浅谈熵

浅谈熵
浅谈熵

题目:浅谈熵

内容摘要:热力学中的熵是用来描述系统混乱程度的物理量。在信息论中,将它定义为信息的缺失,试验结果的不确定性。实际上,热力学中的熵与信息论中的熵它们有着密切的联系。或者说它们是等价的。无论是在热力学中还是在信息论中,熵的定义以及导出过程都有着异曲同工之处。本文即将从着重统计力学的观点出发阐明热力学中的熵与信息论中的熵的关系,将信息论与热力学结合,以此来简明介绍有关Maxwell —demon 的问题。并简单介绍熵的量子观点,进一步说明熵的本质及其意义。并着重于热力学中的各种熵作出详细的讨论。诸如:平动熵、转动熵、振动熵、电子熵、核熵等。

关键词:统计力学、量子观点、信息论、混乱程度、不确定性、Maxwell —demon

在热力学中我们知道熵描述了一个系统的混乱程度的大小。系统的熵值越大,则意味着系统越混乱。一切宏观现象上的热力学现象总是朝着熵增加的方向进行。但是我们也可以这样来想:若一个系统内部它越混乱,则我们从中所获取的微观信息也就越少。也就是说熵描述了信息的缺失,系统的破确。至此我们来考虑这样的一个问题,比如一条具有一定长度的信息(There is a cat )共14个字符,包含空格。如果把组成上述信息的所有字符都打乱,在我们对此一无所知的情况下,将会有14!/3!2!21种组合方式(即系统完全破却)。得到一系列的概率分布。针对此问题,通过信息论我们知道,信息的获取意味着不确定性的消除,或不确定性意味着信息的缺失。在Maxwell —demon 中所谓的精灵就是通过信息与外界系统进行相互作用的,该精灵利用信息操控着过程,使其向逆自发方向方向进行。其实有了Maxwell —demon 的存在,系统已变成了敞开系统,该精灵将负熵引入了系统,降低了系统的熵。因此从整体看气体的反方向集中必不违背热力学第二定律,换句话说:信息即可视为负熵。这种不确定度完全由试验结果的一组概率来唯一确定,令这种不确定度为H ,则

123(......);n H H p p p p =且H 需要满足以下条件:

(1)H 是一个关于123......n p p p p 的连续函数。

(2)若所有的概率相等,则1231111

(......)(

.....)n H p p p p H n n n n

=;为关于n 的单调增函数。

(3)如果一个实验的可能结果依赖于n 个辅助实验的可能结果,那么H 就是辅助实验的不确定性之和。即1

n

i

i H H

==

∑。

数学家香农证实H 的最简单选择是:1231

(......)()n

n i

i H H p p p p f p ===

∑;这里的f 是

未知的。因为是一个连续函数,所以对于等概率的特殊情况,可以定出f ,对已所有的i ,若有1i p n =

,则上述方程可写成:11111(.....)()H nf n n n n n =;由条件(2)知1

[()]0d f dn n

≥;

调用合成定律,考虑第一个辅助实验的等概率结果数目是r, 第二个辅助实验的等概率

结果数目是s,那么n r =;

并且:11111111

(.....)(.....)(.....)(.....);.......(1)H H H H r r s s n n rs rs

+==,所以:

111

()()();......(2)rf sf rsf r s rs +=。

111

()()();......(3)f R f S f RS R S RS

+=令R=1/r,S=1/s,以上方程变成

g()(1/)(),()(1/)();g(()();....(4)R R f r g S S f S R g S g RS ==+=令我们有)

'''''''()(),()();....(5)R ()=S ();......(6)R S 6R ()A g(R)=AlnR+C,A C 1R g(R))ln R S RS S R RS R S R A f r r r ===?=-+

现在分别对以上方程对R 和S 求偏导数,得到g g g g 由于这两个关系,允许下式成立:g g 因为和是独立的变量,方程()能被满足的唯一方式是方程的两边等于相同的常数:g 式中和是两个常数。

重新回到和的定义,以上方程变为:(1

1

1C 1

)ln .

/0,,1/,()ln (),ln n

n

i i i

i i C

r

f nf A n n

A A n A A K K n p f p Kp p

H f p H H K p p ===-->=-==-∑∑若概率是,则不确定度是0,这就是说(1)=0,所以=0,并且对于等概率情况,

我们有(剩下的事情是的符号问题。我们发现所以必须是负的,令而是正的,同时写出我们得到将这个结果应用到=我们得到关于不确定度的公式:=-下面为H 寻找一个单位,将一个只有0和1两种情况的实验结果的H 定为1即:

11111

(ln ln )12222ln 2

H K K =-+=?=;并称此时的信息量为1bit 。有了H 函数以后我

们就可以对任何一段具有一定的长度的信息进行定量的描述其不确定性。

对于任何一段信息,若设它有n 种结果,则它的不确定度的最大值是Kln(n)。证明:

1'

1

1

'

1

1

'

'

'

'

H H ln 1

ln ;[0,1]

ln ;[0,1]0,ln 1)0

[0,1],n

i i i i n n

i i i i i i n n

i i i i i i i i

i H K p p p H K p p p p H K p p p p H dH H K p p H p ααα======∴+∈+∈?∴=?=-++=???∈?∑∑∑∑∑∑由函数的意义知:当取最大值的时候,此时信息的不确定性最大,即系统完全破却。=-且由拉格朗日乘因子法知=-=-为一连续函数,

当时取极值;(1232'2'1112'0;ln 1)0exp(1).

1

......exp(1)................................................................................................i i i n n n K p p p p p p p n

H H p p p p Hess H p p αααα=-++=∴=-=====

=-????=??即(,由于为一常数,故12

2'1'

'

max 1................00...............0Hess 0.. (11)

H ln ln n n n n

i K p K p K H p p p H K K n

n

n =????

-????????????-=????????????-?????

???????==∑显然是一个负定的

所以存在极大值,此时的极大值就是它的最大值即-.

