3第三章-飞机的稳定性和操纵性

3第三章-飞机的稳定性和操纵性
3第三章-飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性

3.1 飞机的稳定性

在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。

飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。因此,研究飞机的稳定性是研究飞机操纵性的基础。

所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。

3.1.1 纵向稳定性

飞机的纵向稳定性是指飞机绕横轴的稳定性。

当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。飞机的纵向稳定性也称为俯仰稳定性。

飞机的纵向稳定性由飞机重心在焦点之前来保证。影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。飞机在这个低头力矩作用下,使机头下沉。经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。

同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。

除水平尾翼外,飞机的重心位置对纵向稳定性也有较大的影响。重心靠后的飞机,其纵向稳定性要比重心靠前的差。其原因是:重心与焦点距离小攻角改变时产生的附加力矩减小。对于重心靠后的飞机,当飞机受扰动而增大攻角时,机翼产生的附加升力是使机头上仰,攻角进一步增大,形成不稳定力矩。这时主要靠水平尾翼的附加升力,使机头下俯,攻角减小,保证飞机的纵向稳定性。

1

3.1.2 方向稳定性

飞机的方向稳定性是指飞机绕立轴的稳定性。

飞机的方向稳定力矩是在侧滑中产生的。所谓侧滑是指飞机的对称面与相对气流方向不一致的飞行。它是一种既向前、又向侧方的运动。

飞机带有侧滑时,空气则从飞机侧方吹来。这时,相对气流方向与飞机对称面之间的夹角称为“侧滑角”,也称“偏航角”。

对飞机方向稳定性影响最大的是垂直尾翼。另外,飞机机身的侧面迎风面积也起相当大的作用。其它如机翼的后掠角、发动机短舱等也有一定的影响。

当飞机稳定飞行时,不存在偏航角,处于平衡状态。如果有一阵风突然吹来,使机头向右偏(此时,相对气流从左前方吹来,称为左侧滑),便有了偏航角。阵风消除后,由于惯性作用,飞机仍然保持原来的方向,向前冲一段路程。这时相对风吹到偏斜的垂直尾翼上,产生了一个向右的附加力。这个力便绕飞机重心产生了一个向左的恢复力矩,使机头向左偏转。经过一阵短时间的摇摆,消除掉偏航角,飞机恢复到原来的平衡飞行状态。

同样,当飞机出现右侧滑时,就形成使飞机向右偏转的方向稳定力矩。可见,只要有侧滑,飞机就会产生方向稳定力矩。而方向稳定力矩总是要使飞机消除偏航角。

3.1.3 侧向稳定性

飞机的侧向稳定性是指飞机绕纵轴的稳定性。

图3-1 机翼上反角对飞机侧向稳定性的影响

v1—阵风速度;v2—侧滑速度;v3—由侧滑引起的相对风速;

