中考数学专题坐标系中的几何问题

中考数学专题坐标系中的几何问题
中考数学专题坐标系中的几何问题

中考数学专题7 坐标系中的几何问题

【前言】前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。

第一部分 真题精讲

【例1】已知:如图1,等边ABC ?

的边长为,一边在x

轴上且()

10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F .

(1)直接写出点B C 、的坐标;

(2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值;

(3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段OB 上运动时,现给出两个结论:

① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.

图2

图1

【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C 点纵坐标直接用tg60°来算。第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB 还是一个等腰梯形,所以对角线交点非常好算。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题就成功落入囊中了。 【解析】解:(1

)()

10B ;()13C ,.

(2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R .∵ABC ?是等边三角形,()

130A -,

.∴60EAO ∠=? .在Rt EOA ?中,

90EOA ∠=?.∴()

tan 6013333EO AO =??=--?=-.∴

()

0,33

E -.∵E

F ∥AB 交BC 于F ,

()13C ,.∴331R ??

- ? ???

,. (就是四边形对角线的中点,横坐标

自然和C 一样,纵坐标就是E 的纵坐标的一半)

∵直线1y kx =-将四边形EABF 的面积两等分.∴直线1y kx =-必过点331R ??- ? ???

,.∴331k --=,∴53k -= (3)正确结论:①GNM CDM ∠=∠.

证明:可求得过A B C 、、的抛物线解析式为2

22y x x =-++ ∴()02D ,

.∵()20G -,.∴OG OD =. 由题意90GON DOM ∠=∠=?.

∵GNO DNH ∠=∠∴NGO MDO ∠=∠∴NGO ?≌MDO ?

∴GNO DMO ∠=∠,OM ON =

∴45ONM NMO ∠=∠=?

过点D 作DT CP ⊥于T ∴1DT CT ==∴45CDT DCT ∠=∠=?由题意可知

DT ∥AB

∴TDM DMO ∠=∠∴454545TDM DMO GNO ∠+?=∠+?=∠+?

∴TDM CDT GNO ONM ∠+∠=∠+∠即:

GNM CDM ∠=∠. (这一问点多图杂,不行就直接另起一个没有抛物线干扰的图)

【例2】如图,在平面直角坐标系xoy 中,抛物线214

10189

y x x =

--与x正半轴交于点A,与y轴交于点B,过点B 作x 轴的平行线BC,交抛物线于点C,连结AC .现有两动点P 、Q 分别从O 、C 两点同时

出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC,PQ 相交于点D,过点D 作DE ∥OA,交CA 于点E,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t(单位:秒)

(1)求A,B,C 三点的坐标;

(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <

9

2

时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;

(4)当t _________时,△PQF 为等腰三角形?

-1

R Q

F E

C B

A O

x

y

G P

N

M H

T D C B

A O x

y

【思路分析】近年来这种问动点运动到何处时图像变成特殊图形的题目非常流行,所以大家需要对各种特殊图形的判定性质非常熟悉。本题一样一步步拆开来做,第一问送分,给出的抛物线表达式很好因式分解。注意平行于X 轴的直线交抛物线的两个点一定是关于对称轴对称的。第二问就在于当四边形PQCA 为平行四边形的时候题中已知条件有何关系。在运动中,QC 和PA 始终是平行的,根据平行四边形的判定性质,只要QC=PA 时候即可。第三问求△PQF 是否为定值,因为三角形的一条高就是Q 到X 轴的距离,而运动中这个距离是固定的,所以只需看PF 是否为定值即可。根据相似三角形建立比例关系发现OP=AF ,得解。第四问因为已经知道PF 为一个定值,所以只需PQ=PF=18即可,P 点(4t,0)Q (8-t,-10),F(18+4t,0)两点间距离公式分类讨论即可.本道题是09年黄冈原题,第四问原本是作为解答题来出的本来是3分,但是本题作为1分的填空,考生只要大概猜出应该是FP=FQ 就可以。实际考试中如果碰到这么麻烦的,如果没时间的话笔者个人建议放弃这一分去检查其他的.毕竟得到这一分的时间都可以把选择填空仔细过一遍了.

【解析】解:(1) 2

1(8180)18

y x x =

--,令0y =得281800x x --=,()()18100x x -+= ∴18x =或10x =-∴(18,0)A ; 在214

10189

y x x =--中,令0x =得10y =即(0,10)B -; 由

于BC ∥OA ,故点C 的纵坐标为-10,由214

1010189

x x -=--得8x =或0x =即(8,10)C - 于是,(18,0),(0,10),(8,10)A B C --

(2)若四边形PQCA 为平行四边形,由于QC ∥PA.故只要QC=PA 即可 ∵184,PA t CQ t =-=∴184t t -= 得185

t =

(3)设点P 运动t 秒,则4,OP t CQ t ==,0 4.5t <<,说明P 在线段OA 上,且不与点O 、A 重合,由于QC ∥OP 知△QDC ∽△PDO ,故

