面元法气动力计算

面元法气动力计算
面元法气动力计算

高超声速气动力的工程预测(面元法)

--程序运行及结果

一、面元法进行高超声速飞行器气动力计算的步骤

1、将飞行器表面划分为若干面元

2、计算几何面积参数

3、计算面元冲击角

4、计算面元的压力系数

5、计算飞行器的气动力

二、编程实现及计算结果

1、编写c语言程序获得结果数据以文本格式输出

2、用Matlab读取文本将结果数据以曲线形式表达如下

三、几点说明

1、计算面元压力系数时采用的是牛顿理论

2、由于计算面元压力系数采用牛顿理论, 故结果与马赫数大小无关.

空气动力——公式

车辆空气动力学与车身造型 空气动力学(Aerodynamics)是研究物体在与周围空气作相对运动时两者之间相互作用力的关系及运动规律的科学,它属于流体力学的一个重要分支。长期以来,空气动力学成果的应用多侧重于航空及气象领域,特别是在航空领域内这门科学取得了巨大的进展,给汽车或路面车辆的空气动力学(Automotive Aerodynamics-Road Vehicle Aerodynamics)研究提供了借鉴。然而进一步的深入研究表明,汽车或车辆的空气动力学问题从理论到实际两方面都与航空等问题有本质的区别,汽车空气动力学已逐步发展成为了空气动力学的一个独立分支,在方程式赛车领域更是得到了极大的应用。下面就谈谈赛车中空气动力学的应用。 图1:行车阻力随车速的变化情况 我们从日常生活的经验知道,当风吹向一个物体时,就会产生作用在物体上的力。力的大小与风的方向和强弱有关。比如说轻风徐来,我们的感觉是轻柔舒适(力量很小);飓风袭来,房倒屋塌,势不可挡(力量很大)。这说明当风速达到某种程度时,就不能忽视它的影响。对赛车来说,是车运动,大气可视为不动,相对运动的关系是一样的。一般大致在车速超过100公里/小时(km/h)时,气流对车辆产生的阻力就会超过车轮的滚动阻力。这时就必须考虑空气动力的影响。如图1所示。 其实气动力对赛车的影响,不只是行车阻力,还有对发动机的进、排气,车辆行驶的稳定性,过弯速度,以及刹车距离,甚至轮胎温度控制等等。 1.空气动力学的基本概念和基本方程 空气动力学,属流体力学的范畴,是研究以空气作介质的流场中,物体所受的力与流动特点的科学。赛车空气动力学属低速空气动力学。高速流和低速流在空气压缩性上有很大差别,通常用M数(也称为马赫)来划分。若定义流速V与大气中声音的传播速度a之比为M数,则M=V/a。大气中小扰动的传播速度是和声音的传播速度相同的,M=1后,会出现激波,气动特性发生很大变化。 一般M>>1为高超音速范围,主要是弹道导弹等的飞行;M>1为超音速,M在1.2-0.8左右为跨音速;M<0.8为亚音速范围,高速飞机的飞行跨越这三个范围。M<0.3是低速范围,汽车、滑翔伞,以及多种球类运动都属于这个范围。 空气的质量和粘性:当我们研究空气动力学时,必须要考虑空气的质量。按照牛顿第二定律F=ma,有了质量m,只要再有加速度a,就会产生力F。空气的质量密度r≈1.22千克/米3,即1立方米空气质量约1.22千克,约为水的1/800。同时空气还有粘性,它的粘性系数m为1.8*10-5牛秒/米2,约为水的1/55。

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

应用计算空气动力学大作业

1、气动力的计算 2、重心位置计算 先将参考点设为(0,0,0),根据对焦点取力矩,力矩始终不变的原理来计算。设焦点距离参

考点d,迎角a1的压心位于距离参考点X1的地方(具体是什么位置不用管)升力为C L1,迎角a2的压心位于X2,升力为C L2,则L1*X1=M1,L2*X2=M2,L1(X1-d)=L2(X2-d),可以解出d的表达式,d=c*(C M2-C M1)/(C L2-C L1) 1、a=2°C L=0.37526体轴系 2、a=4°C L=0.50923体轴系 可得d=0.35745即X cg=0.35745 要使静稳定裕度等于10%,平均气动弦长c=0.4m 则Xac-Xcg=0.1*c=0.04,所以重心距离前缘位置应该为0.35745-0.04=0.31745m 在参数设定中将参考点从(0,0,0)变为重心(0.31745,0,0) 3 根据极曲线,设计升力系数取迎角为12°时,C L设计=1.02493 4、配平计算 由题目3得出的结论,巡航迎角为12°。所以在迎角为12°前提下改变升降舵的角度,直至俯仰力矩系数C M=0为止,通过计算,最终升降舵配平角度为-14.6°即向上偏转14.6°此时CLtot = 0.51514,CDtot = 0.03309,CYtot = 0.00000 ,Cmtot = 0.00021 附录: feiyi-DaiXinxi 0.00 !Mach 0.0 0.0 0.0 !iYsym iZsym Zsym 0.800 0.40 2.00 !Sref Cref Bref 0.31745 0.0 0.00 !Xref Yref Zref 0.017 !CDo # #============================================= SURFACE WING 5.0 1.0 31.0 0.0