以上说明一个实验的不确定度的最大值是,且此时,也就是每种结果出现的机会都是相同的,即系统完全破确。

至此我们联系到热力学中的熵,S 的定义。由统计学理论知道它是一个有关体系微观状态数的函数,即()S f =Ω,ln S =Ω,Ω为体系的微观状态数。设一封闭系统,中间有一隔板。两侧的微观状态数分别为12,ΩΩ。由于熵是一个广度函数,所以21()()S f f =Ω+Ω;现在抽掉隔板,则新的微观状态数为:12ΩΩ;12()S f =ΩΩ。所以

12()f ΩΩ21()()f f =Ω+Ω;与上述的H 函数的推到情况类似,最终得ln S =Ω。对于一

个独立子系且相格数为1的系统,则Ω1

!

!

n

i

i N N ==

∏;且ln !N =ln N N N -。由此可得:

11

1

1

!

ln(

)ln !ln !(ln )(ln )

!

(

ln

)

ln H K

n n

B B B i B B i i i n i i i i j j B n

B B i i i N S k k N k N k N N N k N N N N N N k N N

N

k N

S k N p p ======-=---===

∑∑∏∑∑所以

N j i i N i p N

=为第状态下的粒子数目,故

;所以1l n

H

K

n

B B i i i k N

S k N p p ===∑;1

H=K ln n

i i i p p =∑。

由此可知S 与H 是等价的,仅仅是单位和比例系数不同而已。热力学中单位用的是J/K ,信息论中用的是bit 。两者比较有231ln 20.95710/B bit k J K -==? 由波尔兹曼分布定律知:

11e x p (

);e x p ()n

j j j

j j j i

N G Z G N

Z βεβε=-=

=-∑;所以

m a x 1

1

1

exp()

exp()

[

ln(

]ln()j j j j B B G G U

S k N k N Z Z Z T

βεβε--==

+;即对一个相格数为1的独立子系,其系统的熵是有关能量的函数。由231ln 20.95710/B bit k J K -==?知:要使计算机里的信息量存储增加一个bit (信息的获取意味着不确定性的消除,熵值减小),它的熵至少要减少23

0.95710

/J K -?。这只能向环境释放热量为代价,即温度为T 的环境下处

理每bit 的信息,计算机至少消耗能量23

0.95710J -?。同样对于前面所讲的Maxwell —demon

它在获取分子有关的信息的时候也需要消耗一定的的能量。因为他将负熵引入了系统,降低了系统的熵。

通过以上,我们阐明了熵与不确定度之间的关系,说明了熵的本质及其意义。也就是说熵仅仅是统计意义上的概率性的。它只有统计意义,热力学中的微观可逆性与宏观不可逆性也是统计意义上的概率性的。例如一滴红墨水(假设共有23

10个红墨水分子),滴入水中。一会整个杯子里的水就都被染红(扩散现象)。那么这些有色分子是否有可能再全部聚集在一起,使得杯子里的水变得澄清?明显是有可能的,且这种概率为

23

1012

。由于这个数值极小

极小,几乎趋近于零。因此重新聚集在一起的现象我们也就无法观察到了。若分子数目极少,比如只有两个有色分子,此时概率为

1

4

。所以此时是完全可以观察到的。故对于微观过程的可逆与宏观过程的不可逆并不是矛盾的,这种可逆与不可逆都是建立在统计意义上的,它

们都是概率性的,只具备统计意义。

各种熵的统计性讨论(经典统计):

宏观与微观之间配分函数起到了桥梁作用,现在仅仅对熵作出相应的统计学讨论(当然对于其它热力学函数情况也是如此)。

11ln()!ln 1()T N i i N i i B i i i i

B

Z Z U Z S k Z Z T N Z U k ββ?

?=?

?=+=??

??=-=???定域子系离域子系(i=t,r,v,e,n 等)

(当i=t,r,v,e,n 时对应的熵分别为平动熵、转动熵、振动熵、电子熵、核熵等。)

1)平动熵(t S ):

33

1

22

23

ln 2T 23:()();h h 2

t B t

t B Z mk m V i t Z V U Nk T ππββ?====-=?时 所以322

2T 3

ln[()]2h

B t B B mk S k N k N V π=+ 2)转动熵(r S ):

221

2/8T h :13r B r r T Ik T

i r Z e πσ-Θ?=?Θ==??+?

(高温情况)时(低温情况)

高温时:ln ;r

r B Z U Nk T β

?=-

=? 所以22

8T

ln[]h B r B B Ik S k N k N πσ

=+ 低温时:

221

2

222

22223exp()ln[13exp()]ln (T )8T 82413exp()

8T r B B

r B h h Z k h Ik I U N N h I

Ik βππββππ--?+-?=-=-=??+-; 所以2

2

22

22

2223exp()(T )8T 2ln[13exp()];248T

13exp()

8T

B B r B B B h k h Ik h S N k N h IT Ik Ik ππππ-=++-+-

3)振动熵(v S ):

12

1v 1;()12sinh(/2)h v

h v B

e h i v Z e T k βνβνν

--==

=Θ=-Θ时:; 1

ln[

]

ln 2sinh(/2)

v

B v Z h k T U N νβ

β

??=-

=-??

ln[2sinh(/2)]2cosh(/2)11

coth(/2)2sinh(/2)22

h h N

N h Nh h h νβνβνννββνβ?===?

所以11coth(/2)ln[]22sinh(/2)

v B v N S h h k N T T ννβ=

+Θ 1coth(/2)ln[2sinh(/2)]2B v N

h h k N T T

ννβ=

-Θ 4)电子熵(e S ):

在分子中,电子的能级没有统一的公式。必须通过光谱实验进行逐个分子进行分析,多数的

分子内电子的能级间隔都很大(一般为100T e n B k ε?=或者更大)

,因此一般情况下电子总是处于激发态。处非是几千度的高温

,但是一般情况下,当电子处于激发态之前,分子也就早已分解。所以由

101301223

e x p ()e x p ()e x p ()e x p (

)e x p (

)....

n

e

e

e e e e e

e e j j j Z G G G G G βεβεβεβεβε==-=-+-+-+-+∑可知:100exp()e e e Z G βε≈-如果选取电子的基态能量为零点能,则10e e

Z G ≈。

对于双原子分子,除去少数例外,电子运动的基态都是非简并的,即11e

Z =。少数的例外有:

2,O NO 等分子,

这些分子的基态都是简并的,例如2O 的103e e Z G ≈=,NO 的102e e

Z G ≈= 所以由ln()e e B e U S k Z T =

+;2,ln ln 1T ()()T

e e e B N V B Z Z U k T k ββ??=-==?? 可得:11,()ln T()ln();()/!

