立体几何中的排列组合问题解法举隅

立体几何中的排列组合问题解法举隅
立体几何中的排列组合问题解法举隅

立体几何中的排列组合问题解法举隅

立体几何中的排列组合问题在近年的高考数学试题中出现的频次较高,且常考常新. 因为解决这类问题不仅要具备排列组合的有关知识,而且还要具备较强的空间想象能力. 因而是一类既富思考情趣,又融众多知识和技巧于一体且综合性强、灵活性高、难度颇大的挑战性问题. 解决这类问题的关键是明确形成几何图形的元素,并与排列组合形成对应关系,转化为排列组合问题,同时还要注意避免重复和遗漏. 下面结合具体例子谈谈这类问题的求解方法,供参考. 一、分步求解

例1 如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线有( )

A. 12对

B. 24对

C. 36对

D. 48对

解 由于六棱锥的6条侧棱交于一点, 底面六边形的6条边共面, 因而只能将侧

棱与底边相搭配. 第一步, 从6条侧棱中任取一条有1

6C 种; 第二步, 从底面6条边中与这条侧棱不相交的4条边中任取一条有14C 种, 由乘法原理知有

1416C C =24对, 故选B.

二.分类求解

例2 四边形的一个顶点为A, 从其它顶点与各棱的中点中取3点, 使它们和点A 在同一平面上, 不同取法有( )

A. 30种

B. 33种

C. 36种

D. 39种

解 符合条件的取法可分为两类: ①4个点(含A)在同一个侧面上,有30

335 C 种;②4个点(含A )在侧棱与对棱中点的截面上,有3种. 由加法原理知不同取法共有33种,故选B.

例3 将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端异色,如果只有5种颜色可供使用,那么不同的染色方法种数是______.

解 分三类:

①如果用5种颜色有5

5A 种染色方法.

②如果用4种颜色,只能是底面四边形相对顶点同色. 如图1,如果A 、C 同色,只要考虑染S 、A 、B 、D 四顶点,有45A 种染法,而B 、D 同色仍有45A 种染

法,用四色共有245A 种染法.

③如果用3种颜色,A 、C 同色,B 、D 同色,只要考虑S 、A 、B 三个顶点,有3

5

A 种染法.

由加法原理知共有55A +245A +3

5A =420种染法.

三、剔除求解

例4 四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )

A. 150种

B.147种

C.144种

D.141种

解 从10个点中任取4点,有4

10C 种取法,再剔除掉共面的取法.

① 共面的四点在四面体的某一个面内,有46C 种取法,4个面共有446C 种;② 每

条棱上的三个点与其对棱的中点四点共面,有6种;③由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个顶点共面,有3种.

故不共面的取法共有410C -446C -6-3=141种,故选D.

例5 已知正方体ABCD-A 1B 1C 1D 1. (1)以正方体顶点为顶点的四面体有多少个?(2)从8个顶点中取出3个顶点,使至少有两个顶点在同一棱上,其取法种数为多少?(3)过8个顶点中任两点的直线与直线A 1B 异面的有多少条?

解 (1)从所有四点的组合中去掉共面的组合,6个表面四点共面,6个对角面四点共面. 所以共有四面体

48C -12=58个.

图1

B

A

D

C

S

图2

A

B C D

B 1

D 1

C 1 A 1

(2)如图2, A 1BD 这样的三点不能满足题意,可以认为这个三点组合与顶点A 对应,正方体有8个顶点,每个顶点对应一个不合题意的三点组合. 所以满足题

意的三点取法共有38C -8=48种.

(3)在8个顶点取2个的组合中,去掉侧面ABB 1A 1中的两点组合有24C 个,再去

掉过A 1不在面ABB 1A 1内的四条直线与过B 的4条直线,还要去掉与之平行的D 1C.

所以共有1442428----C C =13条.

四、构造模型求解

例6 与空间不共面的四点距离相等的平面有多少个?

解 由题设条件,空间不共面的四点可构成四面体,考虑四面体的四个顶点在所求平面两侧的分布,易知当所求平面位于三棱锥的顶点与底面之间时有4个;当所求平面位于三棱锥相对棱之间时有3个. 故所求平面有7个. 例7 在正方体八个顶点的所有连线中,有多少对异面直线?

解 构造四面体求解,因为四面体的6条棱可构成3对异面直线,从而只要求出正方体的八个顶点可构成几个四面体即可,而这恰好是本文例5(1),故可得到

1743)12(48=?-C 对异面直线. 五、联想有关命题求解

例8 以长方体的八个顶点中的任意3个为顶点的所有三角形中,锐角三角形的个数为( )

A.0

B.6

C.8

D.24

解 联想课本习题:“将正方体截去一角,求证:截面是锐角三角形. ”易知从长方体的一个顶点出发的三条棱的另3个端点可构成锐角三角形,长方体有8个顶点,从而可构成8个锐角三角形,故选C.

六、综合有关知识求解

例9 以一个正五棱柱的顶点为顶点的四面体共有( ) A.200个 B.190个 C.185个 D.180个

图3

C

E C 1

解 正五棱柱共有10个顶点,若每四个顶点构成一个四面体,共可构成4

10C =210

个四面体,其中四点在同一平面内的有三类:

① 每一底面的5点中选4点的组合方法有452C 个.