有限元实例分析

作业一:有限元分析实例 实例:请对一个盘轴配合机构进行接触分析。轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。 问题分析说明 (1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。由于为过盈配合,属于大变形,故应考虑几何 非线性的影响。 (2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计

算时间。分析过程由两个载荷步组成, 第一个载荷步为过盈分 析, 求解过盈安装时的情况。第二个载荷步为将轴从盘心拔出 时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的 接触应力。它们都属于大变形问题, 属于非线性问题。在分析 时需要定义一些非线性选项来帮助问题的收敛。 (3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。 模型建立的分析说明 (1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。盘 轴接触问题属于面面接触, 目标面和接触面都是柔性的, 将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接 触面。分别创建名为为part1、part2的部件。 (2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入 0 . 3,并将定义的材料属性赋予给part1和part2。如下图所示。 (3)进入装配模块,创建两者间的装配关系。

有限元例题

【1】图示弹性力学平面问题,采用三角形常应变元,网格划分及单元、节点编号如图1所示。试求: (1) 计算系统刚度矩阵的最大带宽; (2) 根据图中结构的边界约束状态,给出约束节点位移值。 【解】 (1) 相邻节点号的最大差为d = 4; 所以,半带宽为B = 2 ? (4 + 1) = 10。 (2) u1 = 0,v1 = 0,u4 = 0,v4 = 0。 【2】弹性力学平面问题4节点等参元,其单元自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素? 【解】平面问题4节点等参元,其单元自由度是4 ?2 = 8个;单元刚度矩阵是8 ? 8 阶的,单元刚度矩阵有64个元素。

【3】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素? 【解】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是2 ? 3 = 6个;单元刚度矩阵是6 ? 6阶的;单元刚度矩阵有36个元素。 【4】已知一等截面直杆中某一微段的起始点坐标为0.5m,终点坐标为0.6m,起始点的位移为0.2mm,终点的位移为0.3mm。假定直杆内的位移是线性分布的。求该微段等截面直杆的位移表达式f(x)。 【解】已知:x i = 0.5m, x j= 0.6m, u i = 0.2mm = 0.2?10-3m, u j= 0.3mm = 0.3?10-3m。 即

【5】已知4节点一维问题中单元①(1, 2)的应力矩阵为 结构总体位移列阵为 求单元①的应力(用矩阵计算)。 【解】由总体结构位移列阵知,单元①的位移列阵为 由{σ} = [C] {?}e可求得单元①的应力

非定常空气动力学大作业

非定常空气动力大作业 一、问题要求 1、采用非线性代数模型建模。 2、样本数据为某飞机模型单自由度滚转运动风洞试验中测得的滚转力矩系数(对应数据文件中“Cl ”列。数据文件名为cb0.dat-cb7.dat ,运动规律为: 40cos(2)ft φπ=-?,分别对应运动频率0.0Hz-0.7Hz 。“φ”对应数据文件中“phi ”列。试验风速v=25m/s ,模型展长(参考长度)0.75m 。 3、要求编写建模程序(语言不限),给出源程序。 4、根据建模精度,调整系数个数,给出系数矩阵。 5、根据建模结果,计算运动规律为40cos(2)ft φπ=-?,f =0.35Hz ,滚转力矩迟滞环;计算运动规律分别为2010cos(2)ft φπ=-?-?,2010cos(2)ft φπ=?-?,和10cos(2)ft φπ=-?,f =0.4Hz ,滚转力矩迟滞环。 6、给出计算曲线。 实验数据 -0.06 -0.04-0.0200.02 0.040.060.08-40 -30 -20 -10 010 20 30 40 phi C l cb0 cb1cb2cb3cb4cb5cb6cb7

图1 原始实验数据曲线 二、模型建立 考虑一般的非线性运动规律 ()1cos m a eff eff k t αααφ=-+ (1) 式中 2eff b k f v π=?? (2) 其中,f 为非定常运动的频率(单位Hz ),b 为模型展长(单位m ),v 试验风速(单位m/s )。 对于一般的非线性运动,可以建立横向非定常气动力的非线性代数模型如下: 23012345678Ca C C C C C C C C C αααααααααααα=++++++++ (3) 其中,α即为方程(1)中的1α,α 由方程(1)求导可得 ()sin eff a eff k t ααφ=-+ (4) 系数i c 是减缩频率eff k 的函数, 其定义如下: 与α有关的系数为 231234 0,1,2,3,4i i i i i C a a k a k a k i =+++= (5) 与α 有关的系数为 231234log() 5,6,7,8i i i i i C a k a k a k a k i =+++= (6) 因此,对于该模型共有36个待定系数。 三、模型求解 尽管求解模型方程(3)中的系数可以转化为一个线性最小二乘问题,但为了适用于任意形式的模型方程,本文采用非线性最小二乘逼近的方法来计算模型

