生物信息学课程教学大纲

生物信息学课程教学大纲
生物信息学课程教学大纲

《生物信息学》课程教学大纲

适用对象:生物工程、生物技术等专业学生

(学分:2学分学时:36)

一、课程的性质和任务

生物学与信息科学是当今世界上发展最迅速、影响最大的两门科学。而这两门科学的交叉融合形成了广义的生物信息学,正以崭新的理念吸引着科学家的注意。生物信息学(Bioinformatics)是生命科学领域中的新兴学科,面对人类基因组计划所产生的庞大的分子生物学信息,生物信息学的重要性将越来越突出,它无疑将会为生命科学的研究带来革命性的变革。它是综合利用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法的崭新交叉学科。

本课程主要讲授生物信息学的基本概念和研究内容、方法及其应用等的基本知识,学习从Internet如何获取、处理、存储、分配和解释基因组信息,并应用计算机软件进行蛋白空间结构模拟和预测,以便发掘和造就学生跨学科学习的本领。生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。

生物信息学是生物工程和生物技术专业的选修课程,适宜于已有生物化学和分子生物学基础的学生。本课程以多媒体教学为主,课堂辅助答疑为辅;结合网上资源和课程软件,基本上实现学生不限时段的网上学习、在线交流等功能。

二、教学内容和要求

绪论

目的:了解本课程的研究对象、内容和方法以及国内研究的领军人物。

内容:本课程的研究对象和内容;学科发展史;主要研究方法;国内研究的领军人物。要求:1 了解本课程研究对象、内容和学科发展史;2 理解本课程的主要研究方法;

3 对国内的一些研究团体和领军任务有所了解。

第一章生物信息学的基础知识

目的:掌握生物信息学所需的生物学、计算机科学和网络知识。

内容:生物学知识包括:细胞的分类和亚结构、中心法则、基因和基因组、蛋白质的结构层次(从一级结构到无级结构)、蛋白质组学、核酸的结构和功能、密码子的特征;计算机知识主要包括数据库的基本知识、网络的域名、Ftp服务以及生物信息学常见的一些ftp服务。

要求:1 了解细胞的分类和亚结构、中心法则、基因和基因组、蛋白质的结构层次(从一级结构到五级结构)、蛋白质组学、核酸的结构和功能、密码子的特征等生物学基础知识;2 理解这些生物学知识在生物信息学中的重要性;3 理解数据库的基本知识、网络的域名、Ftp服务以及生物信息学常见的一些ftp服务;4 熟练掌握利用数据库资源进行数据检索和查询。

第二章生物信息学相关数据库资源介绍

目的:了解生物信息学常见的数据库资源,掌握NCBI等重要网站的使用。

内容:核酸及其相关数据库(序列数据库、基因组相关数据库、核酸三维结构数据库、其他);蛋白质相关数据库(序列数据库、蛋白质三维结构数据库、蛋白质组数据库(二维凝胶电泳数据库)、信号传导及蛋白质-蛋白质相互作用相关数据库、DNA和蛋白质相互作用数据库);基因或蛋白质一些特定数据库;糖类及其相关数据库;蛋白质翻译后修饰相关数据库;基因表达数据库;人类基因突变及疾病相关数据库;进化相关数据库及资源专利数据库;资源目录服务器或网页。

要求:1 了解数据库的分类以及各级数据库的特种和优缺点;2 理解核酸及相关数据库的特点及其应用;3 理解蛋白质及相关数据库的特点及应用;4 熟练掌握NCBI/EMBL/DDBJ/SWISS-PROT等常见数据库的使用;5 了解其它类型的数据库的一些基本网址;6 了解常见序列的ftp下载的地址及方法。

第三章序列比对

目的:掌握双序列必对、多序列必对的软件操作方法及结果的评估。

内容:在生物学研究中,将未知序列同已知序列进行比较分析已经成为一种强有力的研究手段,生物学领域中绝大部分问题在计算机科学领域中主要体现为序列或字符串的问题,双序列比对(Pairwise Sequence Alignment )、多序列比对(Multiple Anlignment )的定义、计算方法以及常用实现序列必对的软件使用方法以及核酸序列的分析。

