Steffense迭代法和代数Newton法实验报告

Steffense迭代法和代数Newton法实验报告
Steffense迭代法和代数Newton法实验报告

实验班级:xxx

学生姓名:xxx 学生学号:xxx 指导老师:xxx 实验时间: xxx

实验题目 用Steffense 迭代法和代数Newton 法求1)(5--=x x x f 的近似解 1、实验目的:

(1)通过MATLAB 编程实现Steffense 迭代法和代数Newton 法,掌握他们的非线性方程迭代算法,培养编程与上机调试能力; (2)应用所编程序求解1)(5--=x x x f 的近似解;

(3)比较两种方法所得的结果,并与计算器所求结果进行比较,分析误差。

2、基本原理:

Steffense 迭代法: 把Aitken 迭代算法加速技巧与不动点迭代结合,则可得到如下的Steffense 加速收敛迭代格式思想:

k

k k k k k k k k k k x y z x y x x y z x y +---

===+2)(),

(),(21?? (k=0,1,2,........)

这称为Steffensen 迭代法。它是二阶收敛或平方收敛的,可以让不收敛函数的收敛,即使是收敛的用Steffensen 后可达到二阶收敛.

代数Newton 法: 设*x 是方程0)(=x f 的一个实根,又设0x 为*x 的一个近似值,且)(x f 二次可微,将)(x f 在点0x 处作

Taylor 展开得:

()()()()()ξ''200'002

1

)(f x x x f x x x f x f -+

-+=,其中x x <<ξ0。令*x x =,有()()()()()

()η''20*0'0*0*2

1

0f x x x f x x x f x f -+-+==,其中*0x x <<η。略去上式的

()

0*

x x

-的二次项,可得*x 的一个近似解为()()

0001*'x f x f x x x -

=≈,以1x 代替0x ,重复上述过程可得*x 新的近似解2x ,如此下去,得*x 的近似解序列

()()() ,3,2,1'1=-

=+n x f x f x x n n n n 。在序列{}∞0

n x 收敛时,即*

lim x x n n =∞

→,则获得方程()0=x f 的解。

3、实验步骤:

(1)判断函数1)(5--=x x x f 是否为定义域内的连续函数,它显然在R 内都是连续函数,并且()()0292,011>=<-=f f ,故()()内有解在2,1x f ;

(2)按照如下的思路编写Steffense 迭代法和代数Newton 法的MATLAB 程序代码:

Steffense 迭代法:1)输入max ,,0d x ; 2) while |x(k+1)-x(k)|>d 做 ①()()y z x y ??==;0;

②if |x(k+1)-x(k)|

0012/x y z x y x x +---=;

④10x x =; endwhile; 3)输出1x .

代数Newton 法:1)输入:ε,,0x a ; 2)计算()():,0'0x f x f ①;,0100f f a f ==

②;1,,2,10101;000x f f f x f a f n k k +=+=-=做对 ③;000x f a f n += 3);/1001f f x x -=

4)if ε<-01x x ,then 输出1x ,停止计算; else 10x x =,返回第(2)步。

(3)在MATLAB 命令窗口中输入:()2,005.0,5.1,'5^'x x x Steffensen

s --=敲回车,输出结果;()2,5.1,'15^'--=x x en DaishuNewt

x 敲回车,输出结果。 4、原代码

(1)function s=steffensen(f,x0,d,max)

f=inline(f);

x(1)=x0;

disp('k x y z');

for k=1:max

y(k)=feval(f,x(k));

z(k)=feval(f,y(k));

x(k+1)=x(k)-(y(k)-x(k))^2/(z(k)-2*y(k)+x(k));

if abs(x(k+1)-x(k))

break

end

disp(sprintf('%d %f %f %f',k,x(k),y(k),z(k))); end

s=x(k+1);

(2)function x=DaishuNewton(a,x0,max)

n=length(a);

while 1

f0=a(1);

f1=f0;

for k=2:n

f0=a(k)+f0*x0;

f1=f0+f1*x0;

end

x1=x0-f0/f1;

if abs(x1-x0)

break;

else

x0=x1;

end

end

x=x1;

5、数值实现

6、实验结果

7、实验分析

(1)误差分析:由于方程1

x

f=0的解为x=1.17,从计算结果来

x

-

)