② 5条侧棱中的任意两条棱上的四点有25C 个.

③一个底面的一边与另一个底面相应的一条对角线平行(例如AB ∥E 1C 1),这样

共面的四点共有152C 个.

故四面体的个数为1

5

254541022C C C C ---=180个,故选D. 例10 用正五棱柱的10个顶点中的5个顶点作四棱锥的5个顶点,共可得多少个四棱锥?

解 结合图3,以不同类型的四棱锥的底面分类可得:

① 以棱柱的底面为四棱锥底面的共有245C 15C 个. ②以棱柱的侧面为四棱锥底面的共有15C 16C 个. ③以棱柱的对角面为四棱锥底面的共有15C 16

C 个. ④以图3中ABC 1E 1(为等腰梯形)为四棱锥底面的共有215C 16C 个. 故可构成的四棱锥共有245C 15C +15C 16C +15C 16C +215C 16

C =170个. 例11 以四棱柱的顶点为顶点的三棱锥有多少个?

解 本题要讨论底面的形状,所求的答案与底面的形状有关. ①若底面不是梯形,也不是平行四边形,则有48C -6-2=62个. ② 若底面是梯形,则有48C -6-4=60个. ③ 若底面是平行四边形,则有48C -6-6=58个. 综上所述,所求三棱锥的个数为62或60或58.

立体几何中组合问题的几种解法

立体几何中组合问题的几种解法 解决几何组合问题时,应准确灵活使用加法原理和乘法原理,要分类分步进行,做到不重复不遗漏。 1 直接求解法 例1:四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法有多少种? 分析:正面考虑本题各步骤的方法比较复杂,计算困难,应运用逆向思维,即先考虑从10个点任意取出4个点的方法,再减去从10个点中取出4点共面的的方法即可。 解:从10个点中找出4个点的方法有C410=210种,其中在四面体的四个面内各有6个点,取出共面的4个点的方法有4C4■=60种;相邻面各棱的中点4点共C410面的有3种;一条棱上三点与其相对棱中点也共面,共6种。 ∴所求方法N=210-60-3-6=141(种) 本题应注意“哪些点共面?”共有几种情况?[1] 例2:从平面Ⅱ上取6个点,再从平面B上取4个点,这10个点最多可确定多少个三棱锥? 解法①:分三种情况考虑:第一种情况从平面a上的6个点中任取一个再与从平面β上的4个点中任取3个点构成的三棱锥有C1■C■■个;第二种情况,从平面a上的6个点中任取2个与平面13上的4个点中任取2个点构成的三棱锥有C2■C2■个;第三种情况,从平面a上的6个点中任取3个点与平面β上的4个点中任取1个点构成的三棱锥有C■■C1■个。根据加法原理共有C1■C■■+C2■C2■ +C■■C1■ =24+90+80=194(个)。 解法②:逆向思维:从10个点中任取4个点的组合数C410中,去掉4个点共面的两种情况即4点在平面a上的C4■个,4点在平面β上的C4■个。其余的任4点都能构成一个三棱锥。因此,可构成三棱锥C410-C4■-C4■=210-15-1=194(个)。 2 从几何概念上求解[2] 例3:空间10个点,无三点共线,其中有六个点共面,其余无四个点共面,则这些可以组成四棱锥的个数有多少个? 此题易错解,仿上例。

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

立体几何中的排列组合问题解法举隅(优.选)

1 / 4word. 立体几何中的排列组合问题解法举隅 立体几何中的排列组合问题在近年的高考数学试题中出现的频次较高,且常考常新. 因为解决这类问题不仅要具备排列组合的有关知识,而且还要具备较强的空间想象能力. 因而是一类既富思考情趣,又融众多知识和技巧于一体且综合性强、灵活性高、难度颇大的挑战性问题. 解决这类问题的关键是明确形成几何图形的元素,并与排列组合形成对应关系,转化为排列组合问题,同时还要注意避免重复和遗漏. 下面结合具体例子谈谈这类问题的求解方法,供参考. 一、分步求解 例1 如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线有( ) A. 12对 B. 24对 C. 36对 D. 48对 解 由于六棱锥的6条侧棱交于一点, 底面六边形的6条边共面, 因而只能将侧 棱与底边相搭配. 第一步, 从6条侧棱中任取一条有1 6C 种; 第二步, 从底面6 条边中与这条侧棱不相交的4条边中任取一条有14C 种, 由乘法原理知有1416C C =24对, 故选B. 二.分类求解 例2 四边形的一个顶点为A, 从其它顶点与各棱的中点中取3点, 使它们和点A 在同一平面上, 不同取法有( ) A. 30种 B. 33种 C. 36种 D. 39种 解 符合条件的取法可分为两类: ①4个点(含A)在同一个侧面上,有3033 5 C 种;②4个点(含A )在侧棱与对棱中点的截面上,有3种. 由加法原理知不同取法共有33种,故选B. 例3 将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端异色,如果只有5种颜色可供使用,那么不同的染色方法种数是______.