要求:1了解序列必对的定义、计算方法以及用途;2 掌握CLUSTALW等软件的使用方法;3 掌握基于双序列必对的BLAST/FASTA等网络搜索工具的使用。4 了解BLAST/FASTA等网络搜索结果的评估;5 理解调和序列的定义以及调和序列产生的依据;6掌握核酸序列分析常见的方法及手段;8了解部分基因组数据库的使用及功能基因组的生物信息学分析。

第四章系统发育分析

目的:了解系统发育分析的原理和应用以及常用软件和数据库的使用。

内容:系统发育分析的理论基础及基本概念,系统发育树构建方法,常见系统发育软件及使用。

要求:1 了解进化、分子钟假说和中性进化理论,了解相似性、同源性和同一性的含义;2 了解系统发育树构建的几种方法;3 掌握PHYLIP等常用软件的使用方法。

第五章基于细菌16S rDNAs 系统发育分析及系统发育树的构建

目的:掌握基于细菌16S rDNAs 系统发育分析及系统发育树构建的方法及策略。

内容:16S rDNA 的PCR扩增的方法,用于系统发育分析的免费软件及数据库,利用RDP网站和phylip程序构建系统发育树。

要求:1 理解16S rRNA在用于细菌鉴定中的重要作用;2 理解PCR扩增的原理和过程;3 熟悉用于系统发育分析的免费软件和数据库的使用和查询;4 掌握利用RDP(小核糖体网站)进行系统发育分析的操作方法,5. 掌握利用PHYLIP 程序构建系统发育树的过程以及在用于其它分子进化分析中的应用。

第六章蛋白质序列分析

目的:掌握蛋白质序列分析的流程以及策略和常用软件和数据库的使用。

内容:蛋白质序列分析的意义和目的;蛋白质基本性质预测;蛋白质二级结构预测;蛋白质三级结构预测;蛋白质功能预测。

要求:1 了解蛋白质序列分析的意义和目的;2 熟练掌握蛋白质基本性质和二级结构的预测;3 掌握蛋白质三级结构预测的流程以及常见的预测方法;4 了解蛋白质功能预测的一般步骤的策略。

第七章蛋白质序列分析实例

目的:以1,3-丙二醇脱氢酶结构预测及分子进化分析说明蛋白质分析的一般流程和方法。

内容:1,3-丙二醇脱氢酶的重要作用;该酶氨基酸序列的获得和基本性质的预测、二级结构的预测、分子进化分析、三级结构预测及功能预测。

要求:1了解1,3-丙二醇脱氢酶的重要作用;2 了解蛋白质的氨基酸序列的获取方法;3 掌握蛋白基本性质、二级结构和三级结构的预测;4 了解蛋白质功能预测的策略和流程。

第八章生物芯片

目的:使学生了解生物芯片的制作原理、数据采集和解析以及在现代生物学中的应用。内容:分子杂交的基础知识;生物芯片的定义和制作;生物芯片数据分析;生物芯片的用途。

要求:1理解分子杂交的基本知识。2掌握生物芯片的定义和制作的过程。3理解生物芯片数据分析的方法及仪器。4 了解生物芯片在现代生物学中的应用前景及领域。

第九章生物信息学与药物设计

目的:了解药物设计的基本原理和生物信息学在药物设计中的重要作用。

内容:药物设计的理论基础;已知受体结构的药物设计;未知受体结构的药物设计;药物设计与组合化学的关系,药物设计和生物信息学的关系。

要求:1了解药物设计的理论基础。2掌握已知受体结构和未知受体结构的药物设计的不同策略。3了解结构信息学进行药物设计的一般过程。4了解生物信息学在药物设计中的巨大作用。

三、课程的重点和难点:

重点:从总体上讲,本课程的重点章节为:生物信息学的网络资源、序列比对、系统发育分析以及蛋白质序列分析。

难点:从总体上讲,蛋白质序列分析这一章是本课程的难点,这一章除了要求学生有较强的生物化学和分子生物学的基础知识外,还要对整个蛋白质结构和功能预测的整个流程有一个整体的概念,而且在结构预测的方法上非常繁多,如何选择合适的预测方法和计算方法将是让学生非常头痛的问题,而且各种方法所得到的结果之间如何进行比较和评估也是一个难以解决的问题,因此在授课的过程中,首先要对蛋白质结构和功能预测的流程进行详细的解说,使学生有一个整体上的了解,然后分别介绍各种方法的算法和优缺点以及一些常用的评估指标,使学生有一个明确的目的,然后鼓励学生多上网进行蛋白质序列分析的实例分析,以加强对整个过程的了解。另外,本章还涉及到许多程序的使用,尤其是用来显示蛋白质三级结构的一些程序,这些程序之间不能互相转换,文件的格式不能同一,也是学生在学习过程碰到的一个难点。