1

44

QD QC t DP OP t === ∴4AF t OP ==∴18PF PA AF PA OP =+=+= 又点Q 到直线PF 的距离10d =

∴11

18109022

PQF S PF d ?==??=∴△PQF 的面积总为90

(4)由上知,(4,0),(184,0),(8,10)P t F t Q t +--,0 4.5t <<。构造直角三角形后易得

2222(48)10(58)100PQ t t t =-++=-+,2222(1848)10(510)100FO t t t =+-++=++

若FP=PQ ,即2

2

18(58)100t =-+,故2

25(2)224t +=,

∵22 6.5t +≤≤∴25t +=

=∴25

t =-

若QP=QF ,即2

2

(58)100(510)100t t -+=++,无0 4.5t ≤≤的t 满足条件;……………12′

若PQ=PF ,即2

2

(58)10018t -+=,得2

(58)224t -=,∴8 4.55t +=

>或805

t -=<

都不满足0 4.5t ≤≤,故无0 4.5t ≤≤的t 满足方程;

综上所述:当25

t =-时,△PQR 是等腰三角形。

【例3】如图,已知抛物线1C :()522

-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在

点B 的左边),点B 的横坐标是1.

(1)求P 点坐标及a 的值;

(2)如图(1),抛物线2C 与抛物线1C 关于x 轴对称,

将抛物线2C 向右平移,平移后的抛物线记为3C ,3C 的顶点为M ,当点P 、M 关于点B 成中心对称时,求3C 的解析式;

(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线1C 绕点Q 旋转180?后得到抛物线4C .抛物线4C 的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.

【思路分析】出题人比较仁慈,上来就直接给出抛物线顶点式,再将B (1,0)代入,第一问轻松拿分。第二问直接求出M 坐标,然后设顶点式,继续代入点B 即可。第三问则需要设出N ,然后分别将NP ,PF,NF 三个线段的距离表示出来,然后切记分情况讨论直角的可能性。计算量比较大,务必细心。

解:⑴由抛物线1C :()2

25y a x =+-得顶点P 的为(25)--, ∵点(10),B 在抛物线1C 上∴ ()20125a =+-

解得,5

9

a =

⑵连接PM ,作⊥PH x 轴于H ,作⊥MG x 轴于G ∵点P 、M 关于点B 成中心对称

∴PM 过点B ,且=PB MB ∴PBH MBG △≌△∴5==MG PH ,3==BG BH

∴顶点M 的坐标为(45), (标准答案如此,其实没这么麻烦,点M 到B 的横纵坐标之差都等于B 到P 的,直接可以得出(4,5))抛物线2C 由1C 关于x 轴对称得到,抛物线3C 由2C 平移得到∴抛物线3C 的表达式为()25

459

y x =-

-+ ⑶∵抛物线4C 由1C 绕点x 轴上的点Q 旋转180?得到∴顶点N 、P 关于点Q 成中心对称

由⑵得点N 的纵坐标为5。设点N 坐标为(5),

m 作⊥PH x 轴于H ,作⊥NG x 轴于G

作⊥PK NG 于K ∵旋转中心Q 在x 轴上 ∴26===EF AB BH

∴3=FG ,点F 坐标为(30)+,

m H 坐标为(20),,K 坐标为(5)-,m , 根据勾股定理得

22224104PN NK PK m m =+=++

22221050PF PH HF m m =+=++ 2225334NF =+=

①当90∠=?PNF 时,222PN NF PF +=,解得443m =,∴Q 点坐标为19

(0)3,

②当90∠=?PFN 时,222PF NF PN +=,解得103m =,∴Q 点坐标为2

(0)3

③∵10>=>PN NK NF ,∴90NPF ∠?≠

综上所得,当Q 点坐标为19(0)3,或2

(0)3

,时,以点P 、N 、F 为顶点三角形是直角三角形. 【例4】如图,在平面直角坐标系xOy 中,直线l1

:y =+交x 轴、y 轴于A 、B 两点,点()

,M m n 是线段AB 上一动点,点C 是线段OA 的三等分点.

(1)求点C 的坐标;

(2)连接CM ,将ACM △绕点M 旋转180?,得到''A C M △.

①当1

2

BM AM =

时,连结'A C 、'AC ,若过原点O 的直线2l 将四边形''A CAC 分成面积相等的两个四边形,确定此直线的解析式;

②过点'A 作'A H x ⊥轴于H ,当点M 的坐标为何值时,由点'A 、H 、C 、M 构成的四边形为梯形? 【思路分析】本题计算方面不是很繁琐,但是对图形的构造能力提出了要求,也是一道比较典型的动点移动导致特殊图形出现的题目。第一问自不必说,第二问第一小问和前面例题是一样的,也是要把握过四边形对角线交点的直线一定平分该四边形面积这一定理。求出交点就意味着知道了直线.第二小问较为麻烦,因为C 点有两种可能,H 在C 点的左右又是两种可能,所以需要分类讨论去求解.只要利用好梯形两底平行这一性质就可以了.