例析立体几何中的排列组合问题

例析立体几何中的排列组合问题 春晖中学过月圆 在数学中,排列、组合无论从内容上还是从思想方法上,都体现了实际应用的观点。立体几何与排列组合综合问题是高考命题的新趋势,体现了《考试大纲》要求的在知识交汇处命题的指导思想,应引起考生的重视。立体几何中的计数问题也是高考的热点题型,解决这类问题的基本方法是以点带面法,下面列举立体几何中排列、组合问题的几个例子。 1 点 1.1 共面的点 例1(1997年全国高考(文)) 四面体的一个顶点为A,从其它顶点与棱的中点中取3个点,使它们和点A在同一平面上,不同的取法有() A.30种 B.33种 C.36种 D.39种 解析:四面体有4个顶点,6条棱有6个中点,每个面上的6个点共面。点A所在的每个面中含A的4点组合有个,点A在3个面内,共有个组合;点A在6条棱的3条棱上,每条棱上有3个点,这3点与这条棱对棱的中点共面。 所以与点A共面的四点组合共有个。 答案:B 点评:此题主要考查组合的知识和空间相像能力;属97文科试题中难度最大的选择题,失误的主要原因是没有把每条棱上的3点与它对棱上的中点共面的情况计算在内。 1.2 不共面的点 例2(1997年全国高考(理)) 四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有() A.150种 B.147种 C.144种 D.141种

解析:从10 个点中任取4个点有种取法,其中4点共面的情况有三类:第一类,取出的4个点位于四面体的同一个面内,有种;第二类,取任一条棱上的3个点及对棱的中点,这4点共面有6种;第三类,由中位线构成的平行四边形,它的4个顶点共面,有3种。 以上三类情况不合要求应减掉,所以不同取法共有种。答案:D。 点评:此题难度很大,是当时高考中得分最低的选择题,对空间想像能力要求高,很好的考察了立体几何中点共面的几种情况;排列、组合中正难则反易的解题技巧及分类讨论的数学思想。 2 直线 例3(2005年全国高考卷Ⅰ(理)) 过三棱柱任意两个顶点的直线共15条,其中异面直线有() A.18对 B.24对 C.30对 D.36对 分析:选项数目不大,若不宜用公式直接求解,可考虑用树图法。 解析:法一:一条底面棱有5条直线与其异面。 例:与AB异面的直线分别是B1C、A1C、B1C1、A1C1、CC1。 侧面中与底面相交的棱有4条与其异面的直线; 例:与BB1异面的直线分别是AC、AC1、A1C1、A1C,侧面中的对角线有5条与其异面的直线;

立体几何中的截面(解析版)

专题13 立体几何中的截面 【基本知识】 1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。 2、正六面体的基本斜截面: 3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。 【基本技能】

技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题; 技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能 ... 是() 分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。 例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题: ①水的部分始终呈棱柱状; ②水面EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当容器倾斜到如图5(2)时,BE·BF是定值; 其中正确的命题序号是______________ A C B D

分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为 BC BF BE V ??= 2 1 水是定值,又BC 是定值,所以BE ·BF 是定值,即④正确。所以正确的序号为①③④. 例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( ) A . 21 B .87 C .12 11 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为 8 7 12121211=???- =V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211 112121311=????-=V , 故选C 。 例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是 AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值. C 1 A B C D A 1 D 1 B 1 E G F 图(1) C 1 A B C D A 1 D 1 B 1 E G F 图(2)

立体几何与排列组合

立体几何与排列组合 1.平行六面体ABCD-A 1B 1C 1D 1的六个面都是菱形,则D 1在面ACB 1上的射影是?ACB 1的 ( ) A 重心 B 外心 C 内心 D 垂心 2.长方体三条棱分别为a,b,c,若长方体所有的棱长度之和为24,一条对角线为5,体积为2,则c b a 1 11++等于 ( ) A 411 B 114 C 211 D 11 2 3.已知,正四棱锥侧面是正三角形,设侧面与底面所成的二面角为1θ,相邻两侧面所成的二面角为2θ,则 ( ) A 212 θπ θ-= B 2 2 2 1θπ θ- = C 21θθ= D 2 2 1θθ= 4.在北纬450圈上,有甲、已两地。它们的经度分别为东经1400和西经1300,地球的半径是R ,则甲、已两地球面距离是 ( ) A R π21 B R π41 C R π23 D R π3 1 5.若三棱锥A -BCD 的侧面ABC 内一动点P 与底面BCD 的距离与到AB 的距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) 6.在空间四边形ABCD 中,AB =BC =CD =DA , E ∈AB,F ∈CD 且AE :EB =CF :FD = λ (0< λ <1 = 设EF 与AC 、BD 所成的角分别是 α 、 β ,则 α+β= ( ) A.大于90° B.小于90° C.等于90° D.与 λ 的值有关 7.12名同学合影,站成了前排4人后排8人.现摄影要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数为( ) A .26 8 6 C A B .2 28 3C A C .2 2 8 6 C A D .2 28 5C A 8.如图,一环形花坛分成A 、B 、C 、D 四块,现有4种不同的花供选种,要求在每块里种一种花,且相邻的2块种不同的花,则不同的种法种数为 ( )

