苯胺生产工艺

苯胺生产工艺
苯胺生产工艺

7万吨/年苯胺装置

1 项目名称

7万吨/年苯胺装置

2 工艺总说明

反应过程:

硝酸和苯反应,生成硝基苯:

C6H6+HNO3→C6H5-NO2+H2O

硝基苯加氢生成苯胺,硝基苯中O被H取代:

C6H5-NO2+H2→C6H5-NH2+O2

生产苯胺的原料硝基苯由硝基苯单元提供,该原料的生产主要是苯绝热硝化后经分离、酸洗、碱洗后获得粗硝基苯,粗硝基苯进一步精制得精硝基苯。精硝基苯与氢气同时进入苯胺单元经气化混合、加氢还原,获得粗苯胺,粗苯胺经废水处理、精制,生产出MDI级苯胺产品。目前硝基苯生产主要采用混酸硝化法。一般有两种工艺,一种是传统的等温硝化法,另一种是绝热硝化法。绝热硝化法在国内还没有应用到大规模生产中,国内采用的均为传统的等温硝化法,即苯硝化后经中和、分离、水洗,获得粗硝基苯,粗硝基苯进一步精制获得精硝基苯。

生产苯胺所采用的工艺技术主要有铁粉还原法、催化加氢法及苯酚氨化法等。还原后的粗苯胺经进一步精制得到精苯胺。

2.1 硝化工艺技术路线

a) 传统硝化法(等温硝化法)

传统硝化法是将苯与用硫酸和硝酸配制的混酸在釜式硝化器(硝化锅)中进行硝化,所用硝化器一般为带有强力搅拌的耐酸铸铁或碳钢釜。消化器内装有冷却蛇管,以导出硝化反应热。硝基苯生产采用连续化生产工艺技术。硝化时苯和混酸同时进料,硝化器串联操作,硝化温度控制在68~78℃。

因硝化反应是强放热反应,及时有效地排除热量,是硝化器设计的首要前提。当反应体系温升过高会引起副反应,使硝基酚类副产物增加,而这些酚类副产物是造成硝基苯生产发生爆炸事故的主要原因。因此硝化器应设有充分的搅拌和冷却装置,严格控制反应温度和搅拌效果。为保证安全操作,需设有自控仪表及安全连锁系统。

在连续硝化生产工艺中,硝化器除釜式串联形式外,还有环形硝化器形式。

环形硝化器是将两个列管式硝化器串联,在一侧硝化器上用立式轴流泵进行强制循环,用冷却水移出反应热。目前在国内,环形硝化器的生产能力均不大,还没有在大型的硝基苯生产装置上使用。

釜式串联形式的硝化器目前在国内应用比较广泛,目前吉林石化分公司现有装置的硝化反应器即为四釜串联形式的传统的等温硝化反应器,其单线生产能力可达到10万吨/年硝基苯。

b) 绝热硝化法

德国PLINKE公司的绝热硝化工艺有三个主要阶段:硝化、废酸浓缩、产品分离。其反应过程是将过量的苯预热到100℃后与混酸一同加到硝化器中,在一定压力下进行反应。由于反应产生大量的热,物料的出口温度在120~140℃之间。反应物经分离后,分出的废酸进入闪蒸器,利用本身热量将废酸浓度提高到70%,与60%的硝酸混合后循环使用。有机相经酸洗、碱洗、水洗及分离后,得粗硝基苯。粗硝基苯经气提后,蒸出未反应的过量苯,可得到精硝基苯。

c) 传统硝化法和绝热硝化法的比较

绝热硝化与传统硝化方法相比,存在着重要的差别即:用稀硝酸替代浓硝酸,增加了混酸中水的含量;取消硝化器中的冷却装置,在压力下完成硝化反应。采用绝热硝化法具有以下特

点:(1)由于取消冷却装置,减少了水的消耗;(2)利用反应热在真空闪蒸器中进行废酸的浓缩,取消了传统硝化法的废酸浓缩过程,与传统硝化法比既节省了90%左右的能源,又减少了很多昂贵的设备投资;(3)硝化反应是在封闭系统和压力下进行的,可以避免苯的挥发;(4)苯经气提、冷凝、分层后回收循环使用,减少了苯的损失。分出的水用于硝化的水洗,节省了水资源。(5)废气中的氮氧化物和微量苯均经处理后排放,污染物排放较少,有利于环境保护和降低原料的消耗定额;(6)硝化时采用过量苯和高含水量的混酸,既避免了副反应的发生,又提高产品质量、收率,降低了成本。

传统硝化法和绝热硝化法各有优缺点,具体工艺条件及消耗定额比较列于表2.1及表2.2。表2.1 绝热硝化法与传统硝化法消耗定额比较(以吨硝基苯计)

原料消耗公用工程

绝热硝化传统硝化法绝热硝化传统硝化法

苯(100%)0.6365t 0.653t 冷却水65t(循环水)100t(循环水)

硝酸(100%)0.516t 0.540t 0.25(低温水) 1.5(低温水)

硫酸(100%)0.0022t 0.0293t 蒸汽0.237t(1.0MPa)0.504t(1.0MPa)

碱(100%)0.001t 0.00216t 0.3t(0.4MPa)0.36t (0.4MPa)

0.36t(2.5MPa)

电13kW?h 20kW?h

表2.2 绝热硝化法与传统硝化法工艺条件的比较

项目绝热硝化法传统硝化法项目绝热硝化法传统硝化法

混酸组成操作温度,℃120~140 60~78 HNO3,% 3~3.7 44~51 闪蒸或浓缩条件100℃,10kPaA 150℃

H2SO4,% 58.5~66.5 41~48 废酸浓度,% 70 71 H2O,% 28~37 5~10 收率,% 99.9 98.5

硝酸与硫酸比 1.0:1.1 1.08:1.0 二硝基物含量,% <0.05 0.09

硝化器无冷却装置四锅串联,

有冷却装置操作压力MPaG 0.3-0.46 常压

2.2 还原工艺技术

a) 硝基苯铁粉还原法

此法生产工艺大都采用间歇法生产。将苯胺废水和部分铁粉与盐酸投入还原锅中,用直接蒸汽加热,经一段时间后分批加入硝基苯和铁粉,反应直至回流冷凝物无硝基苯为止。产物经蒸馏,获得粗苯胺,再经精馏获得成品,铁泥经处理后排放。此法目前只有一些中小厂还在使用。

b) 硝基苯催化加氢还原法

硝基苯催化加氢分为气相法和液相法,但工业生产多采用气相法。液相法工业化的较少。硝基苯气相催化加氢所用的反应器有流化床和固定床两种。国外70年代以后建设的装置以固定床或固定床和流化床相串联的反应器为主,有代表性的是日本住友的固定床生产工艺。

其工艺是将新鲜氢和循环氢一起送至预热器中预热,预热器内保持一定压力。经预热的氢和硝基苯进入蒸发器,调整配料比后进入反应器。反应产物与进料氢换热,经冷凝、分离获得粗苯,粗苯胺进入脱水塔脱水,再经精馏塔脱除高沸物,由塔上部出成品苯胺。固定床反应器为列管式,管内装铜-铬催化剂,必要时可掺入瓷环。管间用载热体带出反应热,该热量用于付产蒸汽。

国内装置大多采用流化床加氢工艺。流化床反应器设有气体分布器,硝基苯经汽化后与氢气混合,经分布器进入反应器。反应器内装有铜-硅胶催化剂,床层内设冷却管。为防止气体夹带催化剂,流化床内设有气固分离结构。反应后的气体产物经冷凝去分离器,氢气去循环压缩机;粗苯胺再进入苯胺精制系统,获得成品苯胺。

2.3 苯胺废水回收技术的选择

目前国内及吉林石化分公司现有的7万吨/年苯胺装置的苯胺废水回收均采用精馏方式回收其中的苯胺。废水中苯胺的含量占3.5%-4.5%,由于大量水的存在,采用精馏工艺回收苯胺,其蒸汽消耗量较高,为此,吉林石化分公司研究院自行研究开发了用硝基苯萃取废水中苯胺的工艺技术。此工艺是经过三级萃取、分离后,废水中的苯胺与精硝基苯一并去加氢还原,分离后的废水中苯胺含量小于50ppm。

2.4 苯胺的用途:

80年代中期以前,橡胶助剂、医药及染料工业是苯胺三大传统消费领域。1988年以后,聚氨酯塑料工业快速发展,MDI的需求急剧增长,需要MDI级苯胺。

在苯胺的下游产品中,环己胺、香兰素、对苯二酚、橡胶助剂等产品。

在染料行业中,还原靛蓝和色酚AS两个染料品种。

在医药工业中,以苯胺为原料生产的药品主要有两大类,一种是磺胺类抗菌药,另一种是安替比林类镇痛药。

苯胺在农药中主要用做生产水田除草剂丁草胺的中间体2,6-二乙基苯胺的主要原料。

用于生产**稳定剂的二苯胺,生产香兰素的N,N-二甲基苯胺,生产橡胶防老剂、染料中间体及感光材料的对苯二酚等。

3 装置构成和工艺流程

3.1 装置组成

装置由工艺生产装置(硝基苯单元、苯胺单元)、储运设施(化苯库、硝酸罐区、成品库及铁路)、辅助设施(综合楼、冷冻站、循环水站、空压站)、公用工程等组成

表1.3-1 装置组成表

序号单元名称备注

一生产装置

1 硝基苯单元新建

2 苯胺单元新建

二储运设施

1 成品库新建

2 化苯库新建

3 硝酸罐区新建

4 铁路改造

三辅助设施

1 综合楼(化验室、配电室、控制室、生活间)新建

2 冷冻站新建

3 循环水站新建

4 空压站改造

四公用工程

1 给排水管网新建

2 工艺及供热外管新建

3.2工艺流程说明

苯胺的生产工艺分为硝基苯单元和苯胺单元。

3.2.1 硝基苯单元

a) 反应工序

在硝基苯单元中,硝化部分采用的是苯绝热硝化工艺技术。

由罐区苯贮罐来的石油苯沿外管架送入苯中间罐,经输送泵打入硝化器中,与泵打入的混酸进行绝热硝化反应,反应后的反应液进入分离罐,分离出的酸性硝基苯经冷却后去精制工序,废酸进入蒸发器利用自身带的热量进行废酸浓缩。浓缩后的废酸浓度可达70%,再循环使用。浓缩过程中产生的废气进入精制工序的苯回收塔进一步回收。

b) 精制工序

自硝化分离器来的酸性硝基苯流入酸洗槽中,用废酸浓缩分离出的废水进行洗涤,洗涤后的酸性废水排掉,酸性硝基苯再进入碱洗槽中进行碱洗,碱洗后的碱性废水排掉,硝基苯进入水洗槽中进行水洗,水洗后的废水循环使用。水洗至中性的硝基苯进入苯提取塔,在真空的条件下将苯从塔顶蒸出,进入苯水分层器,经分层器将苯、水分离,水做硝基苯的洗水用,苯回反应工序循环使用。分层器出来的气体与废酸浓缩过程产生的废气一并进入苯回收塔,用精硝基苯回收苯,其它不凝气去尾气处理工。提取塔塔釜得合格的精硝基苯,做为苯胺单元的原料。

c) 尾气处理工序

来自硝化反应的尾气经压缩机升压后进入氮氧化物气体吸收塔,被用泵送来的脱盐水吸收成稀硝酸,在吸收过程中,吸收塔用冷却水冷却,塔顶未被吸收的不凝气经升压后进入催化氧化器内处理,处理合格后排入大气。塔釜的稀硝酸浓度达到50%-55%后被送至反应工序循环使用。

z

3.2.2 苯胺单元

a) 加氢还原工序

来自氢气球罐的新鲜氢气与氢压机升压的循环氢在氢气缓冲罐混合之后进入氢气第一、第二换热器,在此与来自流化床的反应后气体进行两次热交换,进入硝基苯汽化器和混合气体加热器。硝基苯在汽化器被热氢气流所汽化,混合气体继续升温至190℃,送入流化床内,硝基苯在此进行气相催化加氢反应,反应在245~295℃进行。加氢反应所放出的热量被汽包送入流化床内换热管的软水带出。水被汽化副产1.0MPa(G)蒸汽,该蒸汽量除满足装置需用量外,剩余部分送入装置外的蒸汽管网。

流化床反应器的气体经第二氢气换热器和第一氢气换热器,被由氢气缓冲罐来的混合氢气在

换热器中进行间接冷却至120℃后,进入第一、二冷凝器,苯胺与水被冷凝为液体。在触媒沉降槽中除去液体中的触媒颗粒,再经冷却器冷却至30℃后流入苯胺-水分层器静止分层。未被冷凝的反应气体经捕集器后回收,含氢气90%(v)的气体作为循环氢使用。从冷凝器出来的循环氢压力为3.92~6.86kPa(G),经捕集器进行两次捕集,再经管式除尘器过滤后,气体进入氢压机升压至160kPa(G),与新氢在氢气缓冲罐混合。

由硝基苯精制工序制取的纯度为99.94%硝基苯,由泵送入加热器升温至170~180℃后,进入硝基苯汽化器。

从分层器上部流出来的水(含苯胺3.6%)进入苯胺水储槽,从分层器下部流出的粗苯胺(含水5%),储存于粗苯胺储槽内,去苯胺单元精馏工序。

流化床所用冷却水系中压膨胀槽和低压膨胀槽蒸汽冷凝后产生的105℃的冷凝水,由热水给水泵送至汽包后,利用热水循环泵打入流化床换热管内。

b) 苯胺废水处理工序

苯胺废水罐内的废水用泵以一定流量送入一级萃取的静态混合器内,同时用泵打入萃取剂精硝基苯,在静态混合器中进行液-液传质后,进入分层器中进行分层,上层萃余相进入贮罐,作为下一级萃取的萃取剂,下层的物料去加氢还原单元,作为加氢原料。经三级萃取后,废水中苯胺浓度将在50ppm以下,排入下水。

c) 苯胺精馏工序

粗苯胺罐内的粗苯胺用粗苯胺泵以一定流量输送到脱水塔内,控制脱水塔顶温、釜温和塔顶压力,进行精馏,塔顶蒸出物经共沸物冷凝器冷凝后流入苯胺水分层器内进行分层,塔釜高沸物进入精馏塔内。在一定的顶温、釜温及真空下进行精馏,塔顶蒸出物(苯胺)经精馏塔冷凝器冷凝后,一部分以一定的回流比从塔顶送入精馏塔内作为回流,其余再经冷凝器进一步冷凝后进入苯胺成品罐。

4 原料规格

本项目实施后所需原料和辅助原料数量见表4.1。主要原料规格仍执行原有标准,规格见表4.2,辅助材料规格见表4.3。

序号名称单位年用量来源备注

1 苯t/a 59630 炼油厂、外购

2 硝酸t/a 80487.4 化肥厂、外购

3 硫酸t/a 222.6 吉林康信公司硫酸装置、外购

4 液碱t/a 292.

5 吉化公司电石厂

5 氢气MNm3/a 56.7 乙烯厂、有机合成厂、化肥厂60万吨/年乙烯项目

6 触媒t/a 28 吉化公司研究院

表4.1 7万吨/年苯胺装置所需原料和辅助原料数量表

表4.2 7万吨/年苯胺装置所需原料和辅助原料规格表

序号名称项目单位技术指标1 石油苯

(GB3405-89)外观

颜色(HaZer单位-铂钴色号)

密度(20℃)

馏程范围

酸洗比色

噻酚

中性试验

结晶点(干基)

硫的含量

脂肪族化合物

%(wt)

g/cm3

ppm

ppm

% 透明液体,无色不溶于水及机械杂质

99.9

不深于20

0.878~0.881

79.7~80.4

不深于4

不大于5.2

中性

>5.35

2

0.003

3 浓硫酸

(GB534-89) 硫酸含量

灼烧残渣含量

铁含量

透明度

色度%(wt)

%(wt)

%(wt)

mm

mt ≥92.5

≤0.010

≥50

≤2.0

4 硝酸硝酸含量

亚硝酸含量

铁含量

石墨%(wt)

%(wt)

ppm

ppm

ppm ppm 50-68

<100

≤10

≤10

≤10

5 液体氢氧化钠

(GB209-84) 氢氧化钠

碳酸钠

氯化钠

三氧化二铁

氯酸钠

氧化钙%(wt)

%(wt)

%(wt)

%(wt)

%(wt)