【解析】(1)根据题意:()6,0A

,(0,B ∵C 是线段OA 的三等分点

∴()2,0C 或()4,0C

(2)①如图,过点M 作MN y ⊥轴于点N ,则

BMN BAO △∽△.∵1

2

BM AM =

. ∴13BM BA =∴1

3

BN BO =

∴(0,N ∵点M

在直线y =+上

∴(2,M - ∵''A C M △是由ACM △绕点M 旋转180?得到的

∴''A C AC ∥∴无论是1C 、2C 点,四边形A CAC ''是平行四边形且M 为对称中心 ∴所求的直线2l

必过点(2,M .∴直线2l 的解析式为

:y = ② 当()12,0C 时,第一种情况:H 在C 点左侧若四边形1A HC M '是梯形

∵A M '与1HC 不平行∴A H '∥1MC

,此时(2,M 第二种情况:H 在C 点右侧,若四边形1'A C HM 是梯形,∵'A M 与1C H 不平行

∴1'A C HM ∥∵M 是线段'AA 的中点∴H 是线段1AC 的中点

∴()4,0H ,由6OA =

,OB =∴60OAB ∠=?∴点M 的横坐标为5

∴(5,M 当()24,0C 时,同理可得 第一种情况:H 在2C

点左侧时,(4,M - 第二种情况:H 在2C

点右侧时,112M ? ??

- 综上所述,所求M

点的坐标为:(2,M

,(M

,(4,M

或112M ? ??

. 【例5】在平面直角坐标系中,抛物线2

23y x x =+-与x 轴交于A 、B 两点,(点A 在点B 左侧).

与y 轴交于点C ,顶点为D ,直线CD 与x 轴交于点E.

(1)请你画出此抛物线,并求A 、B 、C 、D 四点的坐标.

(2)将直线CD 向左平移两个单位,与抛物线交于点F (不与A 、B 两点重合),请你求出F 点坐标.

(3)在点B 、点F 之间的抛物线上有一点P ,使△PBF 的面积最大,求此时P 点坐标及△PBF 的最大面积.

(4)若平行于x 轴的直线与抛物线交于G 、H 两点,以GH 为直径的圆与x

轴相切,求该圆

半径.

【思路分析】本题看似错综复杂,尤其最后第四问的图像画出来又乱又挤,稍微没画好就会让人头大无比。但是不用慌,一步步来慢慢做。抛物线表达式很好分解,第一问轻松写出四个点。第二问向左平移,C 到对称轴的距离刚好是1,所以移动两个距离以后就到了关于对称轴对称的点上,所以F 直接写出为(-2,-3)第三问看似棘手,但是只要将△PBF 拆解成以Y 轴上的线段为公共边的两个小三角形就会很轻松了。将P 点设出来然后列方程求解即可。最后一问要分GH 在X 轴上方和下方两种情况,分类讨论。不过做到最后一步相信同学们的图已经画的乱七八糟了,因为和前面的问题没有太大关系,所以建议大家画两个图分开来看。

解:(1)()()()()30100314A B C D ----,

,,,,,,. (2)()23F --, (3)过点P 作y 轴的平行线与BF 交于点M ,与x 轴交于点H 易得()23F --,

,直线BF 解析式为1y x =-. 设()

223P x x x +-,

,则()1M x x -,,∴22PM x x =--+ PM 的最大值是

9

4

.当PM 取最大值时PBF ?的面积最大 19273248

PBF PFM PBM

S S S ???=+=??=

PFB ?的面积的最大值为

27

8

. (4)如图,①当直线GH 在x 轴上方时,设圆的半径为()0R R >,则()1H R R -,,

代入抛物线的表达式,解得R =

. ②当直线GH 在x 轴下方时,设圆的半径为()0r r >, 则()1H r r --,,代入抛物线的表达式,

解得r ∴

. 【总结】 通过以上五道一模真题,我们发现这类问题虽然看起

来十分复杂,但是只要一问一问研究慢慢分析,总能拿到不错的分数。将几何图形添进坐标系大多情况下是和抛物线有关,所以首先需要同学们对抛物线的各种性质熟练掌握,尤其是借

助抛物线的对称性,有的时候解题会十分方便。无论题目中的图形是三角形,梯形以及平行四边形或者圆,只要认清各种图形的一般性质如何在题中体现就可以了。例如等腰/边三角形大多和相似以及线段长度有关,梯形要抓住平行,平行四边形要看平行且相等,圆形就要看半径和题目中的条件有何关系。还需要掌握平分三角形/四边形/圆形面积的直线分别都一定过哪些点。总之,再难的问题都是由一个个小问题组成的,就算最后一两问没有时间思考拿不了全分,至少要将前面容易的分数拿到手,这部分分数其实还不少。像例2最后一问那种情况,该放弃时候果断放弃,不要为1分的

题失去了大量检查的时间。

第二部分 发散思考

【思考1】如图,在平面直角坐标系xOy 中,ABC 三个顶点的坐标分别为()6,0A -,()6,0B ,

()

0,43C ,延长AC 到点D,使CD=

1

2

AC ,过点D 作DE ∥AB 交BC 的延长线于点E.

(1)求D 点的坐标;

(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;

(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,

先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。(要求:简述确定G 点位置的方法,但不要求证明)

【思路分析】在一模真题部分我们谈到的是直线分四边形面积相等,但是这道去年中考原题则是分周长相等。周长是由很多个线段组成的,所以分周长相等只需要研究哪些线段之和相等就可以了。所以自然想到去证明全等三角形。第三问虽然不要求证明,但是只需设出速度,利用相似三角形去建立关系,还是不难证明的,有余力的同学可以试试.