四、参考性教学时间安排

五、教材与主要参考书:

教材:钟扬等《简明生物信息学教程》、高等教育出版社,2001

主要参考书:1) 张成岗等,《生物信息学方法与实践》、科学出版社,2002

2) 赵国屏等,《生物信息学》,科学出版社,2002

3) 赵衍达等,《生物信息学,蛋白质和核酸分析实验指南》,清华大学出版社,2000

4) 罗辽复,《生命进化的物理观》,上海科学技术出版社,2000。

5)D.R.Wedthead 等,Bioinformatics, 科学出版社,2003

注:教材可每年根据实际情况调整一下。

生物信息学软件及使用概述

生物信息学软件及使 刘吉平 liujiping@https://www.360docs.net/doc/4a3507523.html, 用概述 生 物秀-专心做生物! w w w .b b i o o .c o m

生物信息学是一门新兴的交叉学生物信息学的概念: 科,它将数学和计算机知识应用于生物学,以获取、加工、存储、分类、检索与分析生物大分子的信息,从而理解这些信息的生物学意义。 生 物秀-专心做生物! w w w .b b i o o .c o m

分析和处理实验数据和公共数据,生物信息学软件主要功能 1.2.提示、指导、替代实验操作,利用对实验数据的分析所得的结论设计下一阶段的实验 3.实验数据的自动化管理 4.寻找、预测新基因及其结构、功能 5.蛋白质高级结构及功能预测(三维建模,目前研究的焦点和难点) 生 物秀-专心做生物! w w w .b b i o o .c o m

功能1. 分析和处理实验数据和公共数据,加快研究进度,缩短科研时间 ?核酸:序列同源性比较,分子进化树构建,结构信息分析,包括基元(Motif)、酶切点、重复片断、碱基组成和分布、开放阅读框(ORF ),蛋白编码区(CDS )及外显子预测、RNA 二级结构预测、DNA 片段的拼接; ?蛋白:序列同源性比较,结构信息分析(包括Motif ,限制酶切点,内部重复序列的查找,氨基酸残基组成及其亲水性及疏水性分析),等电点及二级结构预测等等; ?本地序列与公共序列的联接,成果扩大。 生 物秀-专心做生物! w w w .b b i o o .c o m

Antheprot 5.0 Dot Plot 点阵图 Dot plot 点阵图能够揭示多个局部相似性的复杂关系 生 物秀-专心做生物! w w w .b b i o o .c o m

分子生物学实验课程教学大纲

分子生物学实验课程教学大纲 课程名称:分子生物学(Molecular Biology) 课程编号:1313072215 课程类别:专业课 总学时数:68实验时数:18 学分:3.5 开课单位:生命科学学院生物综合教研室 适用专业:生物技术 适用对象:本科(四年) 一、课程的性质、类型、目的和任务 分子生物学实验是生物技术专业一门必修的专业课,涵盖了分子与细胞生物学的许多内容,并与结构基因组学、功能基因组学、蛋白质组学、生物信息学、生物医学、分子病毒学、 分子免疫学等学科有着重要的联系。分子生物学实验课程教学以理论课教学为基础,理论与 实践相结合,加深对所学知识的理解,对实验仪器要求较高,因此开设本课程的目的是使学 生掌握分子生物学实验设备的操作方法,使学生更加牢固地掌握基础知识,更重要的是培养 学生的动手能力和科学研究能力,为学生学习生命科学中的其他相关课程作好基础准备。同 时也使学生具备分子生物学基本的实验技能,学会发现问题和解决问题的能力,为毕业后从 事生物学相关的科研和教学工作奠定基础。 本课程的任务是通过实验教学,使学生了解和初步掌握分子生物学实验技术的基本原理 和方法,教学内容包括植物基因组DNA的提取、琼脂糖凝胶电泳检测、PCR扩增目的基因 及聚丙烯酰胺凝胶电泳等。在实验内容和方法、技术上进行合理安排,力争让学生在有限的 课时中尽可能多地了解和掌握现代分子生物学基本理论和有关实验的基本方法和技术原理,并尽可能多地引进、介绍新的、先进的实验方法和技术,以开阔学生视野,提高学生的动手 能力和创造性思维能力,培养高素质的生命科学人才。 二、本课程与其它课程的联系与分工 学习和研究分子生物学的目的在于阐明生命活动的化学物质基础,并与其它学科配合,来揭示生命活动的本质和规律。《生物化学》、《细胞生物学》和《遗传学》是先修课程。 三、课程内容及教学基本要求 [1]表示“了解”;[2]表示“理解”或“熟悉”;[3]表示“掌握”; 实验一植物基因组DNA的提取 植物基因组DNA的提取的目的及原理[1];植物基因组DNA的提取的实验步骤及操作方 法[3]; 作业:提取的DNA呈褐色的原因及解决办法? 实验二琼脂糖凝胶电泳 琼脂糖凝胶电泳的原理及操作步骤[1],琼脂糖电泳的实验方法[3]; 作业:琼脂糖凝胶电泳中电压如何设置? 实验三聚合式酶联反应(PCR)扩增目的基因