%(wt)≥42.0

≤0.006

≤0.007

≤0.005

≤0.002

≤0.0005

6 氢气H2

CO+CO2

总硫% (v)

ppm

ppm 99.9

100

0.01

表4.3 7万吨/年苯胺装置所需辅助材料规格表

名称项目指标分析方法材料标准

(以硅胶为载体之铜触媒) 外观形态蓝绿球型固体目测JHC-N03

含铜量%(wt)16~18

GB6678

GB6679

水份%<(wt) 5

粒度(目) 20~140目

堆积密度(kg/m3) 580~620

耐磨强度%> 90

比表面积m2/g 350~400

单程寿命(小时) 1000

孔容积ml/g 0.65

活性转化率>99.5%,选择率>99%

4.2.1.4 产品

本项目实施后主要产品产量为7万吨/年苯胺。产品质量执行MDI级苯胺标准。MDI级苯胺产品规格见表4.2-5。

表4.4 MDI级苯胺产品质量标准

序号指标名称指标

优等品一等品

1 外观无色至浅黄色透明液体,贮存时颜色允许变深

2 色度(铂-钴号)≤60 60

3 热稳定性(铂-钴号)150

4 水份%≤0.0

5 0.1

5 硝基苯含量%≤0.0001 0.0002

6 环己醇%≤0.0020 0.0025

7 环己胺%≤0.0005 0.0010

8 甲苯胺%≤0.0040 0.0050

9 甲苯含量%≤0.0003

10 苯含量%≤0.0005

11 乙苯含量%≤0.0003

12 二甲苯%≤0.0003

13 纯度%≥99.99 99.95

5 消耗定额

5.1 物料平衡

进入苯胺装置的原料为184496.0吨/年,苯胺产品及废物184461.5吨/年,其中的差额为生产过程中的损耗。进出苯胺装置的物料平衡见表5.1。

表5.1 苯胺装置物料平衡表(t/a)

进装置出装置备注

序号物料名称数量(吨/年)物料名称数量(吨/年)

1 苯59630 苯胺70000 产品

2 硝酸80487.4 残液850 废物

3 硫酸222.6 废水84800+28800

4 液碱292.

5 废气11.5

5 蒸汽35028.3

6 软水2807.7

7 氢气56700000Nm3/a

合计184496.0 184461.5

5.2 装置消耗定额

本项目实施后苯胺装置消耗定额见表5.2。

表5.2 苯胺装置消耗定额表(以每吨苯胺计)

序号名称规格单位消耗定额消耗量备注

每小时每年

1 原料及催化剂

1.1 苯99.9% t 0.852 8.28 59630

1.2 硝酸60% t 1.1498 11.17 80487.4 1.3 硫酸9

2.5% t 0.003 0.031 222.6

1.4 液碱32% t 0.004 0.0406 29

2.5

1.5 氢气98.5% t 810Nm3 7875 56700000

1.6 触媒t 0.000418 0.004 28

2 公用工程

2.1 循环水t 262.5 2552.08 18375000 2.2 低温水t 20.3 197.36 1421000

2.3 过滤水t 0.5 4.86 35000

2.4 生活水t 0.5 4.86 35000

2.5 脱盐水t 0.0401 0.39 2807

2.6 仪表空气Nm3 9.8 95.28 686000 2.7 氮气Nm3 4.57 44.43 319900

2.8 电kWh 154 1497.2 10780000

2.9 低压蒸汽(0.4MPa) t 0.65 6.32 45500 2.10 中压蒸汽(

3.0MPa) t 0.75 7.29 52500

2.11 低压蒸汽(1.0MPa) t 1.90 18.4 133000

6 装置规模和投资

项目的主要评价指标,见表1.5-1。

表1.5-1 主要评价指标一览表

序号项目单位指标备注

1 建设规模

1.1 苯胺t/a 70000

2.0 项目投入总资金万元33422

2.1 建设投资万元29650.59

2.2 建设期利息万元270.44

2.3 流动资金万元3500.97

3 主要效益指标

3.1 年均销售收入万元45269

3.2 年均总成本费用万元38338.33

3.3 年均增值税万元1659.26

3.4 年均利润总额万元5105.48

3.5 项目财务内部收益率

税前%21

税后%15.32

3.6 项目财务净现值I=12%

税前万元14720.44

税后万元5185.44

3.7 投资回收期

税前年 5.57 自建设之日起

税后年 6.81 自建设之日起

3.8 投资利润率% 15.28

3.9 投资利税率% 20.74

3.10 借款偿还期年 3.38 自建设之日起

3.11 盈亏平衡点49.68% 正常年

苯胺投资表

内容1万吨2万吨7万吨14万吨

建设投资5000万9300万 2.96亿

7 工程量或工期

设计工期:初步设计2个月,施工图4个月

施工工期:5个月

本项目新增建、构筑物详见表7.1。

表7.1 建、构筑物建筑面积和占地面积(m2)

序号名称层数总高度(m)结构型式建筑(m?)地面积(m?) 备注

1 综合楼 4 15 框架1260 315

2 硝基苯单元

3 20 钢框架2400 800 甲类

3 精制工段 3 21 框架900 300 丙类,仅一层封闭

4 还原工段 3 21 框架900 300 甲类,仅一层封闭

5 氢压机厂房 1 12 排架735 735 甲类

6 苯胺成品库 1 15 排架600 600 丙类

7 硝酸罐区砖围堰475 乙类

8 化苯库 1 8 排架1104 1104 甲类

9 冷冻站 1 15 排架464 464 乙类

合计8363 5093

新建装置实施后定员100人,其中管理人员11人;分析化验及操作人员89人。

8 已完工项目完工报告(设备情况)

表8.1设备分类汇总表

号分类国内订货国外订货合计备注台数金属重(吨)台数金属重(吨)台数金属重(吨)

1 非定型58 591.494 58 591.494

2 定型9 138.69 9 138.69

3 机泵63 108.926 63 108.926

4 工业炉

5 其他

合计130 839.11 130 839.11

表8.2 机泵分类汇总表

序号分类国内订货国外订货合计备注

台数金属重(吨)台数金属(吨)台数金属重(吨)

1 真空泵 4 456 4 456

2 离心泵 4 4 4 4

3 循环泵 2 2 2 2

4 喷射泵 1

5 1 5

5 屏蔽泵13 3.5

6 13 3.56

6 磁力泵14 3.146 14 3.146

7 氢气压缩机 2 74 2 74

8 空气压缩机 1 12 1 12

9 汽车鹤管 2 0.04 2 0.04

10 火车鹤管9 0.18 9 0.18

11 卷扬机 1 1.5 1 1.5

合计73 110.946 73 110.946

表8.3 非定型设备分类汇总表

号类型国内订货国外订货备注

数金属重量(吨)

数金属重量(吨)

总重量合金钢或不锈钢总重量合金钢或不锈钢

材料质量材料质量

1 容器43 249.281 16MnR

0Cr18Ni9

2 反应器 1 175.60

3 16MnR 140

4 塔器 3 79.87

5 0Cr18Ni9 36.56

5 换热器12 86.735

6 其他

合计63 591.494

表8.4 定型设备分类汇总表

序号类型国内订货国外订货备注

台数金属重量(吨)

台数金属重量(吨)

总重量合金钢或不锈钢总重量合金钢或不锈钢

材料质量材料质量

1 换热器8 138.59 0Cr18Ni9

2 旋风分离器 1 0.1

合计9 138.69

9 已建成类似装置的地点

我国苯胺主要生产企业生产能力(万吨)

企业名称生产能力下游产品

吉林石化分公司双苯厂13.6 2,6-二乙基苯胺,色酚AS

南京化工厂 3.5 橡胶助剂,环己胺

辽宁庆阳化工(集团)有限公司 2.6 二苯胺

兰州化学工业公司有机厂 2.4 橡胶助剂,环己胺

邯郸富达化工有限公司 1.4

河南开普化工股份有限公司 1.4

河北冀中化工有效责任公司 1.3 环己胺

山东胶南化肥厂 1

宁波海利化工有限公司 1

江苏盐城新浦化工集团公司 1 环己胺

南京化学工业(集团)公司磷肥厂 4 环己胺南京四力化工有限公司 2.4 橡胶助剂

重庆长风化工厂 1 染料中间体

烟台万华聚氨酯集团有限公司 2.5 MDI

金田化工股份公司南京六合化工厂 2

章丘第二化肥厂 2.4

山东曙光集团新型化工厂 1

平顶山飞行集团 1

兰化公司7 投资3.2亿

烟台万华聚氨酯有限公司16 建在宁波大榭岛山西天脊集团13 投资3.9亿元

聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。 目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。 目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。 聚苯胺是一种典型的共扼导电高分子,具有原料价廉易得,合成方法简便,经过质子掺杂的聚苯胺具有良好的电子导电性,可以作为电极材料应用于各种电源器件中[8]。杨红生等人[9]在酸性条件下化学法合成聚苯胺,并组装成电容器。 在过去的10年里,新混合动力系统电极的设计结合了电池和电容性能,并且由于新的电极材料的发现,尤其是纳米材料[8)使得超级电容器技术在性能方面有了卓越的提升。纳米材料不寻常的电气、机械和表面性质使其逐渐成为能量存储的重要研究对象[12,13]。相关纳米材料的优点和缺点在之前的相关文献报道中