解:(1)∵(60)A -,,(043)C ,,∴643OA OC ==,.设DE 与y 轴交于点M .

由DE AB ∥可得DMC AOC △∽△.又1

2

CD AC =, ∴

1

2

MD CM CD OA CO CA ===.∴23CM =,3MD =. 同理可得3EM =.∴63OM =. ∴D 点的坐标为(363),.

(2)由(1)可得点M 的坐标为(063),.由DE AB EM MD =∥,,可得y 轴所在直线是线段ED 的垂直平分线.∴点C 关于直线DE 的对称点F 在y 轴上.

∴ED 与CF 互相垂直平分.∴CD DF FE EC ===. ∴四边形CDFE 为菱形,且点M 为其对称中心.

作直线BM .设BM 与CD EF 、分别交于点S 、点T .可证FTM CSM △≌△.∴FT CS =.∵FE CD =,∴TE SD =. ∵EC DF =,∴TE EC CS ST SD DF FT TS +++=+++.

∴直线BM 将四边形CDFE 分成周长相等的两个四边形.

由点(60)B ,,点(063)M ,在直线y kx b =+上,可得直线BM 的解析式为363y x =-+.

y

D E

C B

O A x

1 1 H

S

M T

G F

(3)确定G 点位置的方法:过A 点作AH BM ⊥于点H .则AH 与y 轴的交点为所求的G 点. 由663OB OM ==,,可得60OBM ∠=°,∴30BAH ∠=°.在Rt OAG △中,tan 23OG AO BAH =∠=∴G 点的坐标为(023),

.(或G 点的位置为线段OC 的中点) 【思考2】抛物线与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,-3),抛物线顶点为M ,

连接AC 并延长AC 交抛物线对称轴于点Q ,且点Q 到x 轴的距离为6. (1)求此抛物线的解析式;

(2)在抛物线上找一点D ,使得DC 与AC 垂直,求出点D 的坐标;

(3)抛物线对称轴上是否存在一点P ,使得S △PAM=3S △ACM ,若存在,求出P 点坐标;若不存在,请说明理由.

【思路分析】第一问要算的比较多,设直线以后求解析式,看出抛物线对称轴为x=1,然后设顶点式解个二元方程组即可.第二问利用三角形相似求出点N 坐标,然后联立抛物线与直线CN 即可求出点D.第三问考验对图形的理解,如果能巧妙的将△ACM 的面积看成是四边形ACEM 减去△AME,那么就会发现四边形ACEM 刚好也是△AOC 和梯形OCEM 之和,于是可以求出PM 的距离,然后分类讨论PM 的位置即可求解.

解:(1)设直线AC 的解析式为3-=kx y ,把A (-1,0)代入得3-=k . ∴直线AC 的解析式为33--=x y . 依题意知,点Q 的纵坐标是-6.

把6-=y 代入33--=x y 中,解得1=x ,∴点 Q (1,6-) ∵点Q 在抛物线的对称轴上,∴抛物线的对称轴为直线1=x .

设抛物线的解析式为n x a y +-=2)1(,由题意,得?

??-=+=+30

4n a n a ,解得

?

??-==.4,

1n a ∴抛物线的解析式为4)1(2--=x y .

(2)如图①,过点C 作AC 的垂线交抛物线于点D ,

交x 轴于点N ,则ANC ACO ∠=∠

∴ACO ANC ∠=∠tan tan ,∴OC

OA

ON OC =

. ∵1=OA ,3=OC ,∴9=ON .

∴点N 的坐标为(9,0)

可求得直线CN 的解析式为331

-=x y . 图① 由??

???--=-=4)1(3312x y x y ,解得??

???-==92037y x ,即点D 的坐标为(37,920-).………5分 (3)设抛物线的对称轴交x 轴于点E , 依题意,得2=AE ,4=EM ,52=AM . ∵1=-+=???AME OCME AOC ACM S S S S 梯形,

且PM AE PM S PAM =?=

?2

1

, 又ACM PAM S S ??=3,∴3=PM .

设P (1,m ), ①当点P 在点M 上方时,PM =m +4=3, ∴1-=m ,∴P (1,-1).

②当点P 在点M 下方时,PM =-4-m =3,

∴7-=m ,∴P (1,-7).

综上所述,点P 的坐标为1P (1,-1),2P (1,-7).

【思考3】如图,抛物线两点轴交于与B A x bx ax y ,32

-+=,与y 轴交于点C ,且

OA OC OB 3==.

(I )求抛物线的解析式;

(II )探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形?若存在,求出P 点坐标,若不存在,请说明

理由; (III )直线13

1

+-

=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC ,βαβ-=∠求,CBE 的值

【思路分析】本题虽然没有明确给出坐标,但是表达式中暗含了X=0时Y=-3,于是C 点得出,然后利用给定的等式关系写出A,B

去求解析式。第二问中,因为AC 是固定的,所以构成的直角三角形根据P 的不同有三种类型。注意分类讨论。第三问则是少见的计算角度问题,但是实际上也是用线段去看角度的相等。最方便就是利用正切值构建比例关系,发现∠CBE=∠DBO ,于是所求角度差就变成了求∠OBC 。 解:(I )()3,032--+=点轴交与抛物线C y bx ax y ,且OA OC OB 3==.())0,3(,0,1B A -∴.