(5-

=x

看,Newton迭代法比Steffensen迭代法的结果要精确。但实际Steffensen迭代法的收敛速度是最快的,Newton是其次的。造成这一结果的原因可能是范围没选好,在那个范围可能不是收敛的。

(2)算法的优劣分析:收敛的函数用Steffensen后可达到二阶收敛,而用Newton迭代法的收敛效果就不会这么好。

8、实验小结体会:

(1)若取得迭代公式不收敛,导致计算结果出现很大的偏差。因此,在选择函数时,必须是收敛的;

(2)在选择x的取值范围时,函数在那个范围必须收敛。

用SOR迭代法

一、数值求解如下正方形域上的Poisson 方程边值问 二、2222(,)2,0,1 (0,)(1,)(1),01(,0)(,1)0, 01u u f x y x y x y u y u y y y y u x u x x ??? ??-+==<

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

MAAB计算方法迭代法牛顿法二分法实验报告

姓名 实验报告成绩 评语: 指导教师(签名) 年 月 日 说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一 方程求根 一、 实验目的 用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。并比较方法的优劣。 二、 实验原理 (1)、二分法 对方程0)(=x f 在[a ,b]内求根。将所给区间二分,在分点 2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。否则,继续判断是否0)()(

+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(') (00x f x f 。取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。迭代公式为:=+1 k x -0x )(')(k k x f x f 。 三、 实验设备:MATLAB 软件 四、 结果预测 (1)11x = (2)5x = (3)2x =0,09052 五、 实验内容 (1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超 过3105.0-?。 (2)、取初值00=x ,用迭代公式=+1 k x -0x )(') (k k x f x f ,求方程0210=-+x e x 的近似根。要求误差不超过3105.0-?。 (3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。要求误差 不超过3105.0-?。 六、 实验步骤与实验程序 (1) 二分法 第一步:在MATLAB 软件,建立一个实现二分法的MATLAB 函数文件如下: function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

迭代法实验报告

迭代法实验报告 一. 实验目的:掌握迭代方法的用处 二. 实验环境:Cfree5.0 三. 实验时间:2013年6月20日 四. 实验地点:电子信息楼1201教室 五. 实验内容:运用编程实现迭代方法可以更好的解线性方程组,得到线性方程的解。 六. 实验理论依据: 高斯-赛德尔(Gauss-Seidel )迭代公式 我们注意到在雅可比迭代法中并没有对新算出的分量11k x +,12k x +, , 11k i x +-进行充分利用.不妨设想,在迭代收敛的条件下,我们把 (1)()()()11211331111(1)()()()22112332222(1)()()()1122,111()1(1(k k k k n n k k k k n n k k k k n n n n n n nn x a x a x a x b a x a x a x a x b a x a x a x a x b a +++--?=---+???=---+?????=---+?? 式中第一个方程算出的11k x +立即投入到第二个方程中,代替()1k x 进行计算,当12 k x +算出后代替()2k x 马上投入到第三个方程中计算,依次进行下去,这样也许会得到 更好的收敛效果.根据这种思路建立的一种新的迭代格式,我们称为高斯-赛德尔(Gauss-Seidel )迭代公式, 高斯=赛德尔迭代法的分量形式:

(1)()()()11211331111(1)(1)()()22112332222(1)(1)(1)(1)1122,111()1(1(k k k k n n k k k k n n k k k k n n n n n n nn x a x a x a x b a x a x a x a x b a x a x a x a x b a +++++++--?=---+???=---+?????=---+?? 高斯-赛德尔迭代法的矩阵形式: (1)(),(0,1,2,)k k x Bx f k +=+= 其中 1()B D L U -=- ,1()f D L b -=- B 称为高斯-赛德尔迭代矩阵,f 称为高斯-赛德尔迭代常量.. 七. 运行代码如下: #include"stdio.h" #include"math.h" int main() { bool pan1=true; int n,n1,n2=0,k=0; double num[100][100],L[100][100],U[100][100],x[100],y[100],num1=0,b[100],D[100][100],x1[200][200],x2[200][200]; printf("\n"); printf("*******************************高斯迭代法解如下********************************"); printf("输入要输入矩阵的阶数为(按Enter 输入矩阵数字):");//