M—恢复力矩;O—飞机重心; —上反角

2

飞机的稳定性

飞机的稳定性 飞机的稳定性是飞机设计中衡量飞行品质的重要参数,它表示飞机在受到扰动之后是否具有回到原始状态的能力。如果飞机受到扰动(例如突风)之后,在飞行员不进行任何操纵的情况下能够回到初始状态,则称飞机是稳定的,反之则称飞机是不稳定的。 飞机的稳定性包括纵向稳定性,反映飞机在俯仰方向的稳定特性;航向稳定性,反映飞机的方向稳定特性;以及横向稳定性,反映飞机的滚转稳定特性。 关于稳定与不稳定的概念可以形象的加以说明。例如,我们将一个小球放在波浪型表面的波峰上然后轻轻的推一下,小球就会离开波峰掉入波谷,我们将小球处在波峰位置的状态称为不稳定状态。反之,如果我们将小球放在波谷并且轻轻地推一下,球在荡漾一段时间之后,仍然能够回到谷底,我们称小球处在波谷的状态为稳定状态。 飞机的稳定与否对飞行安全尤为重要,如果飞机是稳定的,当遇到突风等扰动时,飞行员可以不用干预飞机,飞机会自动回到平衡状态;如果飞机是不稳定的,在遇到扰动时,哪怕是一丁点扰动,飞行员都必须对飞机进行操纵以保持平衡状态,否则飞机就会离初始状态越来越远。不稳定的飞机不仅极大地加重了飞行员的操纵负担,使飞行员随时随地处于紧张状态,而且飞行员对飞机的操纵与飞机自身运动的相互干扰还容易诱发飞机的振荡,造成飞行事故。从现代飞机设计理论来看,莱特兄弟发明的飞机是纵向不稳定的。然而他们却成功了,这主要是因为当时飞机的速度低,飞行员有足够的时间来调整飞机的平衡。莱特兄弟曾经说过他们在试飞时曾多次失控,飞机不住地振荡,最后以滑橇触地而结束。随着飞行速度越来越快,飞行员越来越难以控制不稳定的飞机,所以一般在飞机设计中要求将飞机设计成稳定的,飞机稳定性设计也变得越来越重要了。 虽然越稳定的飞机对于提高安全性越有利,但是对于操纵性来说却越来越不利。因为越稳定的飞机,要改变它的状态就越困难,也就是说,飞机的机动性越差。所以如何协调飞机的稳定性和操纵性之间的关系,对于现代战斗机来说是一个非常值得权衡的问题。实际上为了获得更大的机动性,目前最先进的战斗机都已经被设计成不稳定的飞机。当然这样的飞机不能再通过飞行员来保持平衡,而是通过一系列其他的增稳措施,比如电传操纵等主动控制手段来自动实现飞机的稳定性。

91108-飞行力学-第10章:飞机的横航向动稳定性和操纵性

第10章 飞机的横航向动稳定性和动操纵性 作业: 10.1 10.2 10.4 10.5

内容10.1 飞机横航向动稳定性10.1.2 典型的横航向运动模态10.1.3 滚转模态 10.1.4 螺旋模态 10.1.5 滚转--螺旋模态 10.1.6 荷兰滚模态 10.2 飞机横航向动操纵性10.2.1 副翼的操纵反应 10.2.2 方向舵的操纵反应 小结

由组成的四阶方程,对于正常布局的飞机,它由一个负的大实根、一对实部为负的共轭复根和一个小的实根(可正可负)组成。 10.1.2 典型的横航向运动模态 ,,,p r βφ滚转模态 荷兰滚模态 螺旋模态负的大实根负的共轭复根 小的实根

对应于特征方程中的一个大的负实根; 其特征是衰减很快的非周期运动,其振幅衰减一半的时间仅为零点几秒; 受横侧扰动后,飞机绕机体轴的单自由度滚转,收敛过程很快。运动变量是滚转角速度和滚转角; 飞机具有较大的横向阻尼(来源机翼),运动衰减快,一般均能满足品质要求。 1.滚转模态 ,p φlp C

飞机横航向运动中最重要的模态; 对应特征方程中的一对共轭复根,滚转角、侧滑角和偏航角的量级相同; 偏航运动略超前滚转,即左偏航时右滚转。飞机重心沿直线轨迹前进,颇似荷兰人的滑冰动作而得名; 模态频率高,周期约为数秒至十几秒,介于纵向长、短周期之间。品质规范对其特性有严格要求。 ,,βφψ荷兰?

3.螺旋模态 对应特征方程中的一个小实根; 特征是衰减缓慢的非周期运动,运动变量为偏航角和滚转角; 允许其特征根为一小的正根,由于运动不 稳定时呈螺旋状而得名; 运动缓慢,半幅或倍幅时间长,约上百秒,易于纠正,对其模态特性要求不高。 ,ψφ

飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性 飞机的稳定性 在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。 飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。因此,研究飞机的稳定性是研究飞机操纵性的基础。 所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。 纵向稳定性 飞机的纵向稳定性是指飞机绕横轴的稳定性。 当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。飞机的纵向稳定性也称为俯仰稳定性。 飞机的纵向稳定性由飞机重心在焦点之前来保证。影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。飞机在这个低头力矩作用下,使机头下沉。经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。 同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。 除水平尾翼外,飞机的重心位置对纵向稳定性也有较大的影响。重心靠后的飞机,其纵向稳定性要比重心靠前的差。其原因是:重心与焦点距离小攻角改变时产生的附加力矩减小。对于重心靠后的飞机,当飞机受扰动而增大攻角时,机翼产生的附加升力是使机头上仰,攻角进一步增大,形成不稳定力矩。这时主要靠水平尾翼的附加升力,使机头下俯,攻角减小,保证飞机的纵向稳定性。 方向稳定性 飞机的方向稳定性是指飞机绕立轴的稳定性。 飞机的方向稳定力矩是在侧滑中产生的。所谓侧滑是指飞机的对称面与相对气流方向不一致的飞行。它是一种既向前、又向侧方的运动。 飞机带有侧滑时,空气则从飞机侧方吹来。这时,相对气流方向与飞机对称面之间的夹角称为“侧滑角”,也称“偏航角”。 对飞机方向稳定性影响最大的是垂直尾翼。另外,飞机机身的侧面迎风面积也起相当大的作用。其它如机翼的后掠角、发动机短舱等也有一定的影响。 当飞机稳定飞行时,不存在偏航角,处于平衡状态。如果有一阵风突然吹来,使机头向右偏(此时,相对气流从左前方吹来,称为左侧滑),便有了偏航角。阵风消除后,由于惯性作用,飞机仍然保持原来的方向,向前冲一段路程。这时相对风吹到偏斜的垂

飞机稳定性和操作性分析(2)

毕业设计(论文)任务书 I、毕业设计(论文)题目: 飞机稳定性和操作性分析 II、毕业设计(论文)使用的原始资料(数据)及设计技术要求: 原始资料: 给定某飞机原始数据 设计技术要求: 1.进行飞机稳定性和操纵性等因素计算。 2.用C或Matlab语言编制计算程序。 3.用给定某飞机机型调试程序; 4.进行理论计算:计算结果以数据表和曲线形式给出。 5.对计算结果进行分析,写出分析报告。 III、毕业设计(论文)工作内容及完成时间: 1.收集有关资料,并完成开题报告; 3.10.-3.17 1周2.相关外文文献资料的阅读与翻译(6000字符以上) 3.17-3.31 2周3.用C或Matlab语言编制计算程序; 3.31-4.28 4周4.调试程序,进行理论计算; 4.28-5.26 4周5.对计算结果进行分析,整理分析报告; 5.26-6.14 3周6.撰写毕业论文及答辩准备; 6.14-6.20 1周

Ⅳ、主要参考资料: [1].飞机设计手册总编委会编,飞机设计手册,航空工业出版社,2005.10; [2].李为吉编,现代飞机总体综合设计,西北工业大学出版社,2001.12; [3].李为吉编,飞机总体设计,西北工业大学出版社,2005.1; [4].顾诵芬编,飞机总体设计,北京航空航天大学出版社,2006.12;; [5].潭浩强编,C程序设计,清华大学出版社,1991.7; [6].Proceedings of the International Symposium on, Advancement of Aerospace Education and Collaborative Research in the 21st Century, June 17-19,2004,HANKUK AVIATION UNIVERSITY. 飞行器工程学院(系)飞行器设计与工程专业类班 学生(签名): 日期:自2016 年 3 月10 日至2016 年 6 月20日 指导教师(签名): 助理指导教师(并指出所负责的部分): 飞行器设计工程系(室)主任(签名):何国毅 附注:任务书应该附在已完成的毕业设计说明书首页。