代入32

-+=bx ax y ,得

{

{

12

30

339=-==--=-+∴

a b b a b a 322

--=∴x x y

(II )①当190,P AC ∠=?时可证AO P 1?∽ACO ?

31tan tan 11=∠=∠?∴ACO AO P AO P Rt 中,.)3

1

,0(1P ∴

②同理: 如图当)0,9(9022P CA P 时,?=∠ ③当)0,0(9033P A CP 时,?=∠

综上,坐标轴上存在三个点P ,使得以点C A P ,,为顶点的三角形为直角三角形,分别是

x

y

(1,m )

P 1C M A

O E A P2

P 1 C

)3

1

,0(1P )0,9(2P ,)0,0(3P .

(III )()1,0,13

1

D x y 得由+-=.()4,1322---=

E x x y ,得顶点由. ∴52,2,23===BE CE BC

. 为直角三角形

BCE BE ?∴=+,CE BC 222.

3

1

tan ==

∴CB CE β. 3

1

tan ==

∠?∴OB OD DBO DOB Rt 中 .β∠=∠∴DBO . ?=∠=∠-∠=∠-∠45OBC DBO αβα.

第七讲坐标系中的几何问题(包含答案)

中考数学重难点专题讲座 第七讲 坐标系中的几何问题 【前言】 前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。 第一部分 真题精讲 【例1】2010,石景山,一模 已知:如图1,等边ABC ?的边长为x 轴上且() 10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F . (1)直接写出点B C 、的坐标; (2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值; (3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段 OB 上运动时,现给出两个结论: 。 ① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判 断哪个结论正确,并证明.

图2 图1 【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。 【解析】解:(1 )() 10B ;()13C ,. (2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R . ∵ABC ? 是等边三角形,() 10A . ∴60EAO ∠=? . 在Rt EOA ?中,90EOA ∠=?. ∴( tan 6013EO AO =??=-= ∴(0,3E . … ∵EF ∥AB 交BC 于F ,()13C , .

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

【中考必备】最新中考数学试题分类解析 专题35 平面几何基础

2012年全国中考数学试题分类解析汇编(159套63专题) 专题35:平面几何基础 一、选择题 1. (2012北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM 等于【】 A.38?B.104?C.142?D.144? 【答案】C。 【考点】角平分线定义,对顶角的性质,补角的定义。 【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。 由射线OM平分∠AOD,根据角平分线定义,∠COM=380。 ∴∠BOM=∠COM+∠BOC=1420。故选C。 2. (2012重庆市4分)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为【】 A.60°B.50°C.40°D.30° 【答案】B。 【考点】平行线的性质,角平分线的定义。 【分析】∵EF∥AB,∠CEF=100°,∴∠ABC=∠CEF=100°。 ∵BD平分∠ABC,∴∠ABD=1 2 ∠ABC= 1 2 ×100°=50°。故选B。 3. (2012山西省2分)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于【】

A . 35° B . 40° C . 45° D . 50° 【答案】B 。 【考点】平行线的性质,平角定义。 【分析】∵∠CEF =140°,∴∠FED =180°﹣∠CEF =180°﹣140°=40°。 ∵直线AB ∥CD ,∴∠A =∠FED =40°。故选B 。 4. (2012海南省3分)一个三角形的两边长分别为3cm 和7cm ,则此三角形的第三边的长可能是【 】 A .3cm B .4cm C .7cm D .11cm 【答案】C 。 【考点】三角形的构成条件。 【分析】根据三角形的两边之和大于第三边,两边之差小于第三边的构成条件,此三角形的第三边的长应在7-3=4cm 和7+3=10cm 之间。要此之间的选项只有7cm 。故选C 。 5. (2012海南省3分)小明同学把一个含有450 角的直角三角板在如图所示的两条平行线m n ,上,测得0120α∠=,则β∠的度数是【 】 A .450 B .550 C .650 D .750 【答案】D 。 【考点】平行线的性质,平角定义,对顶角的性质,三角形内角和定理。 【分析】∵m n ∥,∴∠ABn =0120α∠=。∴∠ABC =600 。 又∵∠ACB =β∠,∠A =450, ∴根据三角形内角和定理,得β∠=1800-600-450=750。故选D 。 6. (2012广东省3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】 A . 5 B . 6 C . 11 D . 16 【答案】C 。 【考点】三角形三边关系。 【分析】设此三角形第三边的长为x ,则根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,得10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件。故选C 。

中考数学难点分类讲解 第七讲 坐标系中的几何问题

中考数学难点分类讲解 第七讲 坐标系中的几何问题 第七讲 坐标系中的几何问题 【前言】 前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。 第一部分 真题精讲 【例1】2010,石景山,一模 已知:如图1,等边ABC ? 的边长为x 轴上且() 10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F . (1)直接写出点B C 、的坐标; (2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值; (3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段 OB 上运动时,现给出两个结论: ① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明. 图2 图1