2019-2020年高二数学立体几何、排列组合二项式定理、概率复习 人教版

2019-2020年高二数学立体几何、排列组合二项式定理、概率复习人教版【教学内容】 复习(立体几何、排列组合二项式定理、概率) 【方法指导】 一、立体集合概念与知识结构 二、排列、组合和概率概念与知识结构 【典型例题分析】 例1、AO⊥于O,AB为平面的斜线,B为斜足,C∈,若∠ABO=α,∠CBO=β,∠ABC=γ,若α、β、γ均为锐角,则α、β、γ中有() A、角α最小 B、角β最小 C、角γ最大 D、角β最大 分析:选题目的是为了熟悉“最小角定理”,以及所涉及的线面所成角, 二面角,线线所成角之间的关系。 如图,∠ABO=α为斜线与所成角,即线面所成角,若AC⊥BC,则由三垂线定理的逆定理,OC⊥BC。 ∴∠AOC(令其为θ)为二面角A—BC—O的平面角,线线所成角在图 中四个:∠ABC、∠CAB、∠OBC、∠COB,它们恰为两对互余的角。 这样,可以证明sinθ·sin∠ABC=sinα,这是二面角A—BC—O 与线面所成角∠ABO之间的关系。 而在本题中即cosαcosβ=coaγ ,又∵α、γ为锐角,∴α<γ(这就是最小角定理) 同理:β<γ,故γ为α、β、γ三角中最大的角,故选C。 例2、当外切于定球的圆锥全面积取得最小值时,圆锥的全面积与球面面积之比为。 分析与解:(本题实则为一道综合题) 先设球半径为1,则S球面=4π, 设圆锥底面半径为r,母线长为l,则S圆锥全=πr2+πrl 注意到其中含有两个变量:r、l,故考虑减少变量的个数。 如图:设∠OBO1=θ, 则∠SBO1=2θ

) 2,11(8)22(2)21 11(2)111(2)111(2) 1 22()121(1122222222 222 22 22222 2 ”时,取“即当且仅当圆锥全===-=+≥+-+-=+-+=-+-+=-+=-+-+=-+?+=∴r r r r r r r r r r r r r r r r r r r r S πππππππππ 故此时S 圆锥全:S 球面=2 回顾:本例的题解中使用了三角中的公式(可能公式)和均值不等式。若对三角公式不熟悉,也可以这样解出l 与r 之间的关系: 设周长为c ,则 r r r l l r r l r c -?-=∴--=?2222,12 ,从中解出 例3、如图正方形ABCD 中,O 为AC 中点,MN 过点O 且与AD 平行,沿MN 将正方形折成60°二面角。求二面角A —OC —B 的正切值。 分析与解:关键在于作出二面角的平面角,如图∠AMB=60°,取MB 中点H ,连结AH ,在正三角形AMB 中,AH ⊥MB ;又∵MN ⊥平面AMB ,∴MN ⊥AH , ∴AH ⊥平面MBC ,过H 作HK ⊥OC 于K ,(注意K 的位置)连结AK ,由三垂线定理AK ⊥OC ,∴∠AKH 为二面角A —OC —B 的平面角 设:AM=2,在△AMB 中,AH=,在正方形ABCD 中(见平面图) ∴在Rt △AHK 中tan ∠AKH=, 故二面角A —OC —B 的正切值为。 回顾:由于点K 作到了二面角A —MN —C 的后部,因此为了确定其位置,我们借助于平面图形(未翻折),这样可以有效地降低运算的复杂程度。 例4、有一街区的道路如图,某人从A 地去C 地有多少种路线最短的不同走法? 分析与解:街区是矩形的,因此从A 到C 必须经过6条横路,3条直路共9段街道。由于任何一条最短路线都经过9段街道,故每一种走法对应着如(右,右,右,上,右,上,上,右,右)这样的有序列,其中有9个不同位置只要确定哪三个位置为上,(其余的都为右),就可以按这一序列的指示以最短的路程从A 走到C ,故这样的路线共。

完整版例析立体几何中的排列组合问题

例析立体几何中的排列组合问题 过月圆春晖中学在数学中,排列、组合无论从内容上还是从思想方法上,都体现了实际应用的观点。立体几何与排列组合综合问题是高考命题的新趋势,体现了《考试大纲》要求的在知识交汇处命题的指导思想,应引起考生的重视。立体几何中的计数问题也是高考的热点题型,解决这类问题的基本方法是以点带面法, 下面列举立体几何中排列、组合问题的几个例子。1 点 1.1 共面的点 11997年全国高考(文))(例 A3A在同四面体的一个顶点为个点,使它们和点,从其它顶点与棱的中点中取)一平面上,不同的取法有( A30 B33 C36 D39种种.种...种4666A所解析:四面体有个中点, 每个面上的个顶点,个点共面。点条棱有 34AA个面内,共有在点组合有个,点在的每个面中含个组合;点的A6333 点与这条棱对棱的中点共面。条棱的个点,这条棱上,每条棱上有在 A共面的四点组合共有个。所以与点 B答案:97文科试题中难度最大的选点评:此题主要考查组合的知识和空间相像能力;属3点与它对棱上的中点共面的情况计择题,失误的主要原因是没有 把每条棱上的算在内。1.2 不共面的点 21997年全国高考(理))(例 104个不共面的点,不同的取法共有个点,在其中取四面体的顶点和各棱中点共)(A150 B147 C144 D141 种.种.种.种. 410 4点共面的情况有三类:第一个点中任取个点有解析:从种取法,其中