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

【CN109933876A】一种基于广义气动力的非定常气动力降阶方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910158106.7 (22)申请日 2019.03.03 (71)申请人 西北工业大学 地址 710072 陕西省西安市友谊西路127号 (72)发明人 张桂玮 杨智春 宋巧治 谷迎松  陈宇  (74)专利代理机构 西北工业大学专利中心 61204 代理人 陈星 (51)Int.Cl. G06F 17/50(2006.01) G06F 17/16(2006.01) (54)发明名称一种基于广义气动力的非定常气动力降阶方法(57)摘要本发明提出一种基于广义气动力的非定常气动力降阶方法,首先通过坐标变换将模态坐标下的广义气动力转换为物理坐标下结构有限元模型全部节点上分布的非定常气动力,然后通过曲面样条插值将分布的非定常气动力进行降阶,等效集中到有限个加载点处从而获得频域气动力降阶模型,最后使用最小状态法将频域降阶气动力模型拟合到时域。本发明在尽量减少降阶气动力模型阶数的基础上,提高了降阶气动力模型的精度,从而降低了地面颤振模拟试验中激振力控制系统设计的难度,其次借助CFD跨声速非定常气动力计算方法,该降阶方法可用于跨音速颤 振分析中。权利要求书1页 说明书8页 附图2页CN 109933876 A 2019.06.25 C N 109933876 A

1.一种基于广义气动力的非定常气动力降阶方法,其特征在于:包括以下步骤: 步骤1:针对需要进行地面颤振模拟试验的机翼,建立机翼的有限元模型,进行模态分析,得到机翼有限元模型的质量矩阵M以及机翼的模态振型矩阵Φ,并在计算流体力学软件中计算该机翼在给定马赫数下的广义气动力矩阵; 步骤2:坐标变换: 在得到广义气动力矩阵后,根据以下公式 Qaa=MΦ·Qhh ·ΦTM 得到物理坐标下的气动力影响系数矩阵Qaa;其中Qhh为步骤1得到的机翼在给定马赫数下的广义气动力矩阵; 步骤3:面样条插值气动力降阶: 根据机翼有限元模型上设定的激振点和拾振点数目,对机翼有限元模型上的激振点及拾振点的位置进行优化,使通过激振点和拾振点表示的气动节点插值振型与气动节点原始振型之间实现最优逼近; 得到机翼有限元模型上的激振点及拾振点位置后,采用插值方法实现从拾振点的位移得到全部结构节点位移的插值变换以及从全部结构节点的气动力到激振点作用力的插值变换;其中从拾振点的位移得到全部结构节点位移的插值变换关系为 x=[G s ]{x s }NS ×1 其中x为全部结构节点位移,x s 为拾振点的位移,NS为拾振点数目,G s 为位移插值矩阵;从全部结构节点的气动力到激振点作用力的插值变换关系为: {f s }NA ×1=[G f ]{f} f为全部结构节点上的气动力,f s 为激振点上的作用力,NA为激振点数目,G f 为力插值矩阵;进而得到降阶后的气动力影响系数矩阵为 [Q s ]NA ×NS =[G f ][Qaa][G s ] 步骤4:将气动力拟合到时域: 采用最小状态法将降阶后的气动力影响系数矩阵Q s 转换到时域,得到降阶的时域气动力: 其中转换到时域的气动力影响系数矩阵为: 式中,s是拉普拉斯变量,b是机翼的半弦长,V是来流速度,I为单位阵,A 0,A 1,A 2,D,R和E 是通过最小状态法求得的系数矩阵; 根据转换到时域的气动力影响系数矩阵, 得到降阶的时域气动力为 其中q ∞为动压。 2.根据权利要求1所述一种基于广义气动力的非定常气动力降阶方法,其特征在于:步骤3中采用平面薄板样条插值方法实现从拾振点的位移得到全部结构节点位移的插值变换以及从全部结构节点的气动力到激振点作用力的插值变换。 权 利 要 求 书1/1页2CN 109933876 A

燃气工业炉空气动力计算(通用版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 燃气工业炉空气动力计算(通用 版)