基因组学与生物信息学教案

《基因组学与生物信息学》教案 授课专业:生物学大类各专业 课程名称:基因组学与生物信息学 主讲教师:夏庆友程道军赵萍徐汉福

课程说明 一、课程名称:基因组学与生物信息学 二、总课时数:36学时(理论27学时实验9学时) 三、先修课程:遗传学、分子生物学、基因工程 四、使用教材: 杨金水. 基因组学. 北京:高等教育出版社,2002. 张成岗. 贺福初, 生物信息学方法与实践. 北京:科学出版社,2002. 五、教学参考书: T.A.布朗著,袁建刚译著,基因组(2rd版),北京:科学出版社,2006. 沈桂芳,丁仁瑞,走向后基因组时代的分子生物学,杭州:浙江教育出版社,2005. 罗静初译,生物信息学概论,北京:北京大学出版社,2002. 六、考核方式:考查 七、教案编写说明: 教案又称课时授课计划,是任课教师的教学实施方案。任课教师应遵循专业教学计划制订的培养目标,以教学大纲为依据,在熟悉教材、了解学生的基础上,结合教学实践经验,提前编写设计好每门课程每个章、节或主题的全部教学活动。教案可以按每堂课(指同一主题连续1~2节课)设计编写。教案编写说明如下: 1、编号:按施教的顺序标明序号。 2、教学课型表示所授课程的类型,请在相应课型栏内选择打“√”。 3、题目:标明章、节或主题。 4、教学内容:是授课的核心。将授课的内容按逻辑层次,有序设计编排,必要时标以“*”、“#”“?” 符号分别表示重点、难点或疑点。 5、教学方式既教学方法,如讲授、讨论、示教、指导等。教学手段指教科书、板书、多媒体、模型、 标本、挂图、音像等教学工具。 6、讨论、思考题和作业:提出若干问题以供讨论,或作为课后复习时思考,亦可要求学生作为作业 来完成,以供考核之用。 7、参考书目:列出参考书籍、有关资料。 8、日期的填写系指本堂课授课的时间。

基因组学与生物信息学课后作业

基因组学与生物信息学课后作业2016/2/23 名词解释 1 基因组:基因组是指生物体内遗传信息的集合,是某个特定物种细胞内全部DNA分子的总和 2 基因组学:是一门新兴的学科,是在全基因组范围内研究基因的结构、功能、组成及进化的科学,包括多个分支学科 3 C值:指一个单倍体基因组中DNA的总和,一个特定的物种具有其特征性的C值 4 基因家族:来自于一个共同的祖先基因,由基因重复及其突变产生。序列相似,功能相近。 5 假基因:来源于功能基因,但以失去活性的DNA序列,有沉默的假基因,也有可转录的假基因 6 人类基因组计划:旨在为30多亿碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息 问答题