4个点位于四面体的同一个面内,有种;第二类,取任一条棱上类,取出的346种;第三类,由中位线构成的平行四边的个点及对棱的中点,这点共面有43种。形,它的个顶点共面,有 以上三类情况不合要求应减掉,所以不同取法共有种。 D答案:。点评:此题难度很大,是当时高考中得分最低的选择题,对空间想像能力要求高,很好的考察了立体几何中点共面的几种情况;排列、组合中正难则 反易的解题技巧及分类讨论的数学思想。2 直线 例3(2005年全国高考卷Ⅰ(理)) 过三棱柱任意两个顶点的直线共15条,其中异面直线有() A.18对B.24对C.30对D.36对 分析:选项数目不大,若不宜用公式直接求解,可考虑用树图法。 解析:法一:一条底面棱有5条直线与其异面。 例:与AB异面的直线分别是B1C、A1C、B1C1、A1C1、CC1。 侧面中与底面相交的棱有4条与其异面的直线; 例:与BB1异面的直线分别是AC、AC1、A1C1、A1C,侧面中的对角线有5 条与其异面的直线; 例: 与AB1异面的直线分别是BC、BC1、CC1、A1C、A1C1,而每条直线都数 两遍。共有。 法二:一个四面体中有3对异面直线,在三棱柱的六个顶点中任取四个,可构 故共有异面直线。成四面体的个数为:D 答案:点评:解法一是例举法,把符合要求的所有的情况全列出来,列举时一定要按一定的次序进行,以防遗漏和重复,这一看似笨拙的方法对数目不太大的情况常给人以清新,大智若愚之感,在近年高考中,这一方法经常用到;解法二是 利用影射,构造四面体解决的,有较高的技巧,在竞赛中时常出现。3 平面

立体几何排列组合二项式定理知识点(20166593511336)

立体几何排列组合二项式定理知识点 1.多面体 :.()()定义由若干个多边形组成的封闭体叫做多面体 定义:由两个平行全等的多边形,不在这两个面上的棱都平行. 直棱柱底面平行全等,侧面为矩形,侧棱平行相等垂直底面 分类正棱柱底面平行全等正多边形,侧面为矩形,侧棱平行相等垂直底面棱柱四棱柱(平行六面体,直四棱柱,长方体,正四棱柱,正方体) 多面体()()S c l l h V S h ???????????????=?=???=????侧底面周长底面积 直棱柱的侧面积计算 棱柱的体积 定义:由一个面为多边形,不在这个面上的棱有一个公共点. 正棱锥底面正多边形,侧面全等等腰三角形,侧棱相等交一点分类三棱锥(正三棱锥,正四面体) 棱锥''1213S c h h V S h ?? ? ? ? ? ?? ?? ? ? ?? ? ??????????????????? =???????? ???=?????? ???侧底面周长底面积 正棱锥的侧面积(为斜高)计算 棱柱的体积 1.祖暅原理(夫叠棊成立积,缘幂势既同,则积不容异), 2.斜二测画法. 2旋转体 2:(),.(),(),().:(,):2,22,ABCD AB AB CD AD CD S rl S r rl V S h πππ??????==+=?????侧全底 定义矩形及内部绕旋转一周所得的旋转体直线轴线段母线,侧面线段和的旋转面底面圆柱性质无数条母线平行轴垂直底面 计算体积 定义:Rt ABC(及内部)绕直角边AB 旋转一周,所得的旋转圆锥常 见旋转体201 ,,3:(),.:0----:----rl r rl V S h O AB OA πππ???????==+=??? 侧全底体.直线AB(轴),斜边AC(母线,侧面),直角边BC 的旋转面(底面).性质:(无数条母线交于顶点,与轴和底面成等角) 计算:S S 体积 定义半圆及内部绕直径旋转一周所得的旋转体经度经线半圆面与经线半圆面的二面角大小经度纬度与赤道圆面的线面角大小纬球 1123:(,,44,:3(,)O OO S R V R R AOB ππθθ?????????? ? ? ? ?? ???? ?? ???? ?? ???=???????==???? ????∠=????? 表度性质平面截球截面为圆 体积 计算 球面距离弧度

立体几何中的排列组合问题解法举隅

立体几何中的排列组合问题解法举隅 立体几何中的排列组合问题在近年的高考数学试题中出现的频次较高,且常考常新. 因为解决这类问题不仅要具备排列组合的有关知识,而且还要具备较强的空间想象能力. 因而是一类既富思考情趣,又融众多知识和技巧于一体且综合性强、灵活性高、难度颇大的挑战性问题. 解决这类问题的关键是明确形成几何图形的元素,并与排列组合形成对应关系,转化为排列组合问题,同时还要注意避免重复和遗漏. 下面结合具体例子谈谈这类问题的求解方法,供参考. 一、分步求解 例1 如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线有( ) A. 12对 B. 24对 C. 36对 D. 48对 解 由于六棱锥的6条侧棱交于一点, 底面六边形的6条边共面, 因而只能将侧 棱与底边相搭配. 第一步, 从6条侧棱中任取一条有1 6C 种; 第二步, 从底面6条边中与这条侧棱不相交的4条边中任取一条有14C 种, 由乘法原理知有 1416C C =24对, 故选B. 二.分类求解 例2 四边形的一个顶点为A, 从其它顶点与各棱的中点中取3点, 使它们和点A 在同一平面上, 不同取法有( ) A. 30种 B. 33种 C. 36种 D. 39种 解 符合条件的取法可分为两类: ①4个点(含A)在同一个侧面上,有30 335 C 种;②4个点(含A )在侧棱与对棱中点的截面上,有3种. 由加法原理知不同取法共有33种,故选B. 例3 将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端异色,如果只有5种颜色可供使用,那么不同的染色方法种数是______.