燃气工业炉空气动力计算(通用版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 一、燃气工业炉气体流动的特点 (一)燃气工业炉空气动力学及空气动力计算 为了使燃气工业炉能正常地工作,需要不断供给燃烧所用的燃气和空气,同时又要不断地把燃烧产生的烟气排出炉外。 所谓燃气工业炉的通风过程,正是指保证工业炉正常运行的连续供风和排烟的过程。燃气工业炉空气动力学就是用流体力学的基本原理来研究炉中气体流动和平衡的规律,以解决工业炉通风过程中的实际问题。其目的为正确组织工业炉内的气体流动,保证炉料加热的质量,最终使工业炉生产达到良好的技术指标。 同时,按照流体力学的基本原理。进行燃气工业炉的空气动力计算,求得送风、排烟系统内各区段的阻力、浮力,确定通风系统的压力分布,并求得总压降,为烟囱设计或送风机、引风机的选择,为工业炉生产操作、控制及安全运行等提供可靠依据。 (二)燃气工业炉气体流动的特点及实用流体方程

热解动力学计算

4.1.2 污泥干燥动力学分析 若把污泥干燥视为湿污泥的热分解,分解产物为干燥污泥和水分,反应式为: )C((气固)+→B A (4.1) 失重率或干燥率α,其物理意义为污泥在任一时刻已失水分质量与总失水质量的百分比,其表达式为: ∞ ∞??= --= W W W W W W 00α (4.2) 0W —初始质量; W —T 0C(t)时的质量; ∞W —最终质量; W ?—T 0C(t)时的失重量; ∞?W —最大失重量; 分解速率为: )(αα Kf dt d = (4.3) 根据Arrhenius 公式[33]: RT E Ae K /-= (4.4) 可得: ) ()/exp(/ααf RT E A dt d -= (4.5) 式中:A —频率因子; E —活化能; R —气体常数;

T —绝对温度; t —反应时间; α—样品转化率。 在恒定的程序升温速率下,升温速率dt dT /=β ) ()/exp()/(/αβαf RT E A dT d -= (4.6) 定义 ? =α ααα0 ) ()()(f d G (4.7) Coats 和Redfern 根据式(4.6)和式(4.7)可推导出下式 ?-= T dT RT E A G 0 )/exp()(β α (4.8) 则 RT E E RT E AR T G - ??????-=??? ???)21(ln )(ln 2βα (4.9) 由于 02∝E RT ,所以当??? ???2)(ln T G α~T 1拟合关系接近于线性时,斜率即为R E - ,截距)ln(E AR β。固体反应一共有45种积分形式,把污泥干燥数据代入)(αG 形式,找出最适合的表达式(??????2)(ln T G α~T 1 拟合为线性关系),将这一)(αG 函 数式用于分析污泥干燥,从而研究污泥干燥的表观动力学。 污泥干燥研究过程以升温速率为3℃/min 为例来说明。经过拟合筛选,表4.1所示的七个动力学机理函数较接近污泥干燥的动力学函数

飞行器空气动力计算

第一章 飞行器基本知识 1.1飞行器几何参数 飞行器通常由机翼、机身、尾翼以及动力装置等部件组成。对于气动正问题及气动分析而言,已知飞行器几何外形,求其气动参数。要解决这一问题首先要计算出飞行器各部件及组合体的几何参数。 当机翼和机身组合成一体时,机翼中间一部分面积为机身所遮蔽。它外露在气流中的部分两边合起来,所构成的机翼为外露翼,由下标“wl ”表示 在组合体中把外露翼根部的前后缘向机身内延长并交于机身纵对称面,这样的机翼成为毛机翼。 第二章 机翼的气动特性分析 2.1机翼几何参数 2.1.1 翼型的几何参数 翼型的前缘点与后缘点的连线称为弦线。他们之间的距离称为弦长,用符号b 表示,是翼型的特征长度。可以想象翼型是由厚度分布)(x y c 和中弧线分布 )(x y f 叠加而成的,对于中等厚度和弯度的翼型,上下翼面方程可以写成 )()()(,x y x y x y c f L U (2—1) 式中的正号用于翼型上表面,负号用于下表面。b x x / ,b y y / 分别为纵、横向无量纲坐标。相对厚度和相对弯度b c c / ,b f f / 。最大厚度位置和最大弯度位置分别用c x 和f x 或用无量纲量b x c /和b x f /表示。翼型前缘的内切圆半径叫做前缘半径,用L r 表示,后缘角τ是翼型上表面和下表面在后缘处的夹角。

