系统的动力学特性。对新构建的超混沌系统的特性进行了详细分析,包括验证其超混沌性质,相空间轨迹分析,Lyapunov指数谱分析等,仿真结果 关键词:超混沌;lyapunov指数;EWB;超混沌电路;MATLAB I

混沌matlab模拟

1.Lorenz模型 洛仑兹在研究天气的不可预测性时,从流体的运动方程出发,通过简化方程获得了具有三个自由度的系统 dx dt =?10x+10y dy dt =28x?y?xz dz dt =? 8 3 z+xy 其中x、y、z为无量纲量,分别表征对流强度,对流中升流与降流间的温差和竖直方向温度分布的非线性度。任意给定初值,系统最终都会回到状态空间的特定区域内 若状态轨迹经过一段时间之后停在一个不动点上,那么意味着系统进入了一个稳定的状态,这相轨迹将是一个平庸吸引子。然而,事实上,相轨迹在两片上“随机”地跳来跳去,说明系统的状态演变着有某种规律性,这种相图不对应任何一种定常状态,因此,被称为奇异吸引子,又称洛仑兹吸引子。 m.function dx=Lorenz(t,x) dx=[10*(x(2)-x(1));28*x(1)-x(1)*x(3)-x(2);x(1)*x(2)-(8/3)*x(3)]; end [T,X]=ode45('Lorenz',[0,30],[12;4;0]); vx=10*(X(:,2)-X(:,1)); vy=28*(X(:,1)-X(:,1).*X(:,3)-X(:,2));vz=X(:,1).*X(:,2)-(8 /3)*X(:,3); >> subplot(2,2,1); plot3(X(:,1),X(:,2),X(:,3)) >>subplot(2,2,2); plot(X(:,1),vx) >>subplot(2,2,3);plot(X(:,2),vy)

>>subplot(2,2,4);plot(X(:,3),vz) 2.虫口 x n = g n x0 x0是开始计算的那一代人口数。只要g>1,x n很快就趋向无穷大,发生“人口爆炸”。这样的线性模型,不能完全反应人口的变化规律,但是稍加修正,就可以称为描述某些没有世代交叠的昆虫数目的虫口方程。 虫口数目太多时,由于争夺有限的食物和生存空间发生咬斗,由于接触传染而导致疾病蔓延,争斗使虫口数目减少的事件,这些事件的数目比例于x n2,于是方程可以修正为: x n+1 = gx n (1-x n)

各类混沌的matlab程序实现

混沌同步模型 驱动系统和响应系统都是Lorenz System,只不过初值不同。 驱动系统: dx/dt=a*(y-x) dy/dt=r*x-y-xz dz/dt=x*y-b*z 初值(0.1,0.1,0.1) 输出信号令S(t)=x(t) 响应系统:将S(t)代替x(t)作为激励信号 dx/dt=a*(y-x) dy/dt=r*x-y-xz dz/dt=x*y-b*z 初值(0.1,0.1,1) 最后求响应系统的输出x(t),y(t),z(t) 程序: function [Y1] = Lorenz_response(tspan);%%计算处于响应地位的Lorenz系统的数值解,并由此画出其相图 yinit = [0.1,0.1,1];% 初始化输入 y(1:3) = yinit; tstart = 0; % 时间初始值 tstep = 1e-1; % 时间步长 wholetimes = 1e2; % 总的循环次数 steps = 1; % 每次演化的步数 iteratetimes = wholetimes/steps; % 演化的次数 S=output; for i=1:iteratetimes; tspan = tstart:tstep:(tstart + tstep*steps); [T,Y1] = ode45(@Lorenz_driven, tspan, y); y = Y1(size(Y1,1),:); y(1)=S(i,1); % 重新定义起始时刻 tstart = tstart + tstep*steps; end figure(1) plot3(Y1(:,1),Y1(:,2),Y1(:,3)) function s=output; tstart = 0; % 时间初始值 tstep = 1e-1; % 时间步长 wholetimes = 1e2; % 总的循环次数 % options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]); tspan=tstart:tstep:wholetimes*tstep [T,Y] = ode45(@Lorenz_driven,tspan,[0.1 0.1 0.1]); s=Y

混沌通信中QCSK调制matlab代码

clear all; x=randsrc(20,1,[0:1]); %产生二进制随机码stairs(x); axis([0,20,-0.1,1.1]); title('二进制随机序列'); clc clear close all % q=99; %k=[1:99]; %x(k)=sin(k*pi/q); x(1)=0.212345; for k = 1:99; x(k+1) =4 * x(k) * (1 - x(k)); end plot(x); legend('混沌信号x'); grid on;%加网格

clc clear close all % q=99; %k=[1:99]; %x(k)=sin(k*pi/q); x(1)=0.212345; for k=1:99; x(k+1)=4*x(k)*(1-x(k)); end y=hilbert(x); figure(1) plot(imag(y)); legend('希尔伯特变换y'); grid on

clc clear close all % q=99; %k=[1:99]; %x(k)=sin(k*pi/q); x(1)=0.212345;%x的初植 for k=1:99; x(k+1)=4*x(k)*(1-x(k)); end y=hilbert(x);%x的希尔伯特变换figure(1) plot(imag(y)); grid on legend('加密后的信号ms');

clc clear close all % q=99; %k=[1:99]; %x(k)=sin(k*pi/q); x(1)=0.212345; for k=1:99; x(k+1)=4*x(k)*(1-x(k)); end y=hilbert(x);%希尔伯特变换 figure(1) plot(imag(y)); grid on legend('加密后的信号ms'); y2=AWGN(imag(y),0.8,1);%imag(y)为已调信号,0.8为信噪比,1为信号功率figure(2) plot(y2); grid on legend('加噪声后的调制信号y2');

相关文档
最新文档