e N

e e e B N V B e e N

e Z Z Z S k k Z T Z Z N ?=??=+??=??(代入上述的1e

Z 即可) 5)核熵(n S ):

对于原子核的能级间隔就更大了,没有足够高的能量一般是不可能使其激发的。因此在一般

的物理化学过程中,原子核总是处于基态能级。所以对于原子核的配分函数为:

100exp()n n n Z G βε=-;同样的道理,仍将基态能量选为零点能,则:10

n n

Z G ≈。如果双原

子分子中两个原子核的基态量子态分别为:121i +个和221i +个,于是分子的核配分函数为 :112(21)(21)n Z i i =++。(其中1i 和2i 为原子核的自旋量子数) 所以由ln()n n B n U S k Z T =

+;2,ln ln 1

T ()()T

n n n B N V B Z Z U Nk T k ββ??=-==?? 可得:11,()ln T()ln();()/!

n N

n n n B N V B n n N

n Z Z Z S k k Z T Z Z N ?=??=+??=?? (代入上述的1n

Z 即可) 在一般的物理化学过程中,均不涉及原子核的变动,因此通常将其省略。

6)总熵(S ): 由熵的广度性可知:t r v e n S S S S S S =++++ 7)量子统计下的熵: 由巨配分函数:(1)g e λλαβελλ

λ

--±Ξ=

Ξ=±∏∏;B k T

μ

α=-

,1

B k T

β=

可得:ln ln(1)g e λ

αβελλ

--

Ξ=±

±∑

理想费米气体和理想玻色气体的粒子数平均值和内能、压强都可通过ln Ξ给出。 由玻色----爱因斯坦分布:0

1

i i i g N e αβε+=

±可得:0ln 1

g N N e λλλαβελ

λ

α

+?

=

==-

Ξ±?∑∑

ln 1g E N e λ

λλλλαβελλ

εεβ+?===-Ξ±?∑∑

;1ln p V

β?

=Ξ? 所以由开放可逆系统的热力学方程T d S d U

p d V μ=

+-可知:

(ln ln ln )B dS k d α

βαβ

??=Ξ-Ξ-Ξ??; 所以积分可得:(ln ln ln )B S k α

βαβ

??

=Ξ-Ξ-Ξ??; (上式即为考虑了量子效应以后的理想气体的熵的计算公式。)

参参考文献:

<<统计力学在物理化学中的应用>> 北京大学出版社 <<物理化学>>(上册) 朱文涛教授主编 清华大学出版社 <<物理化学>>(上册) 傅献彩主编 南京大学 <<数学分析>>(下册)第三版 华东大学数学系主编 <<线性代数>>(第二版),吴传生主编 高等教育出版社 <<大学物理>>(下册), 吴百诗主编 西安交通大学出版社

<<热力学与统计物理简明教程>>包景东主编高等教育出版社

熵概念发展及衍生综述

熵概念发展及衍生综述 摘要:1864年Clausius在热力学中引入了熵的概念(称为宏观熵、热力学熵或Clausius熵),1889年Boltzmann又提出了微观熵的概念——Boltzmann 熵。Boltzmann熵是熵概念泛化的理论基础,在玻尔兹曼熵的影响下,熵概念开始得到泛化,使熵概念以自己崭新的面貌走入各个领域,开辟了一个又一个的研究领域,成为众多学科发展的“关节”和“引线”。 关键词:宏观熵、微观熵、负熵、麦克斯韦妖、信息熵 熵由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中。是热力学中为了研究热现象的性质和规律而引入的一个描述体系的混乱度的状态函数,其数值由系统的状态唯一确定。系统处于不同的状态(P、V、T不同),熵值不同。我们可以通过计算系统在不同平衡态下的熵变情况,来判断系统进行的方向,也即利用熵增加原理判断宏观过程进行的方向。 根据熵在热力学中的定义,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也引申出了更为具体的定义,是各领域十分重要的参量。因此,本文有必要对熵概念发展及衍生作一综述。 1宏观熵与微观熵 在热力学中,克劳修斯定义的熵,称之为宏观熵,而在统计物理学中,玻尔兹曼定义的熵,称之为微观熵。 1864年,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius)首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大。一个体系的能量完全均匀分布时,这个系统的熵就达到最大值。在克劳修斯看来,在一个系统中,如

果听任它自然发展,那么,能量差总是倾向于消除的。让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意循环过程都都适用的一个公式:dS=dQ/dT。式中,T为物质的热力学温度;dQ为熵增过程中加入物质的热量。 对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值表述了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。在热力学中,熵是用来说明热运动过程的不可逆性的物理量,反映了自然界出现的热的变化过程是有方向性的,是不可逆的。 1889年波尔兹曼(Boltzmann)在研究气体分子运动过程中,用统计的方法来研究气体的行为时,对熵首先提出了微观解释,后经普朗克·吉布斯进一步研究,解释更为明确,S=k·lnΩ,k是玻尔兹曼常数,Ω热力学概率是指任意宏观态所包含的微观状态数。他们认为,在由大量粒子(原子、分子)构成的系统中,熵就表示粒子之间无规则的排列程度,或者说表示系统的紊乱程度,越“乱”,熵就越大;系统越有序,熵就越小。