SOR迭代法超松弛因子选取

《计算方法》实验报告(二) 实验名称:SOR 迭代法松弛因子的选取 班级: 数学1402班 姓名: 高艺萌 学号:14404210 一、 实验目的 通过本实验学习线性方程组的SOR 迭代解法以及SOR 迭代法的编程与应用。对比分析不同条件下的超松弛因子w 的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的w 不同取值会对方程组的解产生的影响。培养编程与上机调试能力。 二、 实验题目 用逐次超松弛(SOR )迭代法求解方程组b Ax =,其中 ?????????? ????????????=????????????????????????????????????????????=555555122-12-122-112-122-112-122-112-122-12-12201918321 x x x x x x A (1)给定迭代误差,选取不同的超松弛因子1>ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论; (2)给定迭代误差,选取不同的超松弛因子1<ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论; 三、 实验原理 1.逐次超松弛迭代法可以看作Gauss-Seidel 迭代法的加速, b D Ux D Lx D x k k k 1)(1)1(1)1(--+-+++= 2.SOR 迭代计算格式 b D L wD I w x U wD I w L wD x k k 111)(111)1()(])1[()-1(------+-++-= 其中,w 叫松弛因子,当w>1时叫超松弛,0

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

解线性方程组基本迭代法实验(ca)

Lab .解线性方程组的基本迭代法实验 【实验目的和要求】 1.使学生深入理解Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法; 2.通过对Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法的程序设计,以提高学生程序设计的能力; 3.应用编写的程序解决具体问题,掌握三种基本迭代法的使用,通过结果的分析了解每一种迭代法的特点。 【实验内容】 1.根据Matlab 语言特点,描述Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法。 2.编写Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法的M 文件。 3.给定2020?∈R A 为五对角矩阵 ??????????????? ???????????????? ?---- -------- ------ 32 141213214 141213214141213214 141213 2141213 (1)选取不同的初始向量)0(x 及右端面项向量b ,给定迭代误差要求,分别用编写Jacobi 迭代 法和Gauss-Seidel 迭代法程序求解,观察得到的序列是否收敛?若收敛,通过迭代次数分析 计算结果并得出你的结论。 (2)用编写的SOR 迭代法程序,对于(1)所选取的初始向量) 0(x 及右端面项向量b 进行求解,松驰系数ω取1<ω<2的不同值,在5 )1()(10-+≤-k k x x 时停止迭代,通过迭代次数分析计算结果 并得出你的结论。 【实验仪器与软件】 1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ; 2.Matlab 6.0及以上版本。 实验讲评:

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

SOR迭代法求解线性方程组

实验三:用SOR 迭代法求解线性方程组 ?????? ? ??=??????? ????????? ??----------74.012.018.168.072.012.006.016.012.001.103.014.006.003.088.001.016.014.001.076.04321x x x x 取初始点T x )0,0,0,0()0(=,松弛因子05.1=ω,精度要求610-=ε。 1,建立SOR.m 函数文件,此函数文件可调用,程序源码如下: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4 eps= 1.0e-6;%精度要求 M = 200; elseif nargin<4 error; return elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A 的对角矩阵 L=-tril(A,-1); %求A 的下三角阵 U=-triu(A,1); %求A 的上三角阵 B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) disp('Warning: 迭代次数太多,可能不收敛!'); return; end end

2,输入矩阵。并根据要求调用函数,运行结果如下图所示: 即经过7次迭代算出结果,且求得: 1.27151.28440.48581.2843x ?? ? ?= ? ???

matlab(迭代法-牛顿插值)Word版

实验报告内容: 一:不动点迭代法解方程 二:牛顿插值法的MATLAB实现 完成日期:2012年6月21日星期四 数学实验报告一 日期:2012-6-21

所以,确定初值为x0=1 二:不断迭代 算法: 第一步:将f(x0)赋值给x1 第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步 编写计算机程序: clear f=inline('0.5*sin(x)+0.4'); x0=1; x1=f(x0); k=1; while abs(x1-x0)>=1.0e-6 x0=x1; x1=f(x0); k=k+1; fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1) end 显示结果如下: k=2,x0=0.820735492,x1=0.765823700 k=3,x0=0.765823700,x1=0.746565483 k=4,x0=0.746565483,x1=0.739560873

k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。。。 以下是程序运行截图:

数值实验报告

数值实验报告五 班级:2017级学号:**** 姓名:*** 2017.12.5 1.数值实验问题 试用雅可比迭代法,高斯-赛德尔迭代法,超松驰迭代计算线性方程组: 取=(0,0,0,松弛因子分别取w=0.1t,1要求达到精度 。试通过数值计算得出不同的松弛因子所需要的迭代次数和收敛最快的松弛因子,并指出哪些松弛因子使得迭代发散。 2.数值方法 A=, L=-, U=-, D=diag() (1)雅可比迭代公式:

D. (2)高斯-赛德尔迭代法公式: (3)超松驰迭代方法公式: 其中w为松弛因子。 3.数值结果 如下表

最后四组,测得其在前10次内迭代所产生的结果,其中每一列为一

次迭代结果,分别如图: SOR-1.6 SOR-1.7 SOR-1.8 SOR-1.9 由于计算数据限制,其前五十列数据基本为空,所以取51到60列

由此看出,最后四组数据是发散的,数据结果不稳定,不收敛。所以最后四组得不到所需数据。 4.讨论 本次实验,分别用雅可比迭代公式,高斯-赛德尔迭代公式,超松驰迭代公式计算了此线性方程组。其中,雅可比和高斯迭代能够很好的进行运算,而超松驰迭代方法中,若松弛因子取得不够恰当,则会导致整个运算失败,得不到所需的结果,迭代不收敛,发散。此外,在进行初始值的赋值中,我是对每个矩阵都进行了赋值操作,而更简便的是,调用matlab中存在的函数,对矩阵进行运算,从而简化操作和代码,也使程序适用性更广。 程序代码: 1.雅可比迭代 function [x]=yakebi(D,L,U,b,j) format long B=D\(L+U);

牛顿迭代法的实验报告

牛顿迭代法实验报告 1.功能 本程序采用牛顿法,求实系数高次代数方程 f(x)=a0x n+a1x n-1+…+a n-1x+a n=0(a n≠0)(1) 的在初始值x0附近的一个根。 2.使用说明 (1)函数语句 Y=NEWTON_1(A,N,X0,NN,EPS1) 调用M文件newton_1.m。 (2)参数说明 A n+1元素的一维实数组,输入参数,按升幂存放方程系数。 N整变量,输入参数,方程阶数。 X0 实变量,输入参数,初始迭代值。 NN整变量,输入参数,允许的最大迭代次数。 EPS1实变量,输入参数,控制根的精度。 3.方法简介 解非线性议程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x)=f(x0)+(x-x0)fˊ(x0)+(x-x0)2 !2) (0x f'' +… 取其线性部分,作为非线性方程f(x)=0的近似方程,则有 f(x0)+fˊ(x0)(x-x0)=0 设fˊ(x0)≠0则其解为 x1=x0-f(x0)/fˊ(x0) 再把f(x)在x1附近展开成泰勒级数,也取其线性部分作f(x)=0的近似方程。若f(x1)≠0,则得 x2=x1-f(x1)/fˊ(x1) 这样,得到牛顿法的一个迭代序列 x n+1=x n-f(x n)/fˊ(x n) 4.newton_1.m程序

function y=newton_1(a,n,x0,nn,eps1) x(1)=x0; b=1; i=1; while(abs(b)>eps1*x(i)) i=i+1; x(i)=x(i-1)-n_f(a,n,x(i-1))/n_df(a,n,x(i-1)); b=x(i)-x(i-1); if(i>nn)error(ˊnn is fullˊ); return; end end y=x(i); i 5.程序附注 (1)程序中调用n_f.m和n_df.m文件。n_f.m是待求根的实数代数方程的函数,n_df.m 是方程一阶导数的函数。由使用者自己编写。 (2)牛顿迭代法的收敛速度:如果f(x)在零点附近存在连续的二阶微商,ξ是f(x)的一个重零点,且初始值x0充分接近于ξ,那么牛顿迭代是收敛的,其收敛速度是二阶的,即平方收敛速度。 6.例题 用牛顿法求下面方程的根 f(x)=x3+2x2+10x-20 7.运行结果 >>a=[1,2,10,-20] ; >>n=3; >>x0=1; >>nn=1000; >>eps1=1e-8; >>y=newton_1(a,n,x0,nn,eps1)