【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。 【解析】解:(1)() 10B ;()13C ,. (2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R . ∵ABC ?是等边三角形,() 10A . ∴60EAO ∠=? . 在Rt EOA ?中,90EOA ∠=?. ∴(tan 6013EO AO =??=-= ∴(0,3E . ∵EF ∥AB 交BC 于F ,()13C , . ∴1R ? ?? . (就是四边形对角线的中点,横坐标自然和C 一样,纵坐标就是E 的纵坐标的一半) ∵直线1y kx =-将四边形EABF 的面积两等分. ∴直线1y kx =-必过点1R ? ?? . ∴1k -= ,∴k

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

平面直角坐标系中的几何综合题

2015年七年级下学期期末备考之《平面直角坐标系中几何综合 题》 2015-06-15一.解答题(共17小题) 1.(2015春?玉环县期中)如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0. (1)求a、b的值; (2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.(标注:三角形ABC 的面积表示为S△ABC) ②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立若存在,请直接写出符合条件的点M的坐标. 2.(2015春?汕头校级期中)如图,在下面直角坐标系中,已知A(0,a),B(b,0),C (3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0. (1)求a、b、c的值; (2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.

3.(2015春?鄂城区期中)如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD. (1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC. (2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC若存在这样一点,求出点P 的坐标;若不存在,试说明理由. (3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由. 4.(2014春?富顺县校级期末)在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0 (1)求a、b的值; (2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标; ②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立若存在,请直接写出符合条件的点M的坐标;

中考数学重难点专题讲座动态几何与函数问题含答案(终审稿)

中考数学重难点专题讲座动态几何与函数问题 含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学重难点专题讲座 第八讲动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E. (1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积. (2)当24 t<<时,求S关于t的函数解析式.

中考数学几何题集锦

地区:浙江省金华市年份:2011 分值:12.0 难度:难 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长; (2)当DE=8时,求线段EF的长; (3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由. 地区:浙江省湖州市年份:2011 分值:14.0 难度:难 如图1.已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

地区:山东省济宁市年份:2011 分值:10.0 难度:难 如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C 的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx +3. (1)设点P的纵坐标为p,写出p随K变化的函数关系式. (2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明; (3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由. 地区:湖南省邵阳市年份:2011 分值:10.0 难度:难 如图(十一)所示,在平面直角坐标系Oxy中,已知点A(,0),点C(0,3) 点B是x轴上一点(位于点A右侧),以AB为直径的圆恰好经过点C. (1)求角ACB的度数; (2)已知抛物线y=ax2+bx+3经过A,B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

八年级坐标与几何综合题压轴题

八年级坐标与几何综合 题压轴题 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2701,直线AB; y=x-b 分别与x 轴y 轴交于A(6,0), B 两点,过点B 的直线交x 轴负半轴 于C , OB ;OC=3:1。 (1) 求直线BC 的解析式。 (2) 直线EF :y=kx —k (k ≠0).交AB 于E ,交BC 于F ,交x 轴于D ,是否存在这 样的直线EF 使得S △EBD=S △FBD 若存在求出k 的值,若不存在,说明理由。 (3) 如图2,P 为A 点右侧x 轴上的一动点,以P 为直角顶点 BP 为腰,在第一 象限内作 等腰直角三角形△BPQ ,连接QA 并延长交y 轴于点K 当P 点运动 时,K 点的位置是否发生变化 如果不变求出它的坐标,如果变化,说明理由。 2702,如图,在平面直角坐标系中,一次函数y=67 x+7与X 轴,Y 轴分别交与点A,C.点B 为x 轴正半轴上一点,且△ABC的面积为70。 (1) 求直线BC 的解析式。 (2) 动点P 从A 出发沿线段AB 向点B 以每秒2个单位的速度运动,同时点Q 从点 C 出发沿射线CO 以每秒1个单位的速度匀速运动,当点P 停止运动时点Q 也停止运动。连接PO,PC,设△ABC的面积为S ,点P,Q 的运动时间为t(秒),求 S 与t 的函数关系式,并直接写出自变量的取值范围。 (3) 在(2)的条件下,在直线BC 上是否存在点D ,连接DP,DO.使得△DPQ 是以PQ 为直角边的等腰直角三角形,若存在求出t 值,若不存在,说明理由。 2703.在平面直角坐标系中,直线y=x-4与X 轴,Y 轴分别交于A ,D 两点,AB ⊥AD ,交y 轴于点B 。 (1)求直线AB 的解析式。 (2)点P 为X 轴上一动点,PC ⊥PB ,交直线AD 于点C ,设 △PAC 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并写出自变量t 的取值范围。 (3)在(2)的条件下,当S=时,求t 的值。 2704,在平面直角坐标系中,正比例函数y=x 的图像上有一点P (点P 在第一象 限),点A 为Y轴上的一动点,PB⊥PA,交X轴正半轴与点B,PH⊥X轴。垂足为H。 (1),当点A在Y轴正半轴时,如图1,线段OA,OB,PH,之间的数量关系是______________________。 (2)当点A在Y轴负半轴时,如图2,求证;OB-OA=2PH. (3)在(2)的条件下,连接AB,过点P作PC⊥AB于点C,交X轴于点D,当∠OBP=30°,BD=8时,求线段OA的长。 2805,如图,在平面直角坐标系中,函数y=-x+32与Y 轴,X 轴分别交于点A ,B 两点, (1)求直线AB 的长。 (2)点P是AB 上的一动点,点C 在X 轴的正半轴上,且PO=PC ,若PA :PB=1:2,时求直线PC 的解析式。