浅谈高熵合金

文献综述 1.高熵合金发展及研究现状 随着现代经济,科技,军事的发展,人们对于材料的性能提出了更高的要求,传统合金已经不能满足社会的要求,而传统合金的合成理念是以一种或两种元素为主要元素.同时添加适量的其他元素来改善或增加合金性能,从而获得所需具有特殊性能的合金。这种合成方式带来了问题,一,金属的结构变得越来越复杂,使我们难以分析和研究;二,过多添加其他元素,使组织中出现了脆性金属间化合物,使合金性能下降;三,限制了合金成分的自由度,从而限制了材料的特殊微观结构及性能的发展。 高熵合金的概念由台湾学者叶均蔚提出,高熵合金的概念为含有多种主要元素,其中每种主元均具有较高摩尔分数,但不超过35%,因此没有一种元素含量能占有50%以上,这种合金是由多种元素共同表现特色。这个观点摆脱了传统合金以一种金属元素为主的观念。高熵合金的主要元素种类n≥5且以≤13。对于每一种多主元合金系统可设计成简单的等原子摩尔比合金,也可设计为非等原子摩尔比合金,以及添加次要元素来改良合金性能。高熵合金易形成简单结构列如:面心立方、体心立方相。并非形成复杂的金属间化合物。这是由于多种主要元素形成固溶体合金的高混合熵加强了元素间的相溶性,从而避免发生相分离以及金属间化合物或复杂相的形成。当然在某些合金体系中高熵效应并不能完全抑制金属间化合物的生成,但是这些金属间化合物数量少并且化合物一般具有简单的晶体结构,或者这些金属间化合物相包含很多其他元素而使得其有序度大为降低。 高熵合金具有良好的发展前景,Al Fe Cu Co Ni Cr、AI TI Fe NI Cu Cr、AI Co Cr Cu Fe Ni等系列的高熵合金系列都被广大的学者研究。对于高熵合金,现阶段还可以高熵合金的微观组织结构,进行相分析及电化学性能、磁性能的测定,以建立合金元素选择理论、凝固结晶理论以及热处理理论等进行更进一步的研究。目前,制备高熵合金的方法有用传统的熔铸、锻造、粉末冶金、喷涂法及镀膜法来制作块材、涂层或薄膜。除了上述几种传统的制作加工方法外,高熵合金还可通过快速凝固、机械合金化获得,利用这两种方法获得的高熵合金,其组织更倾向于形成纳米晶体,甚至非晶体。 由于高熵合金的优异性能,随着研究的深入,我们可以研发出更多新型的金属材料,为社会发展创造价值,因此这是一个很有价值的研究,无论对于学术研究还是工业发展。 2.高熵合金的组织特点和性能特点 2.1组织特点 1)高熵合金易于形成结构简单的BCC或FCC固溶体。由吉布斯自由能公式△G mix=△H mix-T △S mix,其中G mix为吉布斯自由能,H mix为混合焓,T 为热力学温度,S mix为混合熵。通过公式得知,可看出,合金的自由能是混合焓与混合熵相互影响而得到的产物,混合熵与混合焓是对立的,形成简单结构的BCC或FCC固溶体需要的较低的自由能,由于高熵的原因,这使得合金的自由能变得较低,最终易形成简单固溶体。 2)当高熵合金在铸态或完全回火态时,高熵合金会以纳米结构或者非晶质结

熵的应用和意义

浅谈熵的意义及其应用 摘要:介绍了熵这个概念产生的原因,以及克劳修斯对熵变的定义式;介绍了玻尔兹曼从微观角度对熵的定义及玻尔兹曼研究工作的重要意义;熵在信息、生命和社会等领域的作用;从熵的角度理解人类文明和社会发展与环境的关系。 关键词:克劳修斯熵玻尔兹曼熵信息熵生命熵社会熵 0 前言:熵是热力学中一个非常重要的物理量,其概念最早是由德国物理学家克劳 修斯(R.Clausius)于1854年提出,用以定量阐明热力学第二定律,其表达式为 dS=(δQ/T)rev。但克劳修斯给出的定义既狭隘又抽象。1877年,玻尔兹曼(L.Boltzmann)运用几率方法,论证了熵S与热力学状态的几率W之间的关系,并由普朗克于1900给出微观表达式S=k logW,其中k为玻尔兹曼常数。玻尔兹曼对熵的描述开启了人们对熵赋予新的含义的大门,人们开始应用熵对诸多领域的概念予以定量化描述,促成了广义熵在当今自然及社会科学领域的广泛应用【1】【2】。 1 熵的定义及其意义 由其表达式可知,克劳修克劳修斯所提出的熵变的定义式为dS=(δQ/T)rev , 斯用过程量来定义状态函数熵,表达式积分得到的也只是初末状态的熵变,并没有熵的直接表达式,这给解释“什么是熵”带来了困难。【1】直到玻尔兹曼从微观角度理解熵的物理意义,才用统计方法得到了熵的微观表达式:S=k logW。这一公式对应微观态等概出现的平衡态体系。若一个系统有W个微观状态数,且出现的概率相等,即每一个微观态出现的概率都是p=1/W,则玻尔兹曼的微观表达式还可写为:S=-k∑plogp。玻尔兹曼工作的杰出之处不仅在于它引入了概率方法,为体系熵的绝对值计算提供了一种可行的方案,而且更在于他通过这种计算揭示了熵概念的一般性的创造意义和价值:上面所描述的并不是体系的一般性质量和能量的存在方式和状态,而是这些质量和能量的组构、匹配、分布的方式和状态。 玻尔兹曼的工作揭示了正是从熵概念的引入起始,科学的视野开始从对一般物的质量、能量的研究转入对一般物的结构和关系的研究,另外,玻尔兹曼的工作还为熵概念和熵理论的广义化发展提供了科学依据。正是玻尔兹曼开拓性的研究,促使熵概念与信息、负熵等概念联姻,广泛渗透,跨越了众多学科,并促

工程热力学概念公式

第一部分(第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热 能的直接利用等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空 间作为热力学研究对象。这种空间的物质的总和称为热力系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统包含的物质质量为一不变的常 量,所以有时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对固定的空间, 故又称开口系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态, 简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同, 与质量多少无关,没有可加性的状态参数称为强度性参数。 10、广延性状态参数:在给定的状态下,凡与系统所含物质的数量有关的状态参数称为广延 性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变 化,则该系统所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统部 被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统部的 状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状 态所组成,并称之为准静态过程。 14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不 留下任何痕迹,这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全 部过程称为热力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环 中转换为功的热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。

关于焓和熵的概念

关于焓和熵的概念 熵和焓的概念 (2008-11-22 15:23:21) 转载 标签: 杂谈 解释1、焓是物体的一个热力学能状态函数。在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,