数值分析实验报告-Sor法分析

数值分析实验报告 一、 实验目的 1、会使用Sor 法求解一个线性方程组 2、熟悉matlab 语言并结合原理编程求方程组 3、改变ω的值观察实验结果 4、会分析实验结果 二、实验题目 编制Sor 迭代格式程序进行求解一个线性方程组的迭代计算情况,运行中要选用不同的松弛因子ω进行尝试 三、 实验原理 Jacobi 迭代和seidel 迭代对具体的线性方程组来说,逼近*x 的速度是固定不变的,遇到收敛很慢的情况时就显得很不实用。 Sor 法是一seidel 迭代为基础,并在迭代中引入参数ω以增加迭代选择的灵活性,具体为: ! 用seidel 迭代算出的,)()1()()1(k k J k k J x x x x x -=?++相减得到差向量与再用参数ω乘之再加上 )1()()()1()1()()()1(++++-=?+=k J k k k k k k x x x x x x x x ωωω,即的下一步迭代作为,由seidel 迭代的公式可以得到Sor 法的迭代格式为 n i x a x a b a x x k j n i j ij k j i j ij i ii k i k i ,2,1),()1()(1)1(11)()1( =--+-=∑∑+=+-=+ω ω 式中ω称为松弛因子。 四、 实验内容 用matlab 编程得到Sor 法求线性方程组的算法为: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4

eps= ; M = 200; elseif nargin<4 error return : elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵( U=-triu(A,1); %求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) (

数值分析课程实验报告-拉格朗日和牛顿插值法

《数值分析》课程实验报告 用拉格朗日和牛顿插值法求解函数值 算法名称用拉格朗日和牛顿插值法求函数值 学科专业xxxxx 作者姓名xxxx 作者学号xxxxx 作者班级xxxxxx xxx大学 二〇一五年十二月

《数值分析》课程实验报告

得到的近似值为。 拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。 2.牛顿插值法 在命令窗口输入: x=[ ]; y=[ ]; xt=; [yt,N]=NewtInterp(x,y,xt) z=::2; yz=subs(N,'t',z); figure; plot(z,sqrt(z),'--r',z,yz,'-b') hold on plot(x,y,'marker','+') hold on plot(xt,yt,'marker','o') h=legend('$\sqrt{x}$','牛顿','$(x_k,y_k)$','$x=$'); set(h,'Interpreter','latex') xlabel('x') ylabel('y') 得到结果及图像如下: yt = N = - *t^4 + *t^3 - *t^2 + *t +

得到√的近似值为,插值函数为 N =- *t^4 + *t^3 - *t^2 + *t + , 其计算精度是相当高的。 Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。 实际上Lagrange插值法和Newton插值法是同一种方法的两种变形,其构造拟合函数的思路是相同的,而实验中两个实际问题用两种算法计算出结果是相同的。

数学实验“线性方程组的J-迭代,GS-迭代,SOR-迭代解法”实验报告(内含matlab程序代码)

西京学院数学软件实验任务书 课程名称数学软件实验班级数0901 学号0912020107 姓名李亚强 实验课题线性方程组的J-迭代,GS-迭代,SOR-迭代方法。 实验目的 熟悉线性方程组的J-迭代,GS-迭代,SOR-迭代方法。 实验要求运用Matlab/C/C++/Java/Maple/Mathematica等其中一种语言完成。 实验内容线性方程组的J-迭代;线性方程组的GS-迭代;线性方程组的SOR-迭代。 成绩教师

实验四实验报告 一、实验名称:线性方程组的J-迭代,GS-迭代,SOR-迭代。 二、实验目的:熟悉线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法,编程实现雅可比方法和高斯-赛德尔方法求解非线 性方程组121231 235210 64182514 x x x x x x x x +=?? ++=??++=-?的根,提高matlab 编程能力。 三、实验要求:已知线性方程矩阵,利用迭代思想编程求解线性方程组的解。 四、实验原理: 1、雅可比迭代法(J-迭代法): 线性方程组b X A =*,可以转变为: 迭代公式(0)(1)() k 0,1,2,....k k J X X B X f +???=+=?? 其中b M f U L M A M I B J 111),(---=+=-=,称J B 为求解 b X A =*的雅可比迭代法的迭代矩阵。以下给出雅可比迭代的 分量计算公式,令),....,() ()(2)(1)(k n k k k X X X X =,由雅可比迭代公式 有 b X U L MX k k ++=+) () 1()(,既有i n i j k i ij i j k i ij k i ij b X a X a X a +- -=∑∑+=-=+1 )(1 1 )() 1(, 于