中考数学专题(3)动态几何问题分析

中考数学专题3 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t = . 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论:

中考数学之平面几何总结经典习题

平面几何知识要点(一) 【线段、角、直线】 1.过两点有且只有一条直线。 2.两点之间线段最短。 3.过一点有且只有一条直线和已知直线垂直。 4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。 垂直平分线,简称“中垂线”。 定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的 垂直平分线(中垂线)。 线段的垂直平分线可看作和线段两端点距离相等的所有点的

集合。 中垂线性质:垂直平分线垂直且平分其所在线段。 垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。 逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分 线上。 .三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶 点的距离相等。 角 1.同角或等角的余角相等。

2.同角或等角的补角相等。 3.对顶角相等。 角的平分线性质 角的平分线是到角的两边距离相等的所有点的集合 定理1:角的平分线上的点到这个角的两边的距离相等。 定理2:到一个角的两边距离相等的点,在这个角的平分线上。 三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。 【平行线】 平行线性质1:两直线平行,同位角相等。 平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。 平行线判定1:同位角相等,两直线平行。 平行线判定2:内错角相等,两直线平行。 平行线判定3:同旁内角互补,两直线平行。 平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段 成比例。

用坐标系解立体几何常见方法

建立空间直角坐标系,解立体几高考题 立体几重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,n 为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ(l PM ?,α∈M ,n 为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设b a , 为平面α的任意两个向量,)1,,(y x n =为α的法向量, 则由程组?????=?=?0 n b n a ,可求得法向量n .

高中新教材9(B)引入了空间向量坐标运算这一容,使得空间立体几的平行﹑垂直﹑角﹑距离等问题避免了传统法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

直角坐标系解决立体几何问题

在立体几何中引入向量之前,求角与距离是一个难点,在新课标中,从向量的角度来研究空间的点、线、面的关系,我们只要通过两个向量的数量积运算、运用向量的模、平面的法向量就可以解决常见的角与距离的问题。而且,运用向量来解题思路简单、步骤清楚,对学生来说轻松了很多。 重点:用空间向量数量积及夹角公式求异面直线所成角。 难点:建立恰当的空间直角坐标系 关键:几何问题转换为代数问题及正确写出空间向量的坐标。 Ⅰ、空间直角坐标系的建立 空间向量的数量积公式(两种形式)、夹角公式和空间向量的数量积的几何性质。(用媒体分步显示下列内容) 1. 向量的数量积公式(包括向量的夹角公式): 若与的夹角为θ(0≤θ≤π),且={x 1,y 1,z 1},={x 2,y 2,z 2},则 ⑴ a ·b =|a ||b |cos θ 或 a ·b = x 1x 2+y 1y 2+z 1z 2 ⑵若a 与b 非零向量 cos θ = 22 22 22 21 21 21 212121x z z y y x x z y x z y ++?++++ 2. 向量的数量积的几何性质: ⑴两个非零向量与垂直的充要条件是·=0 ⑵两个非零向量a 与b 平行的充要条件是a ·b =±|a ||b | 利用空间向量知识求异面直线所成角的一般步骤: (1)根据图形建立合理的空间直角坐标系; (2)确定关键点的坐标; (3)求空间向量的夹角; (4)得出异面直线的所成角。 D 1 x y o . M x y o . M 平面直角坐标系 空间直角坐标系 z

用向量解决角的问题 ①两条异面直线a 、b 间夹角 在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ, 则cos |cos ,|AB CD θ=<>u u u r u u u r =。 注意,由于两向量的夹角范围为[]??180,0,而异面直线所成角的范围为 ()?<

中考数学中的探究性问题动态几何(终审稿)

中考数学中的探究性问 题动态几何 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学中的《探究性问题——动态几何》 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查 学生的综合分析和解决问题的能力。 有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。本人只是用2005 年的部分中考数学试题加以说明。 一、知识网络 《动态几何》涉及的几种情况动点问题? 动线问题动形问题? ? 二、例题经典 1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; y (2) 当t 为何值时,△APQ 与△AOB 相似 24 A (3) 当t 为何值时,△APQ 的面积为 个平方单位 5 P Q

【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=6 8k+b=0 3 解得k=-b=6 4 3 所以,直线AB 的解析式为y=-x+6. 4 (2)由AO=6,BO=8 得AB=10 所以AP=t ,AQ=10-2t 1°当∠APQ=∠AOB 时,△APQ∽△AOB. t 10 2t 30 所以=解得t= (秒) 6 10 11 2°当∠AQP=∠AOB 时,△AQP∽△AOB. t 10 2t 50 所以=解得t= 10 6 13 (秒) (3)过点Q 作QE 垂直AO 于点E. BO 4 在Rt△AOB 中,Sin∠BAO= = AB 5 O y y A P Q O A Q y B B B x x x

初中数学平面几何建系专题讲课讲稿

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置 ?