浅谈最大熵原理和统计物理学

浅谈最大熵原理和统计物理学 摘要 在本文中我们将分别从物理和信息论角度简单讨论熵的意义并介绍由 E.T.Jaynes 所奠立基础的最大熵原理的原始理解。透过研究理想气体,我们将阐述如何运用最大熵 原理研究真实问题。同时藉由简短分析统计物理学研究方法的问题,本文会给出最大熵 原理更深层涵义及其应用。我们将称之为最大熵原理第二延伸。最后透过真实气体的研 究,我们将描绘出如何运用第二延伸来帮助我们思考及研究热力学系统。 一、前言 长时间以来人们对于熵有物理上的理解也有二、最大熵原理 (Information theory) 上的理解。物理上l、什么是最大熵原理信息论 的熵可以说明热力学系统的演化方向、热平衡的达相信物理系学生和物理研究人员都很熟悉成与否亦或是代表系统的混乱程度等[1-3]。在信Clausius的经验准则-热力学第二定律[1,2]。该定息论里,信息熵则代表量测信息系统的可信度或者律说明当一个热力学系统达到最后热平衡状态时,是忽略度[3,4]。然而不管物理或是信息论上对熵该系统的熵会达到最大值。进一步的研究指出当系的理解,实际上仍局限于将熵视为一个量测的工统的熵最大时,其自由能将会成为最小。在此一具。正如我们可藉由系统能量的量测来了解系统状特性的影响下人们惯性的倾向于将熵视为类似能态稳定与否。然而由于E.T.Jaynes的贡献,熵可量的巨观物理量。此一物理量成为描述系统乱度的

依据。此后由于 Gibbs 引入 ensemble 观念,开视为一种研究问题的推理工具,这一层意义才为人 所知[5,6]。时至今日,我们虽然仍无法全盘了解启微观角度的研究方法因而奠立近代统计力学理熵的真正意含,但是我们也渐渐掌握熵在物理学尤解熵的理论基础。在统计力学的观念中,观察者所其是统计物理中所能扮演的角色。通过本文浅显的量测到该系统热力学性质之巨观物理量诸如系统介绍,我们将从过去Jaynes对于熵的认识到今日内能或压力,基本上只能以平圴值来表现。原因在我们的新发现,掀开熵的神秘面纱。于观察者无法明确掌握系统微观状态。此种不确定 性可以藉由机率分布如canonical ensemble来量定义为忽略度 (degree of ignorance) 或者描述化表示。古典系统熵便可由此机率分布来定义出不了选取系统信息的倾向程度,称之为倾向度 (degree Of likelihood) 。通过 Cox 和 Skilling 连续表示, 完全不同的论证[5,7],信息熵的机率分布型式类 似于热力学熵。所不同者在于热力学熵含有波兹曼, (1) S,,kPlogP,biii常数。这样的相似性直到 Jaynes 在1957 年的研式中代表波兹曼常数而为观察者量测到kPbi究才证明这个相似其实是相等[5]。信息熵和热力系统处在状态时的机率分布。或者是连续表示, i学熵实际上具有相同的含意。Jaynes更进一步指出且证明最大熵原理 (maximum entropy principle) ,,,,S,,kdqPqlogPq , (2) 并不只是单纯的热力学第二定律。他的研究指出,bNNN, 最大熵原理不具任何物理意义仅是一个推论的工 具。藉由此原理,观察者所拥有的相关系统信息可式中,,代表空间和动量参数且q,r,pN以公正客观的被编入特定机率分布中来描述观察,,表示观察者量

焓熵的相关概念

焓是物体的一个热力学能状态函数。<br/>在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:<br/>1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。<br/>在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。<br/>既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。<br/>分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。<br/>物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,焓是流动式质的热力学能和流动功之和,也可认为是做功能力。<br/>2、熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。(可逆过程熵不)热力学能与动能、势能一样,是物体的一个状态量。<br/>能可以转化为功,能量守恒定律宣称,宇宙中的能量必须永远保持相同的值。那么,能够把能量无止境地转化为功吗?既然能量不灭,那么它是否可以一次又一次地转变为功?<br/>1824年,法国物理学家卡诺证明:为了作功,在一个系统中热能必须非均匀地分布,系统中某一部分热能的密集程度必须大于平均值,另一部分则小于平均值,所能荼得的功的数量妈决于这种密集程度之差。在作功的同时,这种差异也在减小。当能量均匀分布时,就不能再作功了,尽管此时所有的能量依然还存在着。<br/>德国物理学家克劳修斯重新审查了卡诺的工作,根据热传导总是从高温到低温而不能反过来这一事实,在1850年的论文中提出:不可能把热量从低温物体传到高温物体而不引起其他变化。这就是热力学第二定律,能量守恒则是热力学第一定律。<br/>1854年,克劳修斯找出了热与温度之间的某一种确定产关系,他证明当能量密集程度的差异减小时,这种关系在数值上总在增加,由于某种原因,他在1856年的论文中将这一关系式称作“熵”(entropy),entropy一诩源于希腊语,本意是“弄清”或“查明”,但是这与克劳修斯所谈话的内容似乎没有什么联系。热力学第二定律宣布宇宙的熵永远在增加着。<br/>然而,随着类星体以及宇宙中其他神秘能源的发现,天文学家们现在已经在怀疑:热力学第二定律是否果真在任何地方任何条件下都成立<br/>熵与温度、压力、焓等一样,也是反映物质内部状态的一个物理量。它不能直接用仪表测量,只能推算出来,所以比较抽象。在作理论分析时,有时用熵的概念比较方便。<br/>&nbsp;&nbsp;&nbsp;&nbsp;在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。例如,如图4a所示,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,

工程热力学总结

第一部分 (第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用 等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学 研究对象。这种空间内的物质的总和称为热力系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统内包含的物质质量为一不变的常量,所以有 时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对固定的空间,故又称开口 系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少 无关,没有可加性的状态参数称为强度性参数。 10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统 所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的 平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹, 这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热 力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环中转换为功的 热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。 18、卡诺定理:卡诺定理可表达为:①所有工作于同温热源与同温冷源之间的一切热机,以可逆热机的热 效率为最高。②在同温热源与同温冷源之间的一切可逆热机,其热效率均相等。 19、孤立系统熵增原理:孤立系统的熵只能增大(不可逆过程)或不变(可逆过程),决不可能减小,此 为孤立系统熵增原理,简称熵增原理。 (二)与工质性质有关的概念