染料中间体邻甲氧基苯胺的合成

合成邻甲氧基苯胺的工作任务 1. 邻甲氧基苯胺概述 邻甲氧基苯胺为浅黄色油状液体,是一种重要的医药和染料中间体,也用于食品工业制取香兰素等。 2.产品开发项目任务书 邻甲氧基苯胺产品的《产品开发任务书》如表6-1。 表6-1 产品开发项目任务书 编号:XXXXXX 6.2 邻甲氧基苯胺合成任务分析 6.2.1 邻甲氧基苯胺分子结构的分析 ①邻甲氧基苯胺的分子式:C 7 H 9 NO ②邻甲氧基苯胺的分子结构式: OCH3 NH2 目标化合物基本结构比较简单,苯环上的甲氧基和氨基处于相邻位置,甲氧基和氨基均为为邻、对位定位基。 6.2.2 邻甲氧基苯胺的合成路线分析 采用逆向合成法对于邻甲氧基苯胺的合成路线分析如下: OCH3 NH2 Cl NH2 OCH3 NO2 Cl NO2 相应的合成路线就有两种。 第一种路线:先甲氧基化后还原路线。 或

Cl NO 2 OCH 3NO 2 OCH 3 NH 2 第二种路线:先还原后甲氧基化路线。 Cl NO 2 Cl NH 2 OCH 3 NH 2 因此要想从这些合成路线中确定最理想的一条路线,并成为工业生产上可用的工艺路线,则需要综合各方面情况加以全面地考察,择优选用。 从反应机理上看,甲氧基化反应是苯环上的亲核取代反应(参考芳香族卤化物水解引入羟基的反应机理及影响因素),苯环上接有吸电子基团(-NO 2)对反应有利,而接有给电子基团(-NH 2)则对反应不利,因此路线1要优于路线2。 6.2.3文献中常见的邻甲氧基苯胺合成方法 从文献资料上可以查出,目前邻甲氧基苯胺的合成路线与上面设计的路线相同。即以邻硝基氯苯为原料经甲氧基化和还原反应合成。 下面我们将从此成路线出发,将合成过程中需要考虑的各种因素进行剖析,找出一条相对合适的合成方案,并按此方案进行合成来实际检验方案的可行性。假如采用其它的合成路线,请同学们沿此思路自己剖析,应该不难找出合适的合成的方案。 6.2.4 邻甲氧基苯胺合成过程单元反应及其控制分析 不难看出,甲氧基化反应和还原反应是合成过程实施的关键反应。欲在合成中做好甲氧基化反应和还原反应,就必须对甲氧基化反应和还原反应过程的情况作详细了解。 6.2.4.1邻硝基氯苯的甲氧基化反应及其控制 1.甲基化反应和甲基化试剂 (1)甲基化反应 在有机化合物分子中引入甲氧基(-OCH 3)的反应称为甲基化反应。脂肪族卤代烷与甲醇钠作用,卤素被甲氧基取代生成醚,反应式如下。 RX+CH 3ONa →ROCH 3+NaX 卤代烷、烯丙基型卤化物、卤化苄、α-卤代酸等都可以和甲醇钠反应,生成相应的醚,这是制备甲基醚的主要方法。醇和酚羟基上的氢也可被甲基取代,羟基即转变为甲氧基,这也是制备甲基醚的重要方法。 (2)甲基化试剂 甲醇、甲醇钠(或钾)都可作为甲氧基化试剂。由于甲醇钠(或钾)的成本太高,在要求不太高的情况下(特别是水对反应的影响不是太大的情况下),通常采用甲醇与NaOH (或KOH )反应而得。 CH 3OH + NaOH CH 3ONa + H 2O 该反应为可逆平衡反应,要使平衡向正方向移动可增加甲醇和碱的浓度。甲醇有毒,操作中要注意个人防护。 2.邻硝基氯苯的甲氧基化反应机理 邻硝基氯苯的甲氧基化反应是苯环上的亲核取代反应,历程如下(参见情境5): CH 3ONa 为强亲核试剂,亲核质点为CH 3O - (烷氧负离子)。由于邻硝基氯苯中氯原子的电负性很大,会使苯环上与氯原子相连的碳原子带部分正电荷。该碳原子能受到亲核质点烷氧负离 CH 3OH NaOH [H] [H] CH 3OH NaOH

聚苯胺的合成及表征

聚苯胺的合成及表征 (贵州省贵阳市贵州师范学院11级化本 550018) 摘要:本实验采用氧化聚合法,以苯胺为单体,过硫酸铵为氧化剂,探究投料比、酸种类、温度对合成聚苯胺的影响,及本征态聚苯胺的溶解性影响因素。用傅里叶红外光谱仪对聚苯胺参杂前后的结构变化进行了测试,讨论了不同条件对聚合物的影响。同时探究不同条件下合成的聚苯胺的溶解性。 关键词:聚苯胺合成表征溶解性 前言:聚苯胺( PANI) 具有多样结构,独特的掺杂机,良好的稳定性和原料价廉易得等优点,一直是高分子领域的研究热点,在诸多领域都有良好的应用前景目前应用最为广泛的合成聚苯胺的方法是MacDiarm id 等提出的水溶液化学氧化聚合法。该法简便易行, 适合大批量工业生产, 但通过该法制备所得聚苯胺的分子链含有大量缺陷,产物电导率较低,因此对苯胺化学氧化法合成条件对产率的影响进行了探究。 1. 实验部分 1.1 实验试剂及仪器 苯胺(An)(分析纯,AR天津博迪化工股份有限公司)、过硫酸铵(APS)(分析纯,AR天津市科密欧化学试剂有限公司)、盐酸(HCl,优级纯)、硫酸(H2SO4)、高氯酸(HClO4)、磷酸(H3PO4)、氨水(NH3·H2O)、四氢呋喃(分析纯 AR,天津博迪化工股份有限公司)、N,N-二甲基甲酰胺(分析纯AR,广东光华科技股份有限公司)、二甲基亚砜(分析纯AR,广东光华科技股份有限公司)、恒温玻璃搅拌器、85-2恒温磁力搅拌器(金坛市城东新瑞仪器厂)、傅里叶TENSOR-27型红外光谱仪(KBr压片) 1.2 聚苯胺的合成 1.2.1 聚苯胺的性质 溶解性——聚苯胺由于其链刚性和链间强相互作用,使它的可溶性极差,在大部分常用的有机溶剂中几乎不溶,仅部分溶于N,N-二甲基甲酰胺和N-甲基吡咯烷酮,这就给表征带来一定的困难,并且极大地限制了聚苯胺的应用。通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、聚合、复合和制备胶体颗粒等方法获得可溶性或水溶性的导电聚苯胺。如在聚苯胺分子链上引入磺酸基团可得到水溶性导电高分子。 导电性——聚苯胺的导电性受pH值和温度影响较大,当pH>4时,电导率与pH无关,呈绝缘体性质;当2

2020届高三化学二模备考合成路线的分析与设计试题【带答案】

2020届高三化学二模备考合成路线的分析与设计试题 【必备知识】 1.有机合成中官能团的转变 (1)官能团的引入(或转化) 引入官能团方法 —OH +H2O;R—X+H2O;R—CHO+H2;RCOR′+ H2;R—COOR′+H2O;多糖发酵 —X 烷烃+X2;烯(炔)烃+X2或HX;R—OH+HX R—OH和R—X的消去;炔烃不完全加氢 —CHO 某些醇氧化;烯烃氧化;炔烃水化;糖类水解 —COOH R—CHO+O2;苯的同系物被强氧化剂氧化;羧酸盐酸化;R—COOR′+H2O —COO—酯化反应 (2)官能团的消除 ①通过加成反应可以消除不饱和键(双键、三键)和苯环; ②通过消去、氧化或酯化反应等消除羟基; ③通过加成或氧化反应等消除醛基; ④通过水解反应消除酯基、肽键、卤素原子。 (3)官能团的改变 ①利用官能团的衍生关系进行衍变,如 R—CH2OH O2 H2R—CHO――→ O2R—COOH。

②通过某种化学途径使一个官能团变为两个,如 CH 3CH 2OH ――→消去-H 2O CH 2===CH 2――→加成 +Cl 2 ClCH 2—CH 2Cl ――→水解HOCH 2—CH 2OH 。 ③通过某种手段改变官能团的位置,如 (4)官能团的保护 被保护的 官能团 被保护的官能团 性质 保护方法 酚羟基 易被氧气、臭氧、双氧水、酸性高锰酸钾溶液氧化 ①用NaOH 溶液先转化为酚钠,后酸化重新转化为酚: ②用碘甲烷先转化为苯甲醚,后用 氢碘酸酸化重新转化为酚: 氨基 先用盐酸转化为盐,后用NaOH 溶液重新转化为氨基 碳碳双键 易与卤素单质加成,易被氧气、臭 氧、双氧水、酸性高锰酸钾溶液氧 化 用氯化氢先通过加成转化为氯代 物,后用NaOH 醇溶液通过消去重新转化为碳碳双键 醛基 易被氧化 乙醇(或乙二醇)加成保护:

苯胺的制备及其性质

苯胺的制备及其性质 摘要:苯胺是一种重要的有机化工原料和化工产品,由其制得的化工产品和中间体有300多种,在染料、医药、农药、炸药、香料、橡胶硫化促进剂等行业中具有广泛的应用,开发利用前景十分广阔。本文主要对铁粉还原硝基苯制备苯胺及其性质进行论述以及对苯胺的制备技术进行概述总结。 关键词:苯胺硝基苯铁粉还原 Abstract:Aniline is a good organic solvent and an important raw material for chemical synthesis,The product of chemical industry which and the intermediate results in by its system have 300 many kinds of ,In professions and so on dye, medicine, agricultural chemicals, blasting explosive, spice, vulcanization promoter has the widespread application ,with a good prospect of development and utilization。This article mainly carries on the elaboration to the powdered iron return to original state nitrobenzene preparation aniline and the nature as well as carries on the outline summary to the aniline preparation technology. Keywords:Aniline Nitric alkyl benzene restore of Fe 引言 铁粉还原硝基苯制备苯胺 苯胺 (Aniline) 苯胺的性质 苯胺的制备技术进展

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 毕业设计 20万吨年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis ,Aspen Plus,Simulation and optimization

一 聚苯胺的合成方法

一聚苯胺的合成方法 聚苯胺的合成方法很多,但常用的合成方法有两大类:化学合成和电化学合成。 (1) 化学合成法化学合成法是利用氧化剂作为引发剂在酸性介质中使苯胺单体发生氧化聚合,具体实施方法有如下几种。 ①化学氧化聚合法聚苯胺的化学氧化聚合法,是在酸性条件下用氧化剂使苯胺单体氧化聚合。质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。聚合同时进行现场掺杂,聚合和掺杂同时完成。常用的氧化剂有:过氧化氢、重铬酸盐、过硫酸盐等。其合成反应主要受质子酸的种类及浓度,氧化剂的种类及浓度,单体浓度和反应温度、反应时间等因素的影响。化学氧化聚合法优点在于能大量生产聚苯胺,设备投资少,工艺简单,适合于实现工业化生产,是目前最常用的合成方法。 ②乳液聚合法乳液聚合法是将引发剂加入含有苯胺及其衍生物的酸性乳液体系内的方法。乳液聚合法具有以下优点:采用环境友好且成本低廉的水作为热载体,产物无需沉淀分离以除去溶剂;合成的聚苯胺分子量和溶解性都较高;如采用大分子磺酸为表面活性剂,则可一步完成掺杂提高导电聚苯胺电导率;可将聚苯胺制成直接使用的乳状液,后续加工过程不必再使用昂贵或有毒的有机溶剂,简化了工艺,降低了成本,还可以克服传统方法合成聚苯胺不溶不熔的缺点。 ③微乳液聚合法微乳液聚合法是在乳液法基础上发展起来的。聚合体系由水、苯胺、表面活性剂、助表面活性剂组成。微乳液分散相液滴尺寸(10~100nm)小于普通乳液(10~200nm),非常有利于合成纳米级聚苯胺。纳米聚苯胺微粒不仅可能解决其难于加工成型的缺陷,且能集聚合物导电性和纳米微粒独特理化性质于一体,因此自1997年首次报道利用此法合成了最小粒径为5nm的聚苯胺微粒以来,微乳液法己经成为该领域的研究热点。目前常规O/W型微乳液用于合成聚苯胺纳米微粒常用表面活性剂有DBSA、十二烷基磺酸钠等,粒径约为10~40nm。反相微乳液法(W/O)用于制备聚苯胺纳米微粒可获得更小的粒径(<10nm),且粒径分布更均匀。这是由于在反相微乳液水核内溶解的苯胺单体较之常规微乳液油核内的较少造成的。 ④分散聚合法苯胺分散聚合体系一般是由苯胺单体、水、分散剂、稳定剂和引发剂组成。反应前介质为均相体系,但所生成聚苯胺不溶于介质,当其达到临界链长后从介质中沉析出来,借助于稳定剂悬浮于介质中,形成类似于聚合物乳液的稳定分散体系。该法目前用于聚苯胺合成研究远不及上述三种实施方法

苯乙烯试验报告

苯乙烯试验报告 1.过程合成与分析 苯乙烯(Phenylthylene/SM),是非常重要的化工原料。我国苯乙烯主要用于生产聚苯乙烯、ABS树脂、SAN树脂、不饱和聚酯树脂、丁苯橡胶、丁苯胶乳以及苯乙烯系热塑性弹性体等。近几年国内苯乙烯产能不断扩大,目前已经超过400万吨/年。 苯乙烯系列树脂的产量在世界五大合成材料的产量中仅次于聚乙烯和聚氯乙烯而名列第三位。苯乙烯主要用于生产苯乙烯系列树脂及丁苯橡胶,也是生产离子交换树脂及医药品的原料之一,此外,苯乙烯还可用于制药、染料、农药以及选矿等行业。苯乙烯系列树脂的产量在世界合成树脂中居第三位,仅次于PE、PVC。苯乙烯的均聚物――聚苯乙烯(PS)是五大通用热塑性合成树脂之一,广泛用于注塑制品、挤出制品及泡沫制品3大领域。近年来需求发展增长旺盛。苯乙烯、丁二烯和丙烯腈共聚而成的ABS树脂是用量最大的大宗热塑性工程塑料,是苯乙烯系列树脂中发展与变化最大的品种,在电子电器、仪器仪表、汽车制造、家电、玩具、建材工业等领域得到了广泛应用。中国已经成为世界ABS最大的产地和消费市场之一。 已知工业化的苯乙烯的生产主要采用两种方法: (一)乙苯脱氢法 乙苯脱氢法是目前国内外生产苯乙烯的主要方法,其生产能力约占世界苯乙烯总生产能力的90%。它又包括乙苯催化脱氢和乙苯氧化脱氢两种生产工艺。 1、乙苯催化脱氢工艺 乙苯催化脱氢是工业上生产苯乙烯的传统工艺,由美国Dow化学公司首次开发成功。目前典型的生产工艺主要有Fina/Badger工艺、ABB鲁姆斯/UOP工艺以及BASF 工艺等。 (1)ABB鲁姆斯/UOP工艺。用超加热器将蒸汽过热至800℃,与原料乙苯一起进入绝热反应器。反应温度550-650℃,常压或负压,蒸汽/乙苯质量比为1.0-1.5。通过脱氢反应器所生成的脱氢产物经冷凝器冷凝后进入乙苯/苯乙烯分离塔,塔底分出苯乙烯,塔顶馏出未反应的乙苯。将乙苯中的苯和甲苯分出后返回脱氢反应器重复利用。 (2)Fina/Badger工艺。Fina/Badger工艺通常与美孚/ Badger乙苯工艺联合签发许可。该工艺采用绝热脱氢,高温蒸汽提供脱氢需要的热量并降低进料中乙苯的分压和抑制结焦。蒸汽过热至800-950℃,与预热器内的乙苯混合后再通过催化剂,反应温度为560-650℃,压力为负压,蒸汽/乙苯质量比为1.5-2.2。反应器材质为铬镍,反应产物在冷凝器中冷凝。Fina/ Badger与 ABB Lummus公司一起几乎垄断了世界苯乙烯生产专利市场。 (3)BASF工艺。BASF工艺的特点是用烟道气直接加热的方式提供反应热,这是与绝热反应的最大不同点。脱氢过程中反应产物与原料气系统进行热交换,列管间加折流挡板,使加热气体径向流动,烟道气进口温度为750℃,出口温度为630℃,可用来预热进料的气体,使乙苯的进料温度达到585℃,直接与管内脱氢催化剂接触反应。出口气体经急冷、换热,再经空气冷却,分离脱氢尾气(H2、CH4、CO2等)、水和油,上层脱氢料液送精馏工序制得苯乙烯。 乙苯催化脱氢法的技术关键是寻找高活性和高选择性的催化剂。一开始采用的是锌系、镁系催化剂,以后逐渐被综合性能更好的铁系催化剂所替代。目前,国外苯乙烯催化剂主要有南方化学集团公司开发的Styromax-1、Styromax-2、Styromax-4以及Styromax-5型催化剂;美国标准催化剂公司推出的C-025HA、C-035、C-045型催化剂;德国BASF公司开发的S6-20、S6-20S、S6-28、S6-30催化剂;Dow化学公司开发出的D-0239E型绝热型催化剂等。我国开发成功的催化剂主要有兰州石油化工公司研究院的315、335、345、355系列催化剂;厦门