解 分三类: ①如果用5种颜色有5 5A 种染色方法. ②如果用4种颜色,只能是底面四边形相对顶点同色. 如图1,如果A 、C 同色,只要考虑染S 、A 、B 、D 四顶点,有45A 种染法,而B 、D 同色仍有45A 种染 法,用四色共有245A 种染法. ③如果用3种颜色,A 、C 同色,B 、D 同色,只要考虑S 、A 、B 三个顶点,有3 5 A 种染法. 由加法原理知共有55A +245A +3 5A =420种染法. 三、剔除求解 例4 四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( ) A. 150种 B.147种 C.144种 D.141种 解 从10个点中任取4点,有4 10C 种取法,再剔除掉共面的取法. ① 共面的四点在四面体的某一个面内,有46C 种取法,4个面共有446C 种;② 每 条棱上的三个点与其对棱的中点四点共面,有6种;③由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个顶点共面,有3种. 故不共面的取法共有410C -446C -6-3=141种,故选D. 例5 已知正方体ABCD-A 1B 1C 1D 1. (1)以正方体顶点为顶点的四面体有多少个?(2)从8个顶点中取出3个顶点,使至少有两个顶点在同一棱上,其取法种数为多少?(3)过8个顶点中任两点的直线与直线A 1B 异面的有多少条? 解 (1)从所有四点的组合中去掉共面的组合,6个表面四点共面,6个对角面四点共面. 所以共有四面体 48C -12=58个. 图1 B A D C S 图2 A B C D B 1 D 1 C 1 A 1

立体几何中的组合体问题

1 1.立体几何中的组合体问题 一、补(补成长方体或正方体) 1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 A 、3π B 、4π C 、33π D 、6π 2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱 32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12 B .π32 C .π36 D .π48 3. 点P P 作两两互相垂直的三条弦(两端点均在球面上的线 段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是 A .6 B C .5 D 4. 一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 5. 设正方体的棱长为233,则它的外接球的表面积为( ) A .π38 B .2π C .4π D .π3 4 6. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为 A .3 B .6 C .36 D .9 7. 已知长方体1111ABCD A B C D -的外接球的表面积为16,则该长方体的表面积的最大值为 A .32 B .36 C .48 D .64 8. 长方体1111ABC D A B C D -的各个顶点都在表面积为16π的球O 的球面 上,其中 1::AB AD AA =,则四棱锥O ABCD -的体积为 A . B . C . D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱 锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶 点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为 A .12p B .24p C .36p D .48p 10. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中, AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为

排列组合问题的几种基本方法(复习归纳)

排列组合问题 1. 分组(堆)问题 分组(堆)问题的六个模型:①无序不等分;②无序等分;③无序局部等分;(④有序不等分;⑤有序等分;⑥有序局部等分.) 处理问题的原则: ①若干个不同的元素“等分”为 m个堆,要将选取出每一个堆的组合数的乘积除以m! ②若干个不同的元素局部“等分”有 m个均等堆,要将选取出每一个堆的组合数的乘积除以m! ③非均分堆问题,只要按比例取出分完再用乘法原理作积. ④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列. 1. 分组(堆)问题 例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式? 解:要完成发包这件事,可以分为两个步骤: ⑴先将四项工程分为三“堆”,有 211421 2 2 6C C C A 种分法; ⑵再将分好的三“堆”依次给三个工程队, 有3!=6种给法. ∴共有6×6=36种不同的发包方式. 2.插空法: 解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决. ♀ ♀ ♀ ♀ ♀ ♀ ♀ ↑ ↑ ↑ ↑ ↑ ↑ 例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法? 解:分两步进行: 55A 有=120种排法 第1步,把除甲乙外的一般人排列: 第2步,将甲乙分别插入到不同的间隙或两端中(插孔): 26A 有=30种插入法

120303600∴?共有=种排法 () 种不同的排法有22 5566P P P -∴ 3.捆绑法 相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列. 例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法? ♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀ 解:(1)分两步进行: 甲 乙 第一步,把甲乙排列(捆绑): 22 A 有=2种捆法 第二步,甲乙两个人的梱看作一个元素与其它的排队: 55 A 有=120种排法 几个元素不能相邻时,先排一般元素,再让特殊元素插孔. 几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列.