飞机结构设计中的稳定性研究及分析 焦振双

飞机结构设计中的稳定性研究及分析焦振双 发表时间:2018-09-10T15:50:15.327Z 来源:《基层建设》2018年第25期作者:焦振双 [导读] 摘要:本文针对飞机结构设计中稳定性的研究,将从飞机结构设计相关概述入手,对飞机结构设计中的稳定性进行深入分析,以此推动飞机设计行业的发展。 中航通飞研究院有限公司 摘要:本文针对飞机结构设计中稳定性的研究,将从飞机结构设计相关概述入手,对飞机结构设计中的稳定性进行深入分析,以此推动飞机设计行业的发展。通过文章分析得知,飞机结构设计稳定性应从三个方面入手,希望本文的研究,能为飞机结构设计提供参考性意义。 关键词:飞机结构;稳定性;机身结构 前言: 作为飞机设计的重点内容,结构是否稳定对飞行安全具有重要影响,一旦结构的稳定性出现问题,不仅会增加飞机设计的风险,而且会影响飞行安全,进而威胁机组人员和乘客的生命安全。目前,机身结构一般采用半硬壳形式,但此种结构仍然存在着一定的稳定性风险,需要对结构设计中的稳定性进行深入分析,方能完善飞机的稳定性能和安全性能。 1 飞机结构设计相关概述 何谓飞机结构设计,即对飞机承受荷载和传递荷载的系统进行设计,既是飞机的基础部分,也是飞机设计的重点内容,其不仅影响飞机设计的成本和安全,而且对飞机的多种功能也有一定程度的影响。结构设计的内容较为复杂,主要对以下六个方面进行分析:一为飞机的安全系数;二为空气动力学的具体要求;三为结构的完整性;四为飞机的寿命周期费用;五为飞机的劳损性;六为飞机的稳定性。在此六个方面中,一旦有一个方面未达到飞机结构设计的标准,便会干扰飞机的正常运行,进而使飞机的整体性能下降,飞行的安全性也无法得到有效保障。另外,在飞机的基本结构中,机身壁板的稳定性、机身蒙皮的稳定性一旦无法保证,便会对飞机的性能造成严重影响,甚至会发生飞机解体的情况,从而引发安全事故。 2 飞机结构设计中的稳定性研究 2.1机身结构稳定性 飞机结构设计的关键为机身结构的稳定性,对机身结构设计的稳定性进行分析,不仅能够明确保障飞机在多种荷载下的工作应力,具体了解飞机失稳的客观条件,而且能够对结构形式进行适当的选择。机身结构稳定性研究主要分为两点,具体内容如下:(1)对记忆结构的断裂、疲劳、损伤容限进行研究,并依据实际情况进行适当地调整,这样做主要是为了加强机身的承载能力;(2)对机身结构的临界失稳应力进行研究,依据具体的材料参数,对结构的临界失稳应力进行塑性调整,继而根据调整后的材料参数,最终得出结构的承载能力和临界失稳应力,到此才算是完成了结构的调整工作,这样做一是为了提升结构材料的利用率,二是为了降低结构的自身重量,从而提高整体稳定性。 2.2机身壁板结构稳定性 机身壁板结构的稳定性直接决定着机身结构的稳定性,间接决定着飞机结构的稳定性,因此,机身壁板结构的稳定性研究也尤为重要。关于机身壁板结构稳定性研究的理论主要有两个,一为小挠度稳定性理论,二为大挠度稳定性理论,在对机身壁板稳定性进行研究的过程中,应以以上两种理论为基础,再结合飞机设计的实际情况,依据机身蒙皮、长桁之间的连接特点,将机身壁板分为四种:一种是整体壁板,一种是胶结壁板,一种为复合材料壁板,另一种为铆接壁板。本文选用机身壁板结构中的铆接壁板对结构稳定性进行分析。 铆接壁板稳定性主要通过薄板弯曲微分方程进行计算,具体公式如下: 根据上述临界应力公式,再结合HJB830102进行壁板与蒙皮临界应力的塑性调整及修正,进而得出一个具体的数值[1]。另外,在飞机壁板结构的设计中,不仅要对临界应力进行研究,而且还要对各种材料参数、具体失稳情况进行研究,并根据以往的飞机结构设计经验,确定壁板的尺寸大小。对于铆接壁板而言,控制应力的关键为壁板总体的失稳临界应力,因此,控制好壁板的总体失稳情况,能够保证铆接壁板的稳定性,从而保证飞机整体结构的稳定。 2.3飞机下部框缘稳定性 对飞机下部框缘进行改进和优化,能够提升飞机整体的稳定性,保障飞机结构的性能得到稳定发挥。本文以某水上飞机船体结构为例,对飞机下部框缘稳定性进行分析。

3第三章 飞机的稳定性和操纵性上课讲义

第三章飞机的稳定性和操纵性 3.1 飞机的稳定性 在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。 飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。因此,研究飞机的稳定性是研究飞机操纵性的基础。 所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。 3.1.1 纵向稳定性 飞机的纵向稳定性是指飞机绕横轴的稳定性。 当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。飞机的纵向稳定性也称为俯仰稳定性。 飞机的纵向稳定性由飞机重心在焦点之前来保证。影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。 当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。飞机在这个低头力矩作用下,使机头下沉。经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。 同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。 除水平尾翼外,飞机的重心位置对纵向稳定性也有较大的影响。重心靠后的飞机,其纵向稳定性要比重心靠前的差。其原因是:重心与焦点距离小攻角改变时产生的附加力矩减小。对于重心靠后的飞机,当飞机受扰动而增大攻角时,机翼产生的附加升力是使机头上仰,攻角进一步增大,形成不稳定力矩。这时主要靠水平尾翼的附加升力,使机头下俯,攻角减小,保证飞机的纵向稳定性。