聚苯胺的制备实验报告

聚苯胺的制备实验报告 姓名:吉武良院系:化院20系学号:PB13206270 摘要:本实验利用化学氧化聚合法制备聚苯胺,旨在了解一种新型的功能聚合物---导电聚合物,探讨电子导电聚合物的结构与机理,并掌握聚苯胺的合成方法。关键词:导电聚合物聚苯胺 Abstract:In this experiment, the chemical oxidative polymerization preparing polyaniline, aimed at understanding a novel functional polymer --- conductive polymer , to investigate the structure and mechanism of the electronically conductive polymer and grasp the polyaniline synthesis method . Keywords:Polyaniline Conducting polymer 一、引言 导电聚合物(conducting polymer):又称导电高分子,是指通过掺杂等手段,能使得电导率在半导体和导体范围内的聚合物。通常指本征导电聚合物(intrinsic conducting polymer),这一类聚合物主链上含有交替的单键和双键,从而形成了大的共轭π体系。π电子的流动产生了导电的可能性。 1977年A. J. Heeger、A. G. MacDiarmid 和白川英树(H. Shirakawa) 发现,聚乙炔薄膜经电子受体(I,AsF5等) 掺杂后电导率增加了9个数量级,(他们为此共同获得2000年度诺贝尔化学奖) 。这一发现打破了有机聚合物都是绝缘体的传统观念,开创了导电聚合物的研究领域,诱发了世界范围内导电聚合物的研究热潮。大量的研究表明,各种共轭聚合物经掺杂后都能变为具有不同导电性能的导电聚合物,具有代表性的共轭聚合物有聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚对苯撑乙烯、聚对苯等。 导电聚合物的早期研究兴趣主要集中在掺杂导电态上。到了1990年随着聚合物发光二极管的发现,导电聚合物本征半导态的电致发光特性、激光特性和光伏打效应又引起了广泛关注,掀起了研究共轭聚合物的新一轮高潮。 导电聚合物的突出优点是既具有金属和无机半导体的电学和光学特性,又具有有机聚合物柔韧的机械性能和可加工性,还具有电化学氧化还原活性。这些特点决定了导电聚合物材料将在未来的有机光电子器件和电化学器件的开发和发展中发挥重要作用[1]。 聚苯胺(PANI):聚苯胺是导电高分子领域最具应用价值的品种,既具有金属的导电性和塑造的可加工性,同时还具有金属和塑料所欠缺的化学和电化学特性。可广泛应用于电子

邻甲苯胺特性及制备技术

邻甲苯胺制备技术 1.化学性质:与苯胺相似。与酸生成盐。与亚硝酸发生重氮化反应,生成重氮化合物。与醇、卤代烃、烯烃等反应,生成N-烷基化合物。在芳核上能发生烷基化、卤化、磺化、硝化、亚硝化等反应,发生在氨基的邻位和对位。与粉末状硫加热到200 ℃生成噻唑环。在稀硫酸中用铬酸、二氧化锰氧化时,根据条件不同,生成对甲苯醌、2,2'-二甲基偶氮苯或邻硝基甲苯等。用锂还原时得到2-甲基环己胺。 合成方法 1.由邻硝基甲苯还原而得。还原反应可利用铁粉作还原剂,也可在铜催化剂存在下于260-280℃进行加氢反应制得邻甲苯胺。工业品邻甲苯胺的含量(总氨基物含量)在99%以上,加氢还原法每吨产品消耗邻硝基甲苯1300kg、氢气940m3。 2.其制备方法是由邻硝基甲苯经催化加氢还原制得。由于加氢催化剂的不同,反应条件各异,如用铜催化剂,反应温度260℃,也可用镍催化剂。 精制方法:按照制造方法不同,含有间甲苯胺、对甲苯胺、硝基甲苯等杂质。特别是对甲苯胺含量较多,并含有微量的水分。精制方法和苯胺类似,但用蒸馏的方法难以将其他的甲苯胺分离。因此首先将粗制邻甲苯胺蒸馏两次,再溶解于四倍体积的乙醚中,加入等当量的草酸乙醚溶液。将生成的对甲苯胺草酸盐过滤除去,滤液蒸去乙醚后滤出生成的邻甲苯胺草酸盐。用含有草酸的水重结晶5次,再用碳酸钠溶液处理。游离出的邻甲苯胺用氯化钙干燥后减压蒸馏三次可得纯品。 3.取邻硝基甲苯在稀酸介质中用铁粉还原,然后分离。上述所得邻甲苯胺粗品加酸溶解成盐,再加氢氧化钠沉淀,即得纯品。 工业价值 1.用于制备偶氮染料、三苯甲烷染料、硫化促进剂和糖精等。也用作分析试剂。 2.用于有机合成,用作分析试剂、染料中间体。 3.用于制备硫化蓝、硫化淡黄GC、硫化黄棕5G、色酚AS-D、红色基RL、大红色基G、枣红色基GBC、酸性桃红3B、还原桃红R、碱性品红和碱性桃红T等。在医药工业用于制备邻氯青霉素、安眠酮、必嗽平、若丁等。农药工业用于合成杀虫脒。还用于合成硫化促进剂DT、BG、PR等。 4.用作染料中间体,用于有机合成及合成糖精等。

二苯胺项目建议书

二苯胺项目建议书 一、总论 1、项目名称:山东开泰石化股份有限公司5000t/a二苯胺生产装置建设 2、项目建设单位:山东开泰石化股份有限公司 3、拟建地点:高青新区新规划场地 4、建设项目内容与规模 建设项目内容:二苯胺生产装置 建设项目规模:5000t/a 5、建设年限:一年半 6、概算投资:2800万(未含土地费用) 7、效益分析: 苯胺当前市场价:6700元/t 二苯胺当前市场价:16000元/t 生产成本:9000元/t 预计效益:7000元/tx5000t=3500万 若开工率60%,则预计效益2千万。 二、项目建设的必要性和条件 1、二苯胺简介:二苯胺又称 N-苯基苯胺,是一种精细化工原料,最初作为纤 维和含氮类炸药的稳定剂,随着二苯胺应用领域不断拓展,目前二苯胺已成为 橡胶助剂、染料和医药的重要原料;以它为原料可以合成橡胶防老剂BLE 、AM 、

DFC 等品种,其衍生物对氨基二苯胺是对苯二胺类防老剂4010NA 、4020 的基本原料;另外还可以制造多种染料和医药。 二苯胺是吩噻嗪的主要生产原料。 2、二苯胺项目建设的必要性 (一)投资少,效益好 5000t/a的生产装置,计划投资2800万元。 2014年二苯胺国内年生产量3.4万t/a,市场价1.6万-2.0万/t。全球年产量6.5万t/a。进口价格由于关税和增值税,高于国内价格,并且供量不足。苯胺连续法生产二苯胺,其生产成本,0.9万/t。拟建5000t/a的生产装置,满负荷生产,效益3000—4000万左右/a。 投资少,见效快。

(二)市场有需求 1、目前国内二苯胺生产厂家主要为江苏飞亚化学工业集团(2万t的装置, 产量3万t/年)和南通新邦化工科技有限公司(0.5万t的装置,产量0.8万t/a),辽宁庆阳化工厂(产量0.15万t/年)。根据市场分析报告和富安化工厂反映, 目前二苯胺市场无论是国内,还是全球,基本是供小于求的情况,国外二苯胺 用量最大的科聚亚公司(Chemtura)自身产量不足,其台湾生产防老剂的生产厂,还需要从国内进口。 且没有信息表明近期有拟建装置。据市场分析报告的分析,预计未来5年, 全球产能基本保持稳定。 2、进出口情况分析