MATLAB计算方法迭代法牛顿法二分法实验报告

姓名 ______________ 实验报告成绩 ________________________ 评语: 指导教师(签名) ___________________ 年月日 说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一方程求根 一、实验目的 用各种方法求任意实函数方程f(x)0在自变量区间[a,b]上,或某一点附 近的实根。并比较方法的优劣。 二、实验原理 (1)、二分法 b a x 对方程f(x)0在[a,b]内求根。将所给区间二分,在分点2判断 b a x --------- 是否f(x)0;若是,则有根2。否则,继续判断是否f(a)?f(x) 0,若是,则令b x,否 则令a x。否则令a x。重复此过程直至求出方程f(x) °在[a,b]中的近似根为止。 (2)、迭代法 将方程f(x) °等价变换为x=? ( x)形式,并建立相应的迭代公式xk 1 9( x)。 (3)、牛顿法 若已知方程的一个近似根x°,则函数在点x°附近可用一阶泰勒多项式 P l(x) f(X°) f'(X0)(X X。)来近似,因此方程f(x) °可近似表示为

if fa*fb>0 error(' 两端函数值为同号'); f (X k ) 3 不超过 0.5 10 。 六、实验步骤与实验程序 (1)二分法 第一步:在MATLAB 7.0软件,建立一个实现二分法的 MATLABS 数文件 agui_bisect.m 女口下: fun cti on x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); % 把a 端点代入函数,求fa fb=feval(fname,b); % 把b 端点代入函数,求fb f (X k ) 根X1,然后将X1作为X 。代入上式。迭代公式为: X k 1 X 0 f'(X k ) o f (X o ) f(X o ) f ' (Xo)(X X )0设f'(X o ) 0,则x X o f '(X o )。取x 作为原方程新的近似 实验设备: MATLAB 7.0 软 件 三、 四、 结果预测 (1) x n=0.09033 (2) X5=0.09052 (3) X 2 =0,09052 五、 实验内容 (1)、 在区间[0,1] 上用二分法求方程 10X 2 0的近似根,要求误差不超 过 05 103 O (2)、 x ° 似根。 取初值X0 0 ,用迭代公式Xk 1 3 要求误差不超过0.5 10。 x ° f '(Xk) ,求方程e x 10x 2 0的近 (3)、 取初值X0 0 ,用牛顿迭代法求方程 e X 10x 2 0的近似根。要求误差

c编的sor迭代法解线性方程组的程序

c编的sor迭代法解线性方程组的程序 2010-12-15 20:33 #include #include double norm(double *x,double *y,int n) { int i=0; double s=0; for(i=0;i

牛顿插值法实验报告

牛顿插值法 一、实验目的:学会牛顿插值法,并应用算法于实际问题。 二、实验内容:给定函数 x x f =)(,已知: 414214.1)0.2(=f 449138.1)1.2(=f 483240.1)2.2(=f 516575.1)3.2(=f 549193.1)4.2(=f 三、实验要求: (1)用牛顿插值法求4次Newton 插值多项式在2.15处的值,以此作为函数的近似值)15.2(15.2N ≈。在MATLAB 中用内部函数ezplot 绘制出4次Newton 插值多项式的函数图形。 (2)在MATLAB 中用内部函数ezplot 可直接绘制出以上函数的图形,并与作出的4次Newton 插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor 编辑器,输入Newton 插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C);

%%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到: y =1.4663 wucha =1.0e-06 * -0.4376 -0.3254 -0.3026 0.0888 0.3385 P = - (4803839603609061*x^4)/2305843009213693952 + (7806239355294329*x^3)/288230376151711744 - (176292469178709*x^2)/1125899906842624 + (1624739243112817*x)/2251799813685248 + 1865116246031207/4503599627370496 (2)在MATLAB命令窗口输入: >> v=[0,6,-1,3]; >> ezplot(P),axis(v),grid >> hold on >> x=0:0.1:6; >> yt=sqrt(x);plot(x,yt,':') >> legend('插值效果','原函数') >> xlabel('X') >> ylabel('Y') >>title('Newton插值与原函数比较') 回车即可得到图像1-1。

相关文档
最新文档