2.1.2 机翼的几何参数 1.机翼平面形状:根梢比、展弦比和后掠角 机翼面积S 是指机翼在xOz 平面上的投影面积,即 22 ()l l S b z dz - = ò (2—2) 式中,b (z )为当地弦长。几何平均弦长pj b 和平均气动弦长A b 分别定义为 /pj b S l = (2—3) 2 20 2()l A b b z dz S =ò (2—4) 显然,pj b 是面积和展长都与原机翼相等的当量矩形翼的弦长;而A b 是半翼面心所在的展向位置的弦长,通常取A b 作为纵向力矩的参考长度。除了上述几何参数外,还有根梢比、梢根比和展弦比。根梢比h 和梢根比e 定义为 01/b b h =,e =1/h (2—5) 展弦比l 是机翼展向伸长程度的量度,定义为 2//pj l b l S l == (2—6) 梯形后掠翼前缘与z 轴的夹角叫做前缘后掠角,用0c 表示,常用的还有1/4弦线、1/2弦线和后缘线的后掠角,分别用1/4c ,1/2c 和1c 表示。如图2—2所示。 2.2 翼型的低速气动特性 2.2.1 翼型的升力和力矩特性 黏性对失速前翼型升力特性的影响是可以忽略的。此外,只要翼型相对厚度c 和相对弯

CATIA有限元分析计算实例 完整版

CATIA有限元分析计算实例 CATIA有限元分析计算实例 11.1例题1 受扭矩作用的圆筒 11.1-1划分四面体网格的计算 (1)进入【零部件设计】工作台 启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。 图11-1单击【开始】→【机械设计】→【零部件设计】选项 单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 (2)进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框 图11-3单击选中【xy平面】 (3)绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。 图11-4【草图编辑器】工具栏 图11-5【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图 图11-7【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。 图11-8标注直径尺寸的圆草图 图11-9【约束定义】对话框 (4)离开【草图绘制器】工作台 点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。退出【草图绘制器】工作台,进入【零部件设计】工作台。 图11-10修改直径尺寸后的圆 图11-11【工作台】工具栏 (5)拉伸创建圆筒

空气阻力的计算

空气阻力的计算 空气阻力的计算公式是什么? 空气阻力Fw是空气对前进中的汽车形成的一种反向作用力,它的计算公式是:Fw=1/16·A·Cw·v2(kg) 其中:v为行车速度,单位:m/s;A为汽车横截面面积,单位:m2:Cw为风阻系数。 空气阻力跟速度成平方正比关系,也就是说:速度增加1倍,汽车受到的阻力会增加3倍。因此高速行车对空气阻力的影响非常明显,车速高,发动机就要将相当一部分的动力,或者说燃油能量用于克服空气阻力。换句话讲,空气阻力小不仅能节约燃油,在发动机功率相同的条件下,还能达到更高的车速。空气阻力的大小除了取决于车的速度外,还跟汽车的截面积A和风阻系数Cw有关。 风阻系数Cw是一个无单位的数值。它描述的是车身的形状。根据车的外形不同,Cw值一般在0.3(好)—0.6(差)之间。光滑的车身造型(最理想为水滴型)使气流流过车身后的速度变化小,不会形成旋涡,Cw值就低;相反,如果车身外形有棱有角又有缝,Cw值就高。一般赛车将车轮设计在车身之外,自成一体。理论上每一辆车的Cw可以在模型制作阶段测得,但准确的Cw值都必须在出了成品之后,通过做风洞实验来获得。 通过改善汽车的空气动力学性能,比如变化尾翼、底盘罩、前部进风口和轮毂帽,都能降低风阻系数。而降低车身高度,等于减小了截面积,或使车身更多地盖住轮子,也有利于降低空气阻力。 == 空气阻力. 空气阻力是与物体运动的速率成正比的,即:f=kv k是空气摩擦系数,和空气密度有关,在我们能找到的丢东西的地方,一般可以认为是一个常数. 当物体从空中开始下落的时候,v很小,f很小,mg>f,所以物体逐渐加速.随着速度 的增加,f增加,最终会达到mg=f的平衡点.此时,物体就开始了匀速下落.并且我们知道下落的速率便是v=mg/k在一般意义上我们说的重量,指的便是mg. 冬季奥林匹克运动会向我们展示了一幅幅完美的气体动力学画面。不管是速滑、雪橇还是跳台滑雪运动员,他们在风洞中的轮廓看上去都几近完美。由于百分之一秒就可能决定胜负,所以尽可能地减小风阻就是迫在眉睫的事情了。 一个移动物体所受的风阻取决于许多因素,例如它的速度,速度增加一倍,物体所受的阻力就会是原阻力的四倍。重要的还有风阻系数,通常它只取决于移动物体的形状。风阻系数缩写为“Cw”,是一个无单位的数。我们在汽车目录的参数一栏中也可以看到。一辆车(滑

航空空气动力高性能计算解决方案

航空航天空气动力学高性能计算解决方案 摘要: CFD高性能计算技术正在成为航空航天飞行器空气动力学设计过程中除风洞试验以外最重要的方法,曙光公司在高性能计算领域的深厚积累能够为用户提供多种规模的集群系统解决方案。最新推出的TC2600刀片集群系统具有高性能、高可靠性、低能耗和低占地面积的优势、是符合“高效能计算”思想的最佳解决方案。