苯胺生产工艺

7万吨/年苯胺装置 1 项目名称 7万吨/年苯胺装置 2 工艺总说明 反应过程: 硝酸和苯反应,生成硝基苯: C6H6+HNO3→C6H5-NO2+H2O 硝基苯加氢生成苯胺,硝基苯中O被H取代: C6H5-NO2+H2→C6H5-NH2+O2 生产苯胺的原料硝基苯由硝基苯单元提供,该原料的生产主要是苯绝热硝化后经分离、酸洗、碱洗后获得粗硝基苯,粗硝基苯进一步精制得精硝基苯。精硝基苯与氢气同时进入苯胺单元经气化混合、加氢还原,获得粗苯胺,粗苯胺经废水处理、精制,生产出MDI级苯胺产品。目前硝基苯生产主要采用混酸硝化法。一般有两种工艺,一种是传统的等温硝化法,另一种是绝热硝化法。绝热硝化法在国内还没有应用到大规模生产中,国内采用的均为传统的等温硝化法,即苯硝化后经中和、分离、水洗,获得粗硝基苯,粗硝基苯进一步精制获得精硝基苯。 生产苯胺所采用的工艺技术主要有铁粉还原法、催化加氢法及苯酚氨化法等。还原后的粗苯胺经进一步精制得到精苯胺。 2.1 硝化工艺技术路线 a) 传统硝化法(等温硝化法) 传统硝化法是将苯与用硫酸和硝酸配制的混酸在釜式硝化器(硝化锅)中进行硝化,所用硝化器一般为带有强力搅拌的耐酸铸铁或碳钢釜。消化器内装有冷却蛇管,以导出硝化反应热。硝基苯生产采用连续化生产工艺技术。硝化时苯和混酸同时进料,硝化器串联操作,硝化温度控制在68~78℃。 因硝化反应是强放热反应,及时有效地排除热量,是硝化器设计的首要前提。当反应体系温升过高会引起副反应,使硝基酚类副产物增加,而这些酚类副产物是造成硝基苯生产发生爆炸事故的主要原因。因此硝化器应设有充分的搅拌和冷却装置,严格控制反应温度和搅拌效果。为保证安全操作,需设有自控仪表及安全连锁系统。 在连续硝化生产工艺中,硝化器除釜式串联形式外,还有环形硝化器形式。 环形硝化器是将两个列管式硝化器串联,在一侧硝化器上用立式轴流泵进行强制循环,用冷却水移出反应热。目前在国内,环形硝化器的生产能力均不大,还没有在大型的硝基苯生产装置上使用。 釜式串联形式的硝化器目前在国内应用比较广泛,目前吉林石化分公司现有装置的硝化反应器即为四釜串联形式的传统的等温硝化反应器,其单线生产能力可达到10万吨/年硝基苯。 b) 绝热硝化法 德国PLINKE公司的绝热硝化工艺有三个主要阶段:硝化、废酸浓缩、产品分离。其反应过程是将过量的苯预热到100℃后与混酸一同加到硝化器中,在一定压力下进行反应。由于反应产生大量的热,物料的出口温度在120~140℃之间。反应物经分离后,分出的废酸进入闪蒸器,利用本身热量将废酸浓度提高到70%,与60%的硝酸混合后循环使用。有机相经酸洗、碱洗、水洗及分离后,得粗硝基苯。粗硝基苯经气提后,蒸出未反应的过量苯,可得到精硝基苯。 c) 传统硝化法和绝热硝化法的比较 绝热硝化与传统硝化方法相比,存在着重要的差别即:用稀硝酸替代浓硝酸,增加了混酸中水的含量;取消硝化器中的冷却装置,在压力下完成硝化反应。采用绝热硝化法具有以下特

苯乙烯流程图

课题:乙苯脱氢生产苯乙烯 授课内容: ●乙苯脱氢生产苯乙烯反应原理 ●乙苯脱氢生产苯乙烯工艺流程 知识目标: ●了解苯乙烯物理及化学性质、生产方法及用途 ●掌握乙苯脱氢生产苯乙烯反应原理 ●掌握乙苯脱氢生产苯乙烯工艺流程 能力目标: ●分析和判断影响反应过程的主要因素 ●分析和判断主副反应程度对反应产物分布的影响 思考与练习: ●乙苯脱氢生产苯乙烯反应中有哪些副反应? ●影响乙苯脱氢生产苯乙烯反应过程的主要因素有哪些? ●绘出乙苯脱氢生产苯乙烯工艺流程图 授课班级:

授课时间: 年 月 日 第二节 乙苯脱氢生产苯乙烯 一、概述 1.苯乙烯的性质和用途 苯乙烯的化学结构式如下: 苯乙烯又名乙烯基苯,系无色至黄色的油状液体。具有高折射性和特殊芳香气味。沸点为145 ℃,凝固点 -30.4℃,难溶于水,能溶于甲醇、乙酸及乙醚等溶剂。 苯乙烯在高温下容易裂解和燃烧,生成苯、甲苯、甲烷、乙烷、碳、一氧化碳、二氧化碳和氢气等。苯乙烯蒸气与空气能形成爆炸混合物,其爆炸范围为1.1%~6.01%。 苯乙烯具有乙烯基烯烃的性质,反应性能极强,如氧化、还原、氯化等反应均可进行,并能与卤化氢发生加成反应。苯乙烯暴露于空气中,易被氧化成醛、酮类。苯乙烯易自聚生成聚苯乙烯(PS )树脂。也易与其他含双键的不饱和化合物共聚。 苯乙烯最大用途是生产聚苯乙烯,另外苯乙烯与丁二烯、丙烯腈共聚,其共聚物可用以生产 ABS 工程塑料;与丙烯腈共聚可得AS 树脂;与丁二烯共聚可生成丁苯乳胶或合成丁苯橡胶。此外,苯乙烯还广泛被用于制药、涂料、纺织等工业。 2.生产方法 工业生产苯乙烯的方法除传统乙苯脱氢的方法外,出现了乙苯和丙烯共氧化联产苯乙烯和环氧丙烷工艺、乙苯气相脱氢工艺等新的工业生产路线,同时积极探索以甲苯和裂解汽油等新的原料路线。迄今工业上乙苯直接脱氢法生产的苯乙烯占世界总生产能力的 90%,仍然是目前生产苯乙烯的主要方法,其次为乙苯和丙烯的共氧化法。本节主要介绍乙苯脱氢法生产苯乙烯。 二、反应原理 1.主、副反应 CH=CH 2 CH=CH 2

苯胺

苯胺的用途 苯胺是重要的化工原料,主要用于医药和橡胶硫化促进剂,也是制造树脂和涂料的原料。苯胺对血液和神经的毒性非常强烈,可经皮肤吸收或经呼吸道引起中毒。 一、 一、硝基苯铁粉还原法。 该方法是生产苯胺的经典方法。但是因为设备腐蚀严重,环境污 染严重,产品分离困难等缺点,目前正逐渐被其他方法所取代 二、硝基苯催化加氢法。 1)固定床气相催化加氢 2)流化床气相催化加氢 3)硝基苯液相催化加氢 其所选用的催化剂主要有两种类型 1)采用CuO/SiO2 催化剂,以及加入Cr、Mo等第二组分的改进型催化剂气相加氢制备苯胺 2)采用Pt、Pd、Rh等贵金属负载在氧化铝、活性炭等载体上进行液相加氢 合成苯胺 硝基苯催化加氢法是目前工业生产苯胺的主要方法,存在着反应压 力较高,操作复杂,生产成本较高等弊端 三、苯酚、卤代苯氨化法 该方法不足之处在于基建投资大,能耗和生产成本要比硝基苯催化加氢法高。 从以上可以看出,传统的生产方法存在诸多不足。反应步骤繁多,原子利 用率不高,不符合绿色化学思想和可持续发展的需要[13-14],如何降低工艺的操 作条件,直接将苯氨化氧化合成苯胺,将多步反应变为一步,不仅可以明显提 高原子反应利用率,且可减少副产物污染。因此近年来,寻找苯胺绿色合成的 新方法,引起了广泛的关注。

二、 1.1苯胺的生产和需求 苯胺是一种重要的有机化工原料、化工产品和精细化工中间体,以苯胺为 原料可以制成300多种产品和中间体,具有技术含量高、附加值高、经济效益好等特点,因此广泛应用于染料、农药、医药、橡胶助剂和异氰酸酯(MDI)的生产上,其开发利用前景十分广阔[22]。近年来,随着MDI、橡胶助剂等行业的发展,苯胺的下游产品需求增长较快,相应带动了苯胺需求和生产的强劲增长,世界苯胺需求大约以年均5%的速度增长。 1.1.1世界苯胺的供需情况 苯胺是生产MDI的重要原料,今后对苯胺的需求仍将取决于MDI的需求 增长。上世纪八十年代末,随着西方经济复苏,对MDI需求的不断增加,苯胺生产能力和产量增长很快,从2003年开始,全球MDI的产量以年均约6%的 速度增长,其中亚洲的速度增长最快;因此世界各大公司纷纷新建或扩建MDI 生成装置,MDI已经进入了新一轮的快速增长期,MDI产业将随着聚氨酯(PU) 产品的多样化、广泛性以及快速增长的需求而得到快速发展。世界苯胺生产企业多数采用硝基苯加氢法生产苯胺。1988年世界苯胺的生产能力只有约150万t/a,1996年增加到约220万t/a,2000年达到约297万t/a,2003年世界苯胺的总生产能力已经超过350万t/a,同比2002年增长约30%。世界苯胺的生产主要集中在美国、西欧和日本,2003年它们各自的生产能力分别占总生产能力的30%、33%和10% [24-25] 。表1-1为2003年世界苯胺主要生产企业的生产情况 表1-1 2003年世界主要生产企业苯胺生产能力及生产工艺