简述真核生物染色体与原核生物染色体的差别。 答:真核生物基因组都由分散的长链线性DNA分子组成,每个DNA分子都与蛋白质结合组成染色体;原核生物基因组有2种独立结构的遗传物质,一种为拟核里的染色质,一种为质粒 另外,真核生物基因组含大量非编码序列(高度重复序列,多位于着丝粒、端粒)、断裂基因,而原核生物大部分基因都可以编码 名词解释 突变:基因组小区段范围内DNA分子发生的突然的、可遗传的变异现象。 重组:指基因组中大范围区段发生重新组合。 同源重组:指发生在非姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合 转座:一段DNA片段或其拷贝从染色体的一个位置转移到另一位置,并在插入位点两侧产生一对短的正向重复序列 基因重复:含有基因的DNA片段发生重复,可能因同源重组作用出错而发生,或是因为反转录转座与整个染色体发生重复所导致 比较基因组学:在基因组水平上研究不同物种和品系之间在基因组结构与功能方面的亲缘关系及其内在联系的一门新兴交叉学科

生物信息学理论大纲

《生物信息学》课程教学大纲 课程编号:E082042 课程类型: 专业选修课 课程名称:生物信息学英文名称:Bioinformatics 学分:2 适用专业:生物工程 第一部分大纲说明 一、课程的性质、目的和任务 生物信息学是应用信息科学研究生物体系和生物过程中信息的存贮、信息的内涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程的中各种生物信息,或者说是生命科学中的信息科学。生物信息学是数学、统计、计算机与生物命科学的交叉新兴学科,它广泛地渗透到生物学的各个研究领域中,更是生物工程研究中不可缺少的重要工具。随着人类基因组计划的快速发展,生物信息学技术在功能性基因的发现与识别、基因与蛋白质的表达与功能研究方面都发挥着关键的作用。本课程从生物信息学的基本理论和技术出发,结合该学科应用研究的教授,使学生能扎实掌握生物信息学的基本理论、国内外研究的前沿进展以及如何为经济建设和社会发展服务等内容。 二、课程的基本要求 本课程使学生了解生物信息学的基础知识,生物信息数据库的使用,生物信息工具的应用,熟悉生物信息学学科的发展和现状,熟悉几种主要数据库的内容、注释、检索,掌握常用数据库搜索工具的使用方法,了解上述方法在实际研究中的应用(包括基因序列信息分析、基因预测、分子进化及系统发育树和蛋白质结构预测等重要问题)。 三、本课程与相关课程的联系 本课程是以普通生物学、分子生物学、信息科学、数理统计、工程学为基础的交叉

学科。 先修课程:普通生物学、生物化学、微生物学。 四、学时分配 五、教材与参考书 教材:《生物信息学》(普通高等教育“十一五”规划教材),许忠能主编,清华大学出版社,2008。 参考书:1.Bioinformatics(英文原版),Westhead et al.,科学出版社,2003;2.Computational Molecular Biology,Pevzner,MIT Press,2000; 3.Biological Sequence Analysis(英文原版), Durbin等,清华大学出版社,2002;

基因组学教学大纲

附件1: 二、课程性质、地位和任务 《比较基因组学》是在基因组图谱和序列分析的基础上,对已知基因和基因的结构进行比较,了解基因的功能,表达调控机制和物种进化过程的学科。它通过对不同物种的基因组数据进行比较分析,揭示彼此的相似性和差异性,以了解不同物种间进化上的差异。进行基因组比较分析时,研究并不仅限于基因编码区,还扩展到对序列相似性的分析、基因位置的比较、基因编码区长度或外显子数的变异、基因组上非编码区的比例、进化关系较远的物种间高度保守区域的比较分析等等(例如从最简单的细菌到非常复杂的人类基因组之间的比较)。比较基因组学和其它相关学科(如分子生物学、生物信息学和遗传学等)的交叉渗透,起着承前启后的作用,对这些学科的基础理论研究和生产实践都将产生巨大的影响。 通过本课程的学习,希望使学生了解比较基因组学在生物学研究领域的重要地位,发展现状,能够全面掌握基因组学的发展历史,病毒、原核生物和真核生物的基因组结构,基因组水平上的遗传图谱与物理图谱的绘制,基因组的测序与序列组装,基因组的比较分析,基因组水平的表达与调控以及基因组进化的分子机制以及进化模式。 三、课程基本要求 理论和知识方面: 通过课程讲授,使学生了解比较基因组学诞生的背景、发展概况和应用前景;掌握比较基因组学的基本理论和基本分析方法,包括基因组的结构、基因组水平上的遗传物理图谱绘制、基因组的测序与组装、基因组水平的基因表达与功能研究、基因组的比较分析(外显子数目、共线性分析、基因组上非编码区的变异)、基因组与生物进化等。 能力和技能方面: 以系统的理论知识学习为主,并以课堂讨论当前不断发展的基因组学新知识和新动态为辅助内容,在了解掌握基因组学基本知识的基础上,针对该学科的特点,要求学生能够进行简单的比较基因组学分析。同时注意培养分析思考问题的能力,能运用比较基因组学知识分析鉴定重要的功能基因,并在课堂上介绍当前一些领域的最新动态。课堂教学、课堂讨论、国内外发展动态介绍是基本学习方法。 四、课程内容及学时分配 第一章绪论(3学时) 教学基本要求:通过对引论的学习,明确比较基因组学的含义,比较基因组学的研究对象、内容和课程的主要任务,了解比较基因组学的发展历程及其展望,为学习好本门课程奠定良好基础。 教学重点和难点:基因组学及比较基因组学的产生及概念,比较基因组学的研究内容 教学方法与手段:多媒体教学、自学与课堂讨论相结合 第一节基因组学与(比较基因组学)的含义、研究范畴和发展历程 第二节病毒、原核生物和真核生物基因组的特点 第三节人类基因组计划