《高中数学联赛试题——立体几何》

第五讲立体几何 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容。竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算。解决这些问题常会用到转化、分割与补形等重要的数学思想方法。 一、立体几何中的排列组合问题。 例一、(1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数为 (A)4; (B)8 ;(C)12 ;(D)24。 分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线。考虑正方体的12条面对角线,从中任取一条可与其他面 对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有 1 边共出现2C^ 24次,而每一个三角形由三边构成,故一共可构成的等边三角形个 24 数为8个。 3 例二、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条 棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数 分析:就四棱锥P—ABCD而言,显然顶点P的颜色必定不同于A、B、C、D四点, 于是分三种情况考虑:

3 ①若使用三种颜色,底面对角线上的两点可同色,其染色种数为:A s 60 (种) 1 4 ②若使用四种颜色,底面有一对对角线同色,其染色种数为:C2 A s 240 (种) 5 ③若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:A 120 (种) 故不同染色方法种数是:420种。 二、与角有关的计算。 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种。其 中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的 相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是0 ,90 ;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个 半平面内引棱的垂线;③根据三垂线定理或逆定理。另外还可以根据面积射影定理 S S cos得到。式中S表示射影多边形的面积,S表示原多边形的面积,即为所求二面角。 例三、直线OA和平面斜交于一点0, 0B是0A在内的射影,0C是平面内过0点的任一直线,设 AOC , AOB B0C 求证:cos cos cos 分析:如图,设射线0A任意一点A,过A作 AB 于点B,又作BC 0C于点C,连

九章算术中的立体几何

《九章算术》中的立体几何 《九章算术》文字古奥,历代注释者甚多,其中以刘徽的注本最为有名.刘徽是我国魏晋时期著名数学家,他在曹魏末年撰成《九章算术注》九卷。在继承的基础上,又提出了许多自己的创见与发明,刘徽的观点,对现今的数学有很多借鉴的地方。 《九章算术》是一部问题集,全书分为九章,共收有246个问题,每题都有问、答、术三部分组成。内容涉及算术、代数、几何等诸多领域,并与实际生活紧密相连,充分体现了中国人的数学观与生活观。其中卷第五“商功”,主要讲各种几何体体积的计算,包括现阶段高中数学教材中的棱柱、棱锥、棱台,圆柱、圆锥、圆台,或可化为上述几何体的几何体体积的计算。 《九章算术》是东方数学的思想之源,也是我国多年来各级各类考试的重要题库。卷第五“商功”第25题作为2015年全国卷(Ⅰ)(文理)第6题,通过古题新解考查阅读理解能力,通过圆锥体积的计算考查空间想象能力与求解运算能力。 题目是:《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?” 其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的 四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米 堆的体积和堆放的米各为多少?”已知1斛米的体积约为 1.62立方尺,圆周率约为3,估算出堆放的米约有(解法见 例25) A.14斛 B.22斛 C.36斛 D.66斛 2015年湖北理科19题、文科20题选用《九章算术》“商功”第16题“阳马”与第17题“鳖臑”的组合考查立体几何中线、面间的位置关系与度量关系. 《九章算术》卷第五“商功”共收录28个题目,现将这28个问题整理如下,供参考。 【例1】今有穿地积一万尺.问为坚、壤各几何? 【注释】穿地:挖地取土. 坚:坚实的土. 壤:松软的土. 【译文】现挖地体积为1000立方尺,问换算成坚土、松土各多少? 【解析】本题是各种土方量的换算,有专门的换算比例,这里不赘述. 【说明】从例2到例7都是直四棱柱求体积问题,以例2为例,介绍它们的算法.【例2】今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。问积几何?【注释】广袤:广,东西方向,袤,南北方向. 【译文】现有城,下底长4丈,上底长2丈,高5丈,

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国8)正六棱柱ABCDEF-A1B1C1D1E1F1底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E1D与BC1所成的角是() A、90° B、60° C、45° D、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国18)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF 上移动,若CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高中数学:立体几何中的排列组合概率问题

高中数学:立体几何中的排列组合概率问题 以立体几何中的点、线、面的位置关系为背景的排列、组合、概率问题。这类问题多个知识点交汇在一起,不仅考查了相关的基础知识,而且还注重对数学思想方法及数学能力的考查。 一、共面问题:分类讨论 例1. 不共面的四个定点到平面α的距离都相等,这样的平面α共有() A. 3个 B. 4个 C. 6个 D. 7个 解析:平面α可以分为两类:一类是在平面α的两侧各有两个点;另一类是在平面α的两侧分别有一个点和三个点。如图1,设E、F、G、H、M分别是AB、AC、AD、CD、BD的中点,过E、F、G三点的平面α满足题意,这样的平面有4个;又过E、F、H、M 的平面α也满足题意,这样的平面有3个。故适合题设的平面α共有7个,应选D。

图1 例2. 在四棱锥P—ABCD中,顶点为P,从其他的顶点和各棱的中点中取3个,使它们和点P在同一平面上,不同的取法有()种。 A. 40 B. 48 C. 56 D. 62 图2 解析:如图2,满足题设的取法可分为三类: (1)在四棱锥的每个侧面上除点P外任取3点,有(种)不同的取法;