1.概述 传统的飞行器气动布局设计主要依赖理论研究估算、设计师的经验以及大量的风洞试验结果,风洞试验是主要设计工具。计算机技术的迅猛发展推动了航空空气动力学的革命。目前正在大力发展的计算流体力学将以突破对黏流流场物理现象的模拟能力为重点,尤其是精确预测流动分离点和转捩过程以及湍流流动。 1.1.国外发展概况 美国 美国在空气动力学研究与发展领域一直处于世界领先地位,在探索新概念飞行器、航空新技术、新研究和试验方法上也具有明显优势。美国对空气动力学技术的投资堪称世界第一,为促进气动技术的发展,先后建造了一大批用于各类飞行器研制的气动力地面试验设施,现有高、低速搭配、尺寸配套的科研生产型风洞70多座。 长期以来,美国充分利用其处于世界先进水平的计算机软硬件技术优势,大力开展计算流体力学(CFD)技术研究,投资建立数值模拟中心,推广CFD技术的工程应用。特别是航空、航天飞行器的气动设计中,采用先进的CFD技术使设计周期和成本大幅度降低,设计质量迅速提高,飞机气动性能不断改进。 欧洲 总体上讲,欧洲,主要是德国、法国和英国在空气动力学发展研究方面稍逊于美国。由于经济原因,在高超声速飞行器研究上,欧洲明显落后于美国,但欧洲的气动试验设施在某些方面比美国先进,比如欧洲的跨声速风洞,其试验能力和试验效率明显高于美国现有的风洞。 英国航空航天界人士认为,目前空气动力学已达到非常先进的阶段,但还不成熟,业界未来的目标应该在于开发未来先进的、快速的和适用的方法,用于设计可显著改善气动效率和降低成本的机翼,为应用行业带来显著的效益。CFD方法的研究进展在其中应保持优先性,

有限元分析实例

1.选择“File”→“Clear&Start New”。 2.选择“File”→“Change Jobname”命令,弹出如图1-1所示的“Change jobname”对话框。在“Enter new Jobname”文本框中输入“example”,同时“New log and error files”中的复选框“NO”不选,并单击“OK”按钮。 图1-1 “Change Jobname”对话框 3.选择Main Menu→Preferences。弹出的图1-2所示的对话框,选中“Structure”项,单击“OK”按钮。 图1-2

4.选择Main Menu→Preprocessor→ Element Type→Add/Edit/Delete。弹 出如图1-3所示的对话框,单击“ADD” 按钮;弹出图1-4所示的对话框,在 左侧“Structure Beam”,在右侧列表 中选“2 node 188”,单击“OK”按钮; 返回到图1-3所示的对话框,单击对 话框中的“Close”按钮。 图1-3 图1-4 5.拾取Main Menu→Preprocessor→ Section→Beam→Common Section。 在弹出的“Beam tool”对话框中输 入B→3,H→3单击“OK”按钮。

6.拾取Main Menu→Preprocessor→Material Props→Material Modles→Structural→linear→Isotropic如图1-5 如图1-5 如图1-6 弹出如图1-6所示的对话框输入EX=2e11,PRXY=0.3 7.拾取Main Menu→Preprocessor→Modeling→Create→

推荐-燃气工业炉空气动力计算

燃气工业炉空气动力计算 一、燃气工业炉气体流动的特点 (一)燃气工业炉空气动力学及空气动力计算 为了使燃气工业炉能正常地工作,需要不断供给燃烧所用的燃气和空气,同时又要不断地把燃烧产生的烟气排出炉外。 所谓燃气工业炉的通风过程,正是指保证工业炉正常运行的连续供风和排烟的过程。燃气工业炉空气动力学就是用流体力学的基本原理来研究炉中气体流动和平衡的规律,以解决工业炉通风过程中的实际问题。其目的为正确组织工业炉内的气体流动,保证炉料加热的质量,最终使工业炉生产达到良好的技术指标。 同时,按照流体力学的基本原理。进行燃气工业炉的空气动力计算,求得送风、排烟系统内各区段的阻力、浮力,确定通风系统的压力分布,并求得总压降,为烟囱设计或送风机、引风机的选择,为工业炉生产操作、控制及安全运行等提供可靠依据。 (二)燃气工业炉气体流动的特点及实用流体方程 图3—9—15为工业炉自然通风时炉膛及烟道系统压力分布图。横坐标对应上图示意的通风系统各处;纵坐标为各处的相对压力(Pa)。 图3-9-15燃气工业炉通风系统 图中,1为空气、燃气进口;2为燃烧室或火道,燃气和空气在此混合、燃烧;3为燃气工业炉炉膛,2—3由于浮力作用,系统压力增加至正压,满足了炉膛为