生物信息学名词解释

1.计算生物信息学(Computational Bioinformatics)是生命科学与计算机科学、数理科学、化学等领域相互交叉而形成的一门新兴学科,以生物数据作为研究对象,研究理论模型和计算方法,开发分析工具,进而达到揭示这些数据蕴含的生物学意义的目的。 2.油包水PCR (Emulsion PCR) : 1) DNA片段和捕获磁珠混合; 2) 矿物油和水相的剧烈震荡产生油包水环境; 3) DNA片段在油包水环境中扩增;4) 破油并富集有效扩增磁珠。 3.双碱基编码技术:在测序过程中对每个碱基判读两遍,从而减少原始数据错误,提供内在的校对功能。代表测序方法:solid 测序。 4.焦磷酸测序法:焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应,适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。焦磷酸测序技术不需要凝胶电泳,也不需要对DNA样品进行任何特殊形式的标记和染色,具备同时对大量样品进行测序分析的能力。在单核苷酸多态性、病原微生物快速鉴定、病因学和法医鉴定研究等方面有着越来越广泛的应用。例如:454测序仪 :用蛋白质序列查找核苷酸序列。 :STS是序列标记位点(sequence-tagged site)的缩写,是指染色体上位置已定的、核苷酸序列已知的、且在基因组中只有一份拷贝的DNA短片断,一般长200bp -500bp。它可用PCR方法加以验证。将不同的STS依照它们在染色体上的位置依次排列构建的图为STS图。在基因组作图和测序研究时,当各个实验室发表其DNA测序数据或构建成的物理图时,可用STS来加以鉴定和验证,并确定这些测序的DNA片段在染色体上的位置;还有利于汇集分析各实验室发表的数据和资料,保证作图和测序的准确性。 :表达序列标签技术(EST,Expressed Sequence Tags)EST技术直接起源于人类基因组计划。 :生物信息学数据库。UniGene试图通过计算机程序对GeneBank中的序列数据进行适当处理,剔除冗余部分,将同一基因的序列,包括EST序列片段搜集到一起,以便研究基因的转录图谱。UniGene除了包括人的基因外,也包括小鼠、大鼠等其它模式生物的基因。 :开放阅读框(ORF,open reading frame )是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。编码一个蛋白质的外显子连接成为一个连续的ORF。 10.分子钟检验:只有分子钟的,没听过分子钟检验。一种关于分子进化的假说,认为两个物种的同源基因之间的差异程度与它们的共同祖先的存在时间(即两者的分歧时间)有一定的数量关系