飞机横航向稳定性分析

编号 毕业设计题目飞机横航向稳定性分析 学生姓名 学号 学院 专业 班级 指导教师 二〇一六年六月

本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:)是本人在导师的指导下独立进行研究所取得的成果。尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。 作者签名:年月日 (学号):

飞机横航向稳定性分析 摘要 飞机的稳定性是保证飞行安全的最基本要求,本文主要目的是对常规布局飞机的横航向稳定性进行分析,并利用Matlab编写程序来实现飞行器横航向稳定性分析;我们首先建立飞行器的运动学方程和动力学方程,得到飞行器正常飞行的力学模型,利用模型充分研究影响飞行器横航向稳定性的因素后,为了利用矩阵工具对方程进行求解,我们采用合理方法使飞行器运动方程线性化;线性化后我们发现飞机的横、纵向方程并不耦合,我们把飞机横向线性方程分离出来,并将其整理成矩阵形式,然后求出矩阵的特征值和特征向量,利用特征值与飞行模态的对应关系就可以确定飞机的稳定性 关键词:稳定性,运动方程,建模,线性化

Aircraft lateral and directional stability Analysis System Abstract The stability of the aircraft is the most basic requirements to ensure flight safety, the main purpose of this article is lateral and directional stability of the general layout of the aircraft for analysis and programming using Matlab to achieve the aircraft lateral and directional stability analysis; we first establish the kinematics of the aircraft equation and dynamic equation, the mechanical model of aircraft normal flight, the full study using the model aircraft after the impact factors of stability cross course, in order to take advantage of tools matrix equation is solved, we have adopted a reasonable approach enables linear equations of motion of the aircraft; linearization we found that the aircraft's horizontal and vertical coupling equation does not, we separated the plane transverse linear equations, and organized into a matrix, and then find the eigenvalues and eigenvectors using the eigenvalues and the corresponding flight modes relations can determine the stability of the aircraft Key Words:Stability; Equations of motion; Modeling; Linearization

3第三章飞机的稳定性和操纵性上课讲义

精品文档 第三章飞机的稳定性和操纵性 3.1 飞机的稳定性 在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。 飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。因此,研究飞机的稳定性是研究飞机操纵性的基础。 所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。 3.1.1 纵向稳定性 飞机的纵向稳定性是指飞机绕横轴的稳定性。 当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。飞机的纵向稳定性也称为俯仰稳定性。 飞机的纵向稳定性由飞机重心在焦点之前来保证。影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。 当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。飞机在这个低头力矩作用下,使机头下沉。经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。 同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。 除水平尾翼外,飞机的重心位置对纵向稳定性也有较大的影响。重心靠后的飞机,其纵向稳定性要比重心靠前的差。其原因是:重心与焦点距离小攻角改变时产生的附加力矩减小。对于重心靠后的飞机,当飞机受扰动而增大攻角时,机翼产生的附加升力是使机头上仰,攻角进一步增大,形成不稳定力矩。这时主要靠水平尾翼的附加升力,使机头下俯,攻角减小,保证飞机的纵向稳定性。 精品文档