(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

立体几何空间直角坐标系

空间直角坐标系080617 好题选析: 例1、在空间直角坐标系中,给定点)3,2,1(-M 。求它分别关于坐标平面、坐标轴和原点的对称点的坐标。 例2、已知两点)1,0,1(P 与)1,3,4(-Q 。(1)求Q P ,两点的距离;(2)求z 轴上点M ,使||||MQ MP =。 例3、如图,在河的一侧有一塔m CD 5=,河宽m BC 3=,另 一侧有点A ,BC AB m AB ⊥=,4。求点A 与塔顶D 的距离AD 。 好题精练: (一)选择题: 1、关于空间直角坐标系,叙述正确的是( ) A 、),,(z y x P 中z y x ,,的位置可以互换; B 、空间直角坐标系中的点与一个三元有序数组是一种一一对应关系; C 、空间直角坐标系中的三条坐标轴把空间分为八个部分; D 、某点在不同的空间直角坐标系中的坐标位置可以相同。 2、已知点)4,1,3(--A ,则点A 关于原点的对称点的坐标为( ) A 、)4,3,1(-- B 、)3,1,4(-- C 、)4,1,3(- D 、)3,1,4(- 3、已知点)2,1,0(),1,2,1(B A -,则向量坐标为( ) A 、)3,1,1(- B 、)3,1,1(-- C 、)1,1,1(-- D 、)0,1,0( 4、设点B 是点)5,3,2(-A 关于面xoy 的对称点,则||AB 等于( ) A 、10 B 、10 C 、38 D 、38 (二)填空题: 5、已知ABC D 为平行四边形,且)5,7,3(),1,5,2(),3,1,4(--C B A ,则顶点D 的坐标为 。 (三)解答题: 6、在坐标面yoz 内求与三个已知点)1,5,0(),2,2,4(),2,1,3(C B A --等距离的点D 的坐标。 7、已知ABC ?的顶点)1,3,1(),2,6,5(),2,1,1(---C B A 。试求AC 边上的高BD 的长。

中考数学专题:坐标系中的几何问题

以下是查字典数学网为您推荐的中考数学专题:坐标系中的几何问题,希望本篇文章对您学 习有所帮助。中考数学专题:坐标系中的几何问题【前言】前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。第一部分真题精讲【例1】已知:如图1,等边的 边长为,一边在轴上且,交轴于点,过点作∥交于点 .(1)直接写出点的坐 标;(2)若直线将四边形的面积两等分,求的值;(3)如图2,过点的抛物线与轴交于 点,为线段上的一个动点,过轴上一点作的垂线,垂足为,直线交轴于点,当 点在线段上运动时,现给出两个结论:①②,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.【思路分析】很多同学一看到这种题干又长条件又多又复杂的代几综 合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C点纵坐标直接用tg60 来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道过四边形对角线交点的任意直线都将四边形面积平分这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求, 因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D做一条垂线就发现图 中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。【解析】解: (1) ; .(2)过点作于,交于点,取的中点 .∵是等边三角形, ..在中, ...∵ ∥交于, .. (就是四边形对角线的中点,横坐标自然和C一样,纵坐标就是E的纵坐标 的一半)∵直线将四边形的面积两等分.直线必过点 .,(3)正确结论:① .证明:可求得 过的抛物线解析式为.∵ ..由题意 .又∵≌,过点作于由题意可知∥即: . (这一问点多 图杂,不行就直接另起一个没有抛物线干扰的图)【例2】如图,在平面直角坐标系xoy中,抛物线与x正半轴交于点A,与y轴交于点B,过点B作x轴的平行线BC,交抛物线于点C,连 结AC.现有两动点P、Q分别从O、C两点同时出发,点P以每秒4个单位的速度沿OA向终 点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止 运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动 点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的坐标;(2)当t为何值时,四边形 PQCA为平行四边形?请写出计算过程;(3)当0(4)当t _________时,△PQF为等腰三角形?【思路分析】近年来这种问动点运动到何处时图像变成特殊图形的题目非常流行,所以大家需要对各种特殊图形的判定性质非常熟悉。本题一样一步步拆开来做,第一问送分,给出的抛物线表达式很好因式分解。注意平行于X轴的直线交抛物线的两个点一定是关于对称轴对称的。第二问就在于当四边形PQCA为平行四边形的时候题中已知条件有何关系。在运动中,QC和 PA始终是平行的,根据平行四边形的判定性质,只要QC=PA时候即可。第三问求△PQF是否 为定值,因为三角形的一条高就是Q到X轴的距离,而运动中这个距离是固定的,所以只需 看PF是否为定值即可。根据相似三角形建立比例关系发现OP=AF,得解。第四问因为已经知道PF为一个定值,所以只需PQ=PF=18即可,P点(4t,0)Q (8-t,-10),F(18+4t,0)两 点间距离公式分类讨论即可.本道题是09年黄冈原题,第四问原本是作为解答题来出的本来是 3分,但是本题作为1分的填空,考生只要大概猜出应该是FP=FQ就可以。实际考试中如果碰 到这么麻烦的,如果没时间的话笔者个人建议放弃这一分去检查其他的.毕竟得到这一分的时 间都可以把选择填空仔细过一遍了.【解析】解:(1) ,令得,或在中,令得即 ;由 于BC∥OA,故点C的纵坐标为-10,由得或即于是,(2)若四边形PQCA为平行四边形, 由于QC∥PA.故只要QC=PA即可∵得(3)设点P运动秒,则,,说明P在线段OA上,且

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

相关文档
最新文档