聚苯胺的制备

聚苯胺的制备 黄鹏PB10206252 中国科学技术大学高分子科学与工程系 230026 【摘要】 使用过硫酸铵作为氧化剂,在酸性条件下用化学氧化聚合的方法合成了聚苯胺。合成之后用2mol/L 的盐酸对合成的聚苯胺进行了参杂,以使其具有较好的导电性。随后聚苯胺放在培养皿中拿到烘箱中烘干。通过实验得到的关于氧化聚合和导电性高分子材料的进一步认识。 【关键词】聚苯胺导电高分子质子酸掺杂 【前言】 聚苯胺是一种典型的导电性聚合物,具有优良的环境稳定性和高导电性,且原料便宜,易于合成,因此成为具有商业应用前景的导电聚合物之一。目前,聚苯胺的应用在二次电池、半导体器件和隐身材料等。i从 DeBerry W.发现聚苯胺对铁基金属具有保护作用以来,目前,大量实验结果证明了聚苯胺涂料对铁基金属具有起阳极保护作用的防护能力。目前,开发聚苯胺防腐涂料已成为高分子导电材料的应用和涂料研究开发领域的一个新的热点。ii 聚苯胺的结构如下图所示: 通常聚苯胺是其多样化结构的总称。与其他聚合物相比,聚苯胺具有: 1)结构多样化,实验发现不同的氧化-还原态的聚苯胺对应于不同的结构, 其颜色和导电率也相应发生变化;2)特殊的参杂机制,它是通过质子酸参 杂而导电的,参杂过程中聚苯胺链上的电子数目没有变化,聚苯胺的这种 性能使得它在防腐材料开发方面显示出极大的应用前景。 聚苯胺的聚合过程是一个氧化偶联的过程,其机理为一个链式聚合的机理。。引发过程是一个苯胺分子失去两个电子和一个质子形成一个nitrenium的过程。生成的 nitrenium随即进攻一个苯胺分子的对为氢。链增长过程与引发过程相似,也是首先端头的伯胺被氧化,随后生成的nitrenium进攻苯胺分子的对位氢进行亲电取代。

实验二 对甲苯胺的制备

实验二 对甲苯胺的制备 一、目的 1.掌握由芳香硝基化合物还原制备芳胺类化合物的原理和方法。 2.掌握用有机溶剂提取,分离有机化合物的操作方法。 二、原理 (1)化学反应原理 CH 3NO 24+ 9Fe + 4H 2O CH 3 NH 24+ 3Fe 3O 4 (2)终点控制及分离精制的原理 反应终点可通过颜色变化来控制。反应开始时,反应物是灰黑色的,生成物Fe 3O 4俗称铁泥,是黑色的,反应液变为黑色表示反应基本完成。 利用甲苯提取法将有机物与无机物分离。又利用下述反应将产物对甲苯胺与未反应的对硝基甲苯分离。 CH 3NH 2CH 3NH 3Cl CH 3 NH 2HCl NaOH + NaCl +H 2O 三、药品 表7-3 药品物理性质

对硝基甲苯18g,铁粉28g,氯化铵3.5g,甲苯180ml, 5%碳酸钠5ml, 5%盐酸120ml, 20%氢氧化钠30ml。 四、操作过程 在250ml三颈瓶中,分别安装搅拌器和回流冷凝器。瓶中加入28g铁粉(0.5mol)、3.5g氯化铵及80ml水[注1]。开动搅拌,在石棉网上用小火加热15分钟[注2],移去火焰,稍冷后加入18g对硝基甲苯(约0.13mol),在搅拌下加热回流1.5小时[注3]。冷至室温后,加入5ml 5%碳酸钠溶液[注4]和85ml甲苯,搅拌5分钟,以提取产物和未反应的原料。抽滤,除丢铁屑,残渣[注5]用10mL甲苯洗涤。分出甲苯层后,水层依次用25、15、15mL甲苯萃取3次。合并甲苯层并用50、40、30mL 5%盐酸萃取三次。合并盐酸液,在搅拌下往盐酸液中分批加入30mL 20%氢氧化钠溶液。析出的粗对甲苯胺抽滤收集,用少量水洗涤。滤液用30mL甲苯萃取,将沉淀及甲苯萃取液倒入蒸馏瓶中,先在水浴上蒸去甲苯,再在石棉网上加热蒸馏,收集198~201℃的馏分。冷却后得白色固体,熔点44~45℃。

苯胺生产工艺

7万吨/年苯胺装置 1项目名称 7万吨/年苯胺装置 2工艺总说明反应过程:硝酸和苯反应,生成硝基苯: C6H6+HNO3 宀C6H5-NO2+H2O 硝基苯加氢生成苯胺,硝基苯中O被H取代: C6H5-NO2+H2 宀C6H5-NH2+O2 生产苯胺的原料硝基苯由硝基苯单元提供,该原料的生产主要是苯绝热硝化后经分离、酸洗、碱洗后获得粗硝基苯,粗硝基苯进一步精制得精硝基苯。精硝基苯与氢气同时进入苯胺单元经气化混合、加氢还原,获得粗苯胺,粗苯胺经废水处理、精制,生产出MDI级苯胺产品。 目前硝基苯生产主要采用混酸硝化法。一般有两种工艺,一种是传统的等温硝化法,另一种 是绝热硝化法。绝热硝化法在国内还没有应用到大规模生产中,国内采用的均为传统的等温 硝化法,即苯硝化后经中和、分离、水洗,获得粗硝基苯,粗硝基苯进一步精制获得精硝基苯。 生产苯胺所采用的工艺技术主要有铁粉还原法、催化加氢法及苯酚氨化法等。还原后的粗苯 胺经进一步精制得到精苯胺。 2.1硝化工艺技术路线 a)传统硝化法(等温硝化法) 传统硝化法是将苯与用硫酸和硝酸配制的混酸在釜式硝化器(硝化锅)中进行硝化,所用硝 化器一般为带有强力搅拌的耐酸铸铁或碳钢釜。消化器内装有冷却蛇管,以导出硝化反应热。 硝基苯生产采用连续化生产工艺技术。硝化时苯和混酸同时进料,硝化器串联操作,硝化温 度控制在68?78 C。 因硝化反应是强放热反应,及时有效地排除热量,是硝化器设计的首要前提。当反应体系温升过高会引起副反应,使硝基酚类副产物增加,而这些酚类副产物是造成硝基苯生产发生爆 炸事故的主要原因。因此硝化器应设有充分的搅拌和冷却装置,严格控制反应温度和搅拌效 果。为保证安全操作,需设有自控仪表及安全连锁系统。 在连续硝化生产工艺中,硝化器除釜式串联形式外,还有环形硝化器形式。 环形硝化器是将两个列管式硝化器串联,在一侧硝化器上用立式轴流泵进行强制循环,用冷 却水移出反应热。目前在国内,环形硝化器的生产能力均不大,还没有在大型的硝基苯生产 装置上使用。 釜式串联形式的硝化器目前在国内应用比较广泛,目前吉林石化分公司现有装置的硝化反应 器即为四釜串联形式的传统的等温硝化反应器,其单线生产能力可达到10万吨/年硝基苯。b)绝热硝化法 德国PLINKE公司的绝热硝化工艺有三个主要阶段:硝化、废酸浓缩、产品分离。其反应过程是将过量的苯预热到100C后与混酸一同加到硝化器中,在一定压力下进行反应。由于反应产生大量的热,物料的出口温度在120?140 C之间。反应物经分离后,分出的废酸进 入闪蒸器,利用本身热量将废酸浓度提高到70%,与60%的硝酸混合后循环使用。有机相 经酸洗、碱洗、水洗及分离后,得粗硝基苯。粗硝基苯经气提后,蒸出未反应的过量苯,可得到精硝基苯。c)传统硝化法和绝热硝化法的比较 绝热硝化与传统硝化方法相比,存在着重要的差别即:用稀硝酸替代浓硝酸,增加了混酸中 水的含量;取消硝化器中的冷却装置,在压力下完成硝化反应。采用绝热硝化法具有以下特

相关文档
最新文档