飞机的稳定性能

飞机的稳定性能 飞机在空中飞行,要求纵向运动应具有静稳定性,即绕飞机横轴的运动静稳定性;而且也要求飞机绕横轴和竖轴运动也具有静稳定性。从机头贯穿机身到机尾的轴叫纵轴(Ox轴),从左翼通过重心到右翼并与纵轴垂直的轴叫横轴(Oy轴)。这两根轴同处在一个平面内,比如水平面内。通过重心并和上述两根轴相垂直到轴叫竖轴(Oz轴)。飞机在铅垂平面(即Oxz平面)内的运动,称为纵向运动;绕横轴Oy的转动叫俯仰运动;绕竖轴Oz的转动叫偏航运动;绕纵轴Ox的转动叫滚转运动。 为了满足飞机的纵向静稳定性,飞机焦点位置和飞机重心位置之间的关系必须满足ΔCm/ΔCL>0。当飞机外形一定时,飞机焦点位置是确定的,反过来就要求在飞机使用过程中的重心位置必须位于允许重心变化的范围内才行。重心的后限是由静稳定性要求确定的,它不能跑到飞机焦点位置的后面去。重心也有前限,重心前移可以增加飞机的静稳定性,但并不是静稳定性越大越好。例如,静稳定性过大,升降舵的操纵力矩就难以使飞机抬头增加迎角获得CL,max。换句话讲,是操纵性要求限制了重心前限。 同要求飞机绕横轴的运动具有纵向静稳定性一样,要求飞机绕竖轴和纵轴运动也应具有静稳定性,并分别称为方向静稳定性和横向静稳定性。 飞机具有横向静稳定性是指处于纵向平衡状态的飞机,一旦受到外界的干扰,打破了原先对飞机纵轴的力矩平衡,产生绕纵轴Ox的倾斜角φ;当外界干扰消除后,飞机靠自身产生的一个恢复力矩,有自动减小倾斜角φ和恢复原先平衡的趋势。保证飞机具有横向静稳定性的主要外形参数是机翼的后掠角和上反角。 跨声速或超声速飞机,为了减小激波阻力,大都采用了后掠角比较大的机翼,因此后掠角的横向静稳定性作用可能过大。所以,可以采用下反角(负的上反角)的外形来削弱后掠机翼的横向静稳定性。低、亚声速飞机大都为梯形直机翼,为了保证飞机的横向静稳定性要求,或多或少都有几度大小的上反角。

对飞机操纵性的一些认识

飞机操纵性的一些认识 当飞机受微小扰动而偏离原来纵向平衡状态(俯仰方向),并在扰动消失以后,飞机能自动恢复到原来纵向平衡状态的特性,称为飞机纵向稳定性。飞机的纵向稳定性主要取决于飞机重心位置,只有当飞机的重心位于焦点前面时,飞机才是纵向稳定的;飞机受到扰动以至于方向平衡状态遭到破坏,而在扰动消失后,飞机如能趋向于恢复原来的平衡位置,就是具有方向稳定性。飞机主要靠垂直尾翼的作用来保证方向稳定性。方向稳定力矩是在侧滑中产生的。飞机在飞行过程中,受到微小扰动,机头右偏,出现左侧滑,空气从飞机左前方吹来作用在垂直尾翼上,产生向右的附加测力,此力对飞机重心形成一个方向稳定力矩,力图使机头左偏,消除侧滑,随着飞行马赫数的增大,特别是在超过声速之后,立尾的侧力系数迅速减小,产生侧力的能力急速下降,使得飞机的方向静稳定性降低。在设计超音速战斗机时,为了保证在平飞最大马赫数下仍具有足够的方向静稳定性,往往需要把立尾的面积做得很大,有时候需要选用腹鳍以及采用双立尾来增大方向稳定性。;飞机受扰动以致横侧状态遭到破坏,而在扰动消失后,如飞机自身产生一个恢复力矩,使飞机趋向于恢复原来的平衡状态,就具有横侧向稳定性。飞行过程中,使飞机自动恢复原来横侧向平衡状态的滚转力矩, 主要由机翼上反角、机翼后掠角和垂直尾翼产生。飞机受到干扰后,沿着R方向产生侧滑。 由于后掠角的作用,飞机右翼的有效速度大于左翼的有效速度,因此,在右边机翼产生的升 力大于左边。两边机翼升力之差,形成了滚转力矩。飞机受到干扰后,沿着R方向产生侧 滑。由于后掠角的作用,飞机右翼的有效速度大于左翼的有效速度,因此,在右边机翼产生的升力大于左边。两边机翼升力之差,形成了滚转力矩。垂直尾翼也能产生横侧向稳定力矩,这是由于出现倾侧以后,垂尾上产生附加侧力的作用点高于飞机重心一段距离,此力对飞机重心形成横侧向稳定力矩,力图消除倾侧和侧滑。

相关文档
最新文档