熵的定义

热力学第二定律和熵 专业:能源与动力工程 班级:能源14-3班 姓名:王鑫 学号:1462162330

熵的表述 在经典热力学中,可用增量定义为 式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量,下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。单位质量物质的熵称为比熵,记为S。熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地,连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生过程,总使整个系统的熵值增大,此即熵增原理。摩擦使一部分机械能不可逆地转变为热,使熵增加。热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。 熵的相关定义 1.比熵:在工程热力学中,单位质量工质的熵,称为比熵。表达式为δq=Tds,s称为比熵,单位为J/ (kg·K) 或kJ/ (kg·K)。 2.熵流:系统与外界发生热交换,由热量流进流出引起的熵变。熵流可正可负,视热流方向而定。 3.熵产:纯粹由不可逆因素引起的熵的增加。熵产永远为正,其大小由过程不可逆性的大小决定,熵产为零时该过程为可逆过程。熵产是不可逆程度的度量。 熵增原理 孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加。 熵增加原理是热力学第二定律的又一种表述,它比开尔文、克劳修斯表述更为概括地指出了不可逆过程的进行方向;同时,更深刻地指出了热力学第二定律是大量分子无规则运动所具有的统计规律,因此只适用于大量分子构成的系统,不适用于单个分子或少量分子构成的系统 实质:熵增原理指出:凡事是孤立系统总熵减小的过程都是不可能发生的,理想可逆的情况也只能实现总熵不变,实际过程都不可逆,所以实际热力过程总是朝着使孤立系统总熵增大的方向进行,dS>0。熵增原理阐明了过程进行的方向。 熵增原理给出了系统达到平衡状态的判据。孤立系统内部存在不平衡势差是过程自发进行的推动力。随着过程进行,孤立系统内部由不平衡向平衡发展,总熵增大,当孤立系统总熵达到最大值时,过程停止进行,系统达到相应的平衡状态,这时的dS=0即为平衡判据。因而,熵增原理指出了热过程进行的限度。 熵增原理还指出如果某一过程的进行,会导致孤立系中各物体的熵同时减小,虽然或者各有增减但其中总和使系统的熵减小,则这种过程,不能单独进行除非有熵增大的过程,作为补

浅谈可靠度理论

浅谈可靠度理论

浅谈可靠度理论 工程结构的安全性历来是工程设计中的重大问题,这是因为结构工程的建造耗资巨大,一旦失效不仅会造成结构本身和人民生命财产的巨大损失,还往往产生难以估量的次生灾害和附加损失。 结构可靠度理论的形成始于人们对结构工程中各种不确定性的认识,人们开始较为集中的讨论结构安全度问题,将概率分析和概率设计的思想引入实际工程。如果一种理论分析的结果能指导工程实践,或者说能为工程带来巨大的经济或社会效应,那么这种理论就具有强大的生命力。可靠性科学作为一门与应用紧密相连的基础学科,其生存的立足点就在于推广其应用于工程实际。 1.结构可靠度概述 1.1结构可靠度相关概念 结构所要满足的功能要求是指结构在规定的设计使用年限内应满足下列功能要求: 1、在正常施工和正常使用时,能承受可能出现的各种作用 2、在正常使用时具有良好的工作性能 3、在正常维护下具有足够的耐久性 4、在设计规定的偶然事件发生时及发生后,仍能保持必要的整体稳定性 在以上四项功能要求中,第1、4两项通常指结构的强度、稳定,即所谓的安全性;第2项是指结构的适用性;第3项是指结构的耐久性,三者总称为结构的可靠性,即结构可靠性,是指结构在规定的时间内,在规定的条件下,完成预定功能的能力。 在工程上,一般所说的可靠度,指的就是结构可信赖或可信任的程度。工程结构中的可靠度可表示为能承受在正常施工和正常使用时,可能出现的各种作用;在正常使用时,具有良好的作用性能;在正常维修和保护下,具有足够的耐久性能:在偶然事件(如地震,爆炸,撞击等)发生实际发生后,仍能保持所需的整体稳定性。度量结构可靠性的数量指标称为结构可靠度即为:结构在规定的时间内,在规定的条件下,完成预定功能的概率。 结构的设计、施工和使用过程中存在大量的随机不确定性因素;荷载及结构

联合熵与条件熵

第6讲 联合熵与条件熵 信息熵H(X)反映了随机变量X 的取值不确定性。当X 是常量时,其信息 熵最小,等于0;当X 有n 个取值时,当且仅当这些取值的机会均等时,信息 熵H(X)最大,等于log n 比特。我们拓展信息熵H(X)的概念,考虑两个随机 变量X 和Y 的联合熵H(XY)和条件熵H(Y|X)。 1. 联合熵 设X ,Y 是两个随机变量, 则(X,Y)是二维随机变量,简写为XY 。 二维随机变量XY 的联合概率分布记为p (xy ),即 根据信息熵的定义可知,XY 的信息熵为 定义 1.1 二维随机变量XY 的信息熵H(XY)称为X 与Y 的联合熵(joint entropy )。 它反映了二维随机变量XY 的取值不确定性。我们把它理解为X 和Y 取值的 总的不确定性。 练习: 假设有甲乙两只箱子,每个箱子里都存放着100个球。甲里面有红蓝色球 各50个,乙里面红、蓝色的球分别为99个和1个。试计算H(XY) 我们将联合熵概念推广到任意多离散型随机变量上。 定义1.2 一组随机变量12,,,N X X X L 的联合熵定义为 注:为了简化记号,我们有时把12N X X X L 记为X N ,把12N x x x L 记为x N 。 物理意义: (1)12()N X H X X L 是这一组随机变量平均每一批取值 所传递的信息量。 (2)若N-维随机变量12N X X X L 表示某信源产生的任意一条长度为N 的消息, 则12()N X H X X L 是平均每条长度为N 的消息的信息量。因此,若该信源产生一 个长度为N 的消息,则在不知道其它条件的情况下,对该消息所含信息量的最

工程热力学基本概念及重要公式

工程热力学基本概念及 重要公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第一章基本概念1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。