正压的要求;4—5—6为烟道,烟气流动过程中,4—5克服阻力,消耗能量,系统压力降低,5—6由于浮力作用,系统压力又有所增加;6—7为热交换器,烟气流经时,阻力消耗大,系统压力下降;7—8—9也是烟道,7—8烟气流经烟道闸门,克服局部阻力,消耗较大能量;8—9烟气消耗能量,克服烟道阻力;9—10为烟囱,由于高大烟囱的浮力远大于阻力,使系统压力增大,到烟囱出口接近零压。 在燃气工业炉内,被加热物料一般都放在炉底,因此控制炉内压力的首要任务是保证炉底相对压力为零或微小正压(通常10~20Pa)。这时炉门缝隙稍有火苗冒出,而没有冷空气吸入,以保持炉内气氛,并使炉内不会有太多的过剩空气,不至降低炉温和恶化传热过程。 燃气工业炉整个送风、排烟系统的压力都接近于大气压,各处相对压力的数值都很小,而且变化甚微,如图3—9—15仅为-lOOPa~0Pa变化。即使在压力变化最大的空气、燃气预热器或余热锅炉中,变化也常常只有几千帕,因此,可忽略压力变化对气体可压缩性的影响。 同时,在各种情况下,整个送风、排烟系统的气流速度都不大,约每秒数米,气体马赫数(气流速度与当地音速之比值)远小于0.3,完全可以忽略流速变化对气体可压缩性的影响。 显然,在燃气工业炉通风过程中,影响气体可压缩性的压力、流速,温度三因素中,只有温度变化最剧烈,是不可忽略的。所以,必须分区段来确定气体的温度及密度,在温度变化范围较小的区段,可取算术平均密度;在温度变化剧烈的区段,则应取算术平均温度下的调和平均密度。

跨声速非定常空气动力计算与分析

跨声速非定常空气动力计算 Computation on Transonic Unsteady Aerodynamics 北京大学力学与工程科学系 理论与应用力学专业 00级陈雪梅 摘要 颤振问题一直是高速飞行器设计中的一大难题,特别在跨声速区段。本文利用FLUENT6.1对一模型机翼的颤振行为进行了数值模拟,仿真机翼在高速气流中受激后扭曲变形最后发展成颤振的全过程,并对这一计算结果进行了初步分析,所得的算法具有普遍意义。 关键词:颤振,空气动力学,动网格 [引言] 早期的飞行器设计中的空气动力学分析都是将机翼﹑机身和其他气动部件当作刚体来处理。但自第一架飞机诞生以来,空气动力学与飞机结构弹性的相互作用问题已经对航空技术的发展产生了重大影响,特别在‘彗星号’失事以后,人们对此倍加关心。飞机在空气载荷作用下会出现可观的变形,这种变形将改变空气动载荷的分布,而它反过来又使变形发生变化。在这种相互作用过程中,会引起振动,学术界称之为颤振。这是一种自激振荡,它不断从气流中吸收能量。当飞机发生颤振时,轻则出现不稳定和振动现象,重则因它引起材料‘疲劳’从而导致飞机在空中解体,以至机毁人亡。 在莱特兄弟首次试飞前,兰利的“空中旅行者”作了两次不成功的飞行试验。第二次试飞时机翼和尾翼毁坏了,失败原因众说纷纭,气动弹性可能是第二次失败的罪魁祸首。第一次世界大战中,英国的DH-9飞机尾翼颤振导致了飞行员死亡。对此,英国空气动力学家贝尔斯托(L. Bairstow)首先对颤振进行了理论研究。随着飞机速度的提高,空气动力增大,而重量小的结构形式使机翼抵抗变形的能力下降,所以气动弹性问题便得严重起来。20世纪30年代初英国一家飞机连续发生有气动弹性引起的颤振事故,促使航空工程界对气动弹性问题普遍重视起来[摘自参考文献3,P118]。其间的理论研究颇有成效。美国力学家西奥多森(T. Theodorson)提交的研究报告对美国航空工业界建立颤振分析方法起了巨大作用。50年代中后期,特别是60年代,一方面空气动力学理论的突破为非定常空气动力学研究提供了新方法;另一方面风洞技术高度发展,使振荡机翼非定常气动理论有了新的突破。但由于理论方法的局限性以及风洞试验的高耗能及周期