(2)在两个对角面上除点P外任取3点,共有 (种)不同的取法; (3)过点P的每一条棱上的三点和与这条棱异面的棱的中点也共面,共有(种)不同的取法。 故不同的取法共有(种)。 这类问题应根据立体图形的几何特点,选取恰当的分类标准,做到分类既不重复,也不遗漏。在例2中,最容易漏掉的是第(3)类,最易重复的也是第(3)类。 二、异面问题:灵活转化 例3. 过三棱柱任意两个顶点的直线共15条,其中异面直线有() A. 18对 B. 24对 C. 30对 D. 36对 解析:大家知道一个三棱锥可以确定3对异面直线,一个三棱柱可以组成(个)三棱锥,则共有36对异面直线。故选D。

阶段性测试(立体几何,数列,导数,排列组合)

辅导讲义 一、教学目标 阶段性测试 1.一个小时测试(立体几何,数列,导数,排列组合) 2.评讲小结 二、上课内容 1. 前一个小时进行阶段性测试 2. 主要针对学生的考试疑问评讲 三、课后作业 见课后 四、家长签名 (本人确认:孩子已经完成“课后作业”)_________________

阶段性测试(立体几何,数列,导数,排列组合) 错误!未指定书签。 1.(2013年高考新课标1(理))某几何体的三视图如图所示,则该 几何体的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+ 2错误!未指定书签。.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案)) 如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3 BC CD AC ACB ACD π ===∠=∠=,F 为PC 的中 点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值.

3错误!未指定书签。 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a (A)31 (B)31- (C)91 (D)91- 4错误!未指定书签。.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列. (1)求n a d ,; (2)若0

立体几何高考内容分析及复习建议

立体几何高考内容分析与复习建议 内容提要:本文通过对新旧教材在内容、考试要求、教学重点难点、以及近几年来的新旧课程的高考试题特点等进行研究,制定相应的复习策略。本文还提出了几种对空间角与距离的解法。 关键词:空间想象能力,转化化归思想、向量代数法。 2004年是广东省采用数学新课程的第一次高考,虽说高考对立体几何的考查一直是以能力为主,对能力考查的要求有一年比一年提高的趋势,题型也相对较为稳定。但新旧课程在内容、考试要求、教学要求、教材的编排体系等毕竟有相当大的改变,因此我们进行高三立体几何复习时,有必要对新旧教材在内容、考试要求、教学重点难点、以及近几年来的新旧课程的高考试题特点等进行研究,制定相应的复习策略,争取在2004年高考中获得全面丰收。以下谈谈笔者的一些看法: 一、立体几何内容分析 (一)新旧教材比较: 在考试内容方面:新教材中删除了棱台,旋转体(圆锥、圆柱、圆台、球冠及球缺等)。增加了正多面体与欧拉定理;增加了空间向量及其加、减法,与数乘运算;空间向量的数量积;空间向量的坐标表示,及其对应的加减法,数乘与数量积运算;平面法向量等内容。 在考试要求方面:删除了棱台,旋转体(圆锥、圆柱、圆台、球冠及球缺等)的面积与体积公式,淡化了三垂线定理及其逆定理的要求,增加了理解空间向量与空间向量坐标的概念,掌握空间向量的加减法、数乘与数量积的概念;及其对应坐标的加减法,与数乘运算;理解直线的方向向量、平面的法向量等内容。 突出了利用空间向量知识解决求空间角、空间距离;证明平行与垂直的问题,明确了对传统几何的向量化思想。同时也体现了对解决问题的方法上的灵活性,重点让学生掌握向量代数法,同时也兼顾传统几何综合推理方法。(二)复习重点: (1)线线、线面、面面平行和垂直的判定与性质;三垂线定理及其逆定理的应用; (2)空间向量的概念、性质与运用; (3)空间角与距离的概念和计算; (4)特殊棱柱、棱锥的定义、性质; (5)棱柱、棱锥中线线、线面与面面的位置关系,线线、线面与面面所成角的构造与计算;(特别注重向量代数法来计算角) (三)复习难点: (1)找到要计算的角、距离等; (2)掌握应用向量解决立体几何的问题; (3)平面图形与空间图形相互转换,即空间想象能力进一步提高;以及转化化归思想、类比思想等的培养。 二、高考考点剖析 立体几何三大考点: (1)线面位置关系的推理判断(小题)、证明(大题); (2)空间角; (3)空间距离。 线面位置关系突出平行和垂直,又侧重于垂直关系,因为空间直角坐标系的建立和空间角的平面角的构造与求解离不开垂直;空间距离也离不开垂直。主要以三棱柱、四棱柱(正方体)、三棱锥、四棱锥为载体。与球有关的问题也是高考常考点。 立体几何大题不独立考查单纯的线面位置关系,而明确以多面体为载体,综合考查概念、性质、线面关系、角与距离。 三、考题特点分析 每年的数学高考立体几何题中,有2~3道选择题,1道填空题及1道解答题。分值占全卷的18%~20%。考题属于“理解”和“掌握”这两个层次,难度中等,试题常有课本背景。总结2000~2003年两省一市(晋津赣)或江苏、辽宁等省新教材高考卷与全国高考卷的立体几何题可以看到以下几个特点: (1)新教材立体几何试题中大题以棱柱或棱锥为载体,融线面关系于几何体中。继续采取传统的小步设问、逐层

相关文档
最新文档