熵的由来 物理学中,熵有两个定义——热力学定义和统计力学定义。 熵最初是从热力学角度定义的。19世纪50年代,克劳修斯 (... R J E C lausius)编造了一个新名词:entropy,它来自希腊 词“trope”,意为“转变,变换”。为了与能量(energy)相对 应,克劳修斯在“trope”上加了一个前缀“en”。在克劳修斯看 来,“energy”和“entropy”这两个概念有某种相似性。前者从 正面量度运动转化的能力;后者从反面量度运动不能转化的能力, 即运动丧失转化能力的程度,表述能量的可转换能力(活力)丧失的程度,或能量僵化(蜕化)的程度(尽管能量总体是守恒的)。 例如,你用20元人民币购得一袋大米,你的价值总量(能量)不变,但一袋大米在市场上的再交换能力(活力)低于20元人民币。这种消费使其熵(经济)增大。按当初的设计,活力越丧失,能量越僵化,熵越大。热力学第一定律描述了自然界中各种形式的能量转换过程中量的守恒,并未指出不同形式能量的本质的差异。而热力学第二定律告诉我们,能量之间的品质是有差别的:有序运动的能量可以通过做功完全转变成无序运动的能量;而无序运动的能量不能完全转变成有序运动的能量(效率为100%的热机是不能实现的)。或者说,有序运动的能量转化为其他形式的能量的能力强,能被充分利用来做功,品质较高;而无序运动的能量转化能力弱,做功能力差,品质较低。根据热力学第二定律,高品质的能量转换为低品质的能量的过程是不可逆的。高品质的能量转换为低品质的能量后,就有一部分不能再做功了。我们把这样的过程称为能量的退化,通过物理学知识可以证明:退化的能量与系统的熵增成正比。于是,我们可以说:熵是能量不可用程度的度量。 “熵”的中文译名是我国物理学家胡刚复教授确定的。他于1923年5月为德国物理学家普朗克作《热力学第二定律及熵之观念》讲学时做翻译,把“entropy”译为“熵”。它是热量变化与温度之比(商),又与热学有关,就加了个“火”字旁,定名为熵。 我们知道,事物(封闭系统)变化的过程大多是不可逆的。从初态可变到终态,而终态却不能自发地(不影响周围环境)变回初态,尽管能量始终是守恒的。例如,封闭容器中气体分子可以自由膨胀充满整个容器,但却不能自发地回缩到原来的某个局部;瓷瓶落地成碎片,而碎瓶却不能自发复原成瓷瓶;生米煮成熟饭,熟饭却不能晾干成生米;热量可以自动从高温物体传递给与之相连的低温物体,但却不能自动逆向传递,等等。这就是说,这些初态与终态之间有着某种本质上的差别。物理学家用“熵”(S)这个物理概念来描述这种差别,进而用“熵变”(S ?)这个物理量来计算这种差别。认为初态(宏观)所含的微观状态数较少(即熵值小,较有序),而终态(宏观)则相反。在一封闭系统中,自然演变总是指向微观状态数多的方向(熵值大,较无序)发展,而不是相反。这就是熵增大原理:0 ?>。 S 增大的最终结果只能是大家都处在同等状态——平衡态,碎瓶越摔越碎,温度差越来越小。 1896年,奥地利物理学家玻尔兹曼从分子运动论的观点对熵做 了微观解释,认为熵是分子运动混乱程度的量度。这不仅是人们对 熵的理解豁然开朗,而且为熵概念的泛化(推广)创造了契机。玻 尔兹曼证明了,在系统的总能量、总分子数一定的情况下,表征系 统宏观状态的熵(S)与该宏观态对应的微观数W有如下关系: =? S k W ln 这就是著名的玻尔兹曼公式。它把熵和微观状态数联系起来,熵 越大,微观状态数越多,分子运动越混乱,熵成为分子运动混乱程

浅谈熵

题目:浅谈熵 内容摘要:热力学中的熵是用来描述系统混乱程度的物理量。在信息论中,将它定义为信息的缺失,试验结果的不确定性。实际上,热力学中的熵与信息论中的熵它们有着密切的联系。或者说它们是等价的。无论是在热力学中还是在信息论中,熵的定义以及导出过程都有着异曲同工之处。本文即将从着重统计力学的观点出发阐明热力学中的熵与信息论中的熵的关系,将信息论与热力学结合,以此来简明介绍有关Maxwell —demon 的问题。并简单介绍熵的量子观点,进一步说明熵的本质及其意义。并着重于热力学中的各种熵作出详细的讨论。诸如:平动熵、转动熵、振动熵、电子熵、核熵等。 关键词:统计力学、量子观点、信息论、混乱程度、不确定性、Maxwell —demon 在热力学中我们知道熵描述了一个系统的混乱程度的大小。系统的熵值越大,则意味着系统越混乱。一切宏观现象上的热力学现象总是朝着熵增加的方向进行。但是我们也可以这样来想:若一个系统内部它越混乱,则我们从中所获取的微观信息也就越少。也就是说熵描述了信息的缺失,系统的破确。至此我们来考虑这样的一个问题,比如一条具有一定长度的信息(There is a cat )共14个字符,包含空格。如果把组成上述信息的所有字符都打乱,在我们对此一无所知的情况下,将会有14!/3!2!21种组合方式(即系统完全破却)。得到一系列的概率分布。针对此问题,通过信息论我们知道,信息的获取意味着不确定性的消除,或不确定性意味着信息的缺失。在Maxwell —demon 中所谓的精灵就是通过信息与外界系统进行相互作用的,该精灵利用信息操控着过程,使其向逆自发方向方向进行。其实有了Maxwell —demon 的存在,系统已变成了敞开系统,该精灵将负熵引入了系统,降低了系统的熵。因此从整体看气体的反方向集中必不违背热力学第二定律,换句话说:信息即可视为负熵。这种不确定度完全由试验结果的一组概率来唯一确定,令这种不确定度为H ,则 123(......);n H H p p p p =且H 需要满足以下条件: (1)H 是一个关于123......n p p p p 的连续函数。 (2)若所有的概率相等,则1231111 (......)( .....)n H p p p p H n n n n =;为关于n 的单调增函数。 (3)如果一个实验的可能结果依赖于n 个辅助实验的可能结果,那么H 就是辅助实验的不确定性之和。即1 n i i H H == ∑。 数学家香农证实H 的最简单选择是:1231 (......)()n n i i H H p p p p f p === ∑;这里的f 是 未知的。因为是一个连续函数,所以对于等概率的特殊情况,可以定出f ,对已所有的i ,若有1i p n = ,则上述方程可写成:11111(.....)()H nf n n n n n =;由条件(2)知1 [()]0d f dn n ≥; 调用合成定律,考虑第一个辅助实验的等概率结果数目是r, 第二个辅助实验的等概率 结果数目是s,那么n rs =;并且: 11111111 (.....)(.....)(.....)(.....);.......(1)H H H H r r s s n n rs rs +==,所以:

焓&熵

焓enthalpy 为了引出焓这个概念,我们先讨论恒容和恒压过程的热效应。 对于一个封闭体系,△U=Q-W,封闭体系,恒容变化(不做体积功),且不做非体积功时,△U=Q,即封闭系、恒容、W'=0时,△U=Q v(Q v为恒容热效应),dU=δQ v。 上式是热力学中常用的一个公式,使用此公式时,一定要满足前面的条件,请大家注意,在热力学中用公式必须满足条件。 在化学中,我们更关心恒压过程,因为化学效应一般是在恒压条件下进行的。 封闭体系、恒压时,△U=Q p-W,若W'=0,则Q p=△U+W=△U+P e△V=U2-U1+ (P e V2-P e V1),因恒压P e=P1=P2,则Q p=(U2+P2V2)-(U1+P1V1),为了数学表达的方便,引进一个物理量,焓:H=U+PV,这里要说明一下,焓在这里无明确的物理意义,可以理解为,为了表达方便,专门设为一个符号,H即U+PV,之所以要提出焓这一物理量,是因为U+PV经常会用到,所以专门用一个符号来代替它。则上式 Qp=H2-H1=△H。 ∴封闭体系、恒压、W'=0时, Qp=△H,dH=δQ p。 这里要特别说明的是,H是状态系数,因为U、P、V都是状态系数,状态确定,U、P、V都是一定值,当然H也是确定值,也就是说从始态→终态,所有途径的△H都是的一样的,也就是说,在计算△H时,可以设计一条方便计算得途径。 焓是热力学的基本概念之一,以后经常要用到。总的来说,封闭体系不做非体积功时的过程,内能变化可以通过测定恒容热效应来求,焓变可以通过测恒压热效应求得。 焓 焓(enthalpy),符号H,是一个系统的热力学参数。 物理意义:⑴H=U+pV 焓=流动内能+推动功 ⑵焓表示流动工质所具有的能量中,取决于热力状态的那部分能量 定义一个系统内: H = U + pV 式子中"H"为焓,U为系统内能,p为其压强,V则为体积。 对于在大气内进行的化学反应,压强一般保持常值,则有 ΔH = ΔU + pΔV 规定放热反应的焓取负值。如:

工程热力学史的感想

热力学发展史 15041054 陈思远热力学发展史,其实就是热力学与统计力学的发展史,从热量概念的演变到热力学三个定律的形成,凝聚了众多科学家的心血,从一次次的推论,试验然后得出结论,这是一段艰辛的历史,也是人类认识自然,改造自然的历史。热力学是专门探讨能量内涵、能量转换以及能量与物质间交互作用的科学,早期物理中,把研究热现象的部分称为热物理,后来称为热学,近代则称之为热力学。顾名思义,热力学和“热”有关,和“力”也有关,热是一种传送中的能量。物体的原子或分子通过随机运动,把能量由较热的物体传往较冷的物体。 人类很早就对热有所认识,并加以应用,但是将热力学当成一门科学且定量地研究,则是由十七世纪末开始,也就是在温度计制造技术成熟,并知道如何精密地测量温度以后,才真正开启了热力学的研究.十七世纪时伽利略曾利用气体膨胀的性质制造气体温度计,波义耳在 1662 年发现在定温下,定量气体的压力与体积成反比;十八世纪,经由准确的实验建立了摄氏及华氏温标,其标准目前我们仍在使用;1781 年查理发现了在定压下气体体积会随着温度改变的现象,但对于热本质的了解则要等到十九世纪以后。焦耳自 1843 年起经过一连串的实验,证实了热是能量的另一种形式,并定出了热能与功两种单位换算的比值,此一能量守恒定律被称为热力学第一定律,自此人类对于热的本质才算了解。1850 年凯尔文及克劳修斯说明热机输出的功一定少于输入的热能,称为热力学第二定律。这两条定律再加上能士特在 1906 年所提出的热力学第三定律:即在有限次数的操纵下无法达到绝对零度,构成了热力学的基本架构。综观而言,所谓热力学发展史,其实就是热力学与统计力学的发展史,基本上约可划分成四个阶段。 第一阶段开始于十七世纪末到十九世纪中叶,这个时期累积了大量的实验和观察,并制造出蒸汽机,关于“热”的本质展开了研究和争论,为热力学理论的建立做了准备。在十九世纪前半叶首先出现的卡诺理论、热机理论(第二定律的前身)和热功相当互换的原理(第一定律的基础)已经包含了热力学的基本思想,这一阶段的热力学还留在热力学的现象描述,并未引进任何数学算式。 第二阶段是十九世纪中到十九世纪末。这个时期发展了热力学和分子运动论,这些理论的诞生与热功相当原理有关。热功相当原理奠定了热力学第一定律的基础,而第一定律和卡诺理论结合,又导致热力学第二定律的形成;热功相当原理跟微粒说结合则导致了分子运动论的建立,另一方面,以牛顿力学为基础的气体动力论也开始发展,而在这段时期内人们并不了解热力学与气体动力论之间的关连,热力学和分子运动论彼此还是隔绝的。 第三阶段是十九世纪七十年代末到二十世纪初,这个时期内,波兹曼结合热力学与分子动力学的理论,从而导致统计热力学的诞生,同时他也提出非平衡态的理论基础,至二十世纪初吉布斯提出系统理论建立了统计力学。这一时期的汤姆逊为热力学也做出了重大贡献。他研究卡诺循环也提出第二定律,同时更由此订定绝对温标,又称凯氏温标 K。他利用卡诺循环建立绝对温标,他重新设定水的冰点为 273.7 度;沸点为 373.7 度,为了纪念他的贡献,绝对温度的单位以凯尔文来命名。他在 1851 年发表题为《热动力理论》的论文,写出热力学第二定律的凯尔文表述:我们不可能从单一热源取热,使它完全变为有用的功而不产生其它影响。第三定律的发现普朗克在能士特提出的“在 0 K 时任何化学

相关文档
最新文档