ANSYS软件进行有限元计算实例

ANSYS软件进行有限元计算实例 工字钢梁结构静力分析 一工字钢梁两端均为固定端,其截面尺寸为:l=1.0m,a=0.16m,b=0.2m,c=0.02m,d=0.03m。试建立该工字钢梁的三维实体模型,并在考虑重力的情况下对其进行结构静力分析。其他已知参数如下:弹性模量E=206GPa;泊松比μ=0.3;材料密度ρ=7800kg/m3;重力加速度g=9.8m/s2;作用力作用于梁的上表面沿长度方向的中线处,其大小为F y=-5000N。 1)单元类型、几何特性、材料特性定义 a)定义单元类型:Main Menu: Preprocessor→Element Type→Add/Edit/Delete弹出对话框,单击对话框中的“Add…”按钮,又弹出一对话框,选中其中的“Solid”和“Brick 8node 45”选项,单击“OK”按钮,关闭该对话框返回至上一级对话框。单击“Close”按钮,关闭该级对话框。

b)定义材料特性:Main Menu: Preprocessor→Material Props→Material Models弹出对话框; 逐级双击右侧框中的Structural→Linear→Elastic →Isotropic,弹出下一级对话框。在“弹性模量”(EX)文本框中输入“2.06e11”;在“泊松比”(PRXY)文本框中输入“0.3”;单击“OK”按钮,关闭该对话框返回至上一级对话框。双击右侧框中的Density选项,在弹出的对话框中的“DENS”一栏中输入材料密度“7800”,单击“OK”按钮,关闭该对话框返回至上一级对话框。关闭材料特性定义对话框。 2)三维实体模型的建立 生成关键点 ●Main Menu: Preprocessor→Modeling →Create →Keypoints→ In Active cs弹出对话框; 在Keypoint number 一栏中输入关键 点编号“1”,在“X,Y,Z Location inactive cs”一栏中输入 关键点1的坐标(-0.08,0,0),单击“Apply”按钮。 ●同样,将2~12号关键点的坐标输入,一次生成这些关键点。 1(-0.08,0,0)、2(0.08,0,0)、3(0.08,0.02,0)、4(0.015, 0.02,0)、5(0.015,0.18,0)、6(0.08,0.18,0)、7(0.08,0.2, 0)、8(-0.08,0.2,0)、9(-0.08,0.18,0)、10(-0.015,0.18,0)、11(-0.015,0.02,0)、12(-0.08,0.02,0) 生成直线

飞行器空气动力计算

第一章 飞行器基本知识 1.1飞行器几何参数 飞行器通常由机翼、机身、尾翼以及动力装置等部件组成。对于气动正问题及气动分析而言,已知飞行器几何外形,求其气动参数。要解决这一问题首先要计算出飞行器各部件及组合体的几何参数。 当机翼和机身组合成一体时,机翼中间一部分面积为机身所遮蔽。它外露在气流中的部分两边合起来,所构成的机翼为外露翼,由下标“wl ”表示 在组合体中把外露翼根部的前后缘向机身内延长并交于机身纵对称面,这样的机翼成为毛机翼。 第二章 机翼的气动特性分析 2.1机翼几何参数 2.1.1 翼型的几何参数 翼型的前缘点与后缘点的连线称为弦线。他们之间的距离称为弦长,用符号b 表示,是翼型的特征长度。可以想象翼型是由厚度分布)(x y c 和中弧线分布 )(x y f 叠加而成的,对于中等厚度和弯度的翼型,上下翼面方程可以写成 )()()(,x y x y x y c f L U += (2—1) 式中的正号用于翼型上表面,负号用于下表面。b x x /=,b y y /=分别为纵、横向无量纲坐标。相对厚度和相对弯度b c c /=,b f f /=。最大厚度位置和最大弯度位置分别用c x 和f x 或用无量纲量b x c /和b x f /表示。翼型前缘的内切圆半径叫做前缘半径,用L r 表示,后缘角τ是翼型上表面和下表面在后缘处的夹角。 2.1.2 机翼的几何参数

1.机翼平面形状:根梢比、展弦比和后掠角 机翼面积S 是指机翼在xOz 平面上的投影面积,即 22 ()l l S b z dz - = ò (2—2) 式中,b (z )为当地弦长。几何平均弦长pj b 和平均气动弦长A b 分别定义为 /pj b S l = (2—3) 2 20 2()l A b b z dz S =ò (2—4) 显然,pj b 是面积和展长都与原机翼相等的当量矩形翼的弦长;而A b 是半翼面心所在的展向位置的弦长,通常取A b 作为纵向力矩的参考长度。除了上述几何参数外,还有根梢比、梢根比和展弦比。根梢比h 和梢根比e 定义为 01/b b h =,e =1/h (2—5) 展弦比l 是机翼展向伸长程度的量度,定义为 2//pj l b l S l == (2—6) 梯形后掠翼前缘与z 轴的夹角叫做前缘后掠角,用0c 表示,常用的还有1/4弦线、1/2弦线和后缘线的后掠角,分别用1/4c ,1/2c 和1c 表示。如图2—2所示。 2.2 翼型的低速气动特性 2.2.1 翼型的升力和力矩特性 黏性对失速前翼型升力特性的影响是可以忽略的。此外,只要翼型相对厚度c 和相对弯度f 都很小,并且翼型的迎角也不大,那么翼型表面上压强的合力大小和方向就只受到厚

相关文档
最新文档