《生物信息学》教学大纲

《生物信息学》教学大纲 Bioinformatics 课程编码:27A11708 学分:1.5 课程类别:专业任选课 计划学时:24 其中讲课:20 上机:4 适用专业:生物技术专业、药学专业 推荐教材:薛庆中著,《DNA和蛋白质序列数据分析工具》,科学出版社,2014年。 参考书目:张成岗著,《生物信息学方法与实践》,科学出版社,2005年。 课程的教学目的与任务 本课程的教学目的是引导学生初步了解生物信息学的基本研究内容与研究方法以及生物信息在多学科领域的应用。使学生掌握生物信息学的基本术语、基本原理、基本研究方法、重要核酸和蛋白质数据库等。掌握指定的基于互联网的常用生物信息学软件的基本操作使用方法。要求学生通过基于问题和任务的学习方式,初步具备解决简单生物信息学问题的研究能力。 课程的基本要求 通过本课程的学习,要求学生1. 掌握该领域的基本知识。2. 掌握指定数据库与软件的应用。3.课程的主要任务包括一次期末考试和多次的章节作业以及课程问题讨论等。 4.培养与引导学生采用生物信息学实际操作能力、以期后期能用于相应领域的研究工作中。 各章节授课内容、教学方法及学时分配建议(含课内实验) 第一章:绪论建议学时:2 [教学目的与要求] 掌握专生物信息学产生背景、概念及研究内容;介绍常用的核酸、蛋白质数据库介。 [教学重点与难点] 掌握生物信息学概念机研究内容,熟悉常用数据库的使用。 [授课方法] 课堂讲授结合上机操作 [授课内容] §1.1生物信息学的产生背景,概念 生物信息学的发展简史 生物信息学的不同定义 §1.2生物信息学的研究内容及常用的核酸、蛋白质数据库介绍 生物信息学的而研究内容 常用的核酸数据库 常用的蛋白质数据库

生物信息学实验教学大纲

生物信息学实验教学大纲 纪律要求 1、上课之前由班长把关进入,不要放其他人员入内。 2、进入机房不得随便走动喧哗,有问题请举手。 3、一人一台电脑,用自己的帐号和密码上网。 4、不得上与上课内容无关的网站,不可进行网络聊天及听歌。 5、按时完成上课内容,在下次上课前提交实验报告。 6、自备U盘将有关软件带好。 实验一生物信息数据库信息检索 一、实验内容 1、了解NCBI、DDBJ、EMBL上网的方法自学各网站相关介绍。 2、了解北大生物信息学中心等几大中文生物信息学网站。 3、了解一些生物论坛中有关生物信息学的部分。如:Biooo和Bioon。 4、利用NCBI的Entrenz查询系统和EBI的SRS检索文献和核酸或蛋白质序列。 (phyA)并对照所学复习各字段的含义。 5、将所得记录的ID或Accession记录下来备用。 二、作业 1、记录相关网站及论坛网址(或如何查询到该网址的方法)。 2、找到编码拟南芥(arabidopsis)phyA(光敏色素A)蛋白的核酸序列编号。 并记录查找过程。 3、使用pubmed检查关键词phyA,记录检索出的条目数目。 实验二核酸及蛋白质序列的比对 一、实验内容 利用检索出的蛋白质和核酸序列进行序列比对并进行分子进化树分析。 二、实验步骤 1、键入上次实验获得的phyA的核酸序列编号(NM_100828),获得核酸及蛋白 质序列。利用blastx程序寻找与phyA蛋白质序列相似性的序列→选择下列序列:sorghum propinquum(高粱);zea mays(玉米);oat(燕麦);potato (马铃薯);arabidopsis thaliana(拟南芥);cyrtosia septentrionalis(血红肉果兰)→点击get select sequence按钮显示序列为纯文本格式文件→分别命名为各自的文件名保存在本地电脑上备用。 2、在数字基因网https://www.360docs.net/doc/4a3507523.html,/找到dnaman及clustalx软件安装并进

生物信息学在基因组学中的应用_沈春修

作者简介沈春修(1979-),男,湖南溆浦人,硕士,助教,从事水稻遗传 育种与抗病分子机制方面的研究。 收稿日期 2007!04!01 基因的研究是指在许多基因同时存在的基础上对多个基因同时进行研究,分析各自与它们之间的结构与功能的相互关系。因而它至少涉及3个相关领域:结构基因组———主要关心DNA碱基序列水平上的基因结构;比较基因组———寻找种内、种属间产生基因结构差异的分子基础,以期获取与目的性状相关的基因;功能基因组———着重研究基因与其表达产物及功能活性的调控关系。结构基因组是其他领域的基础,比较基因组为功能基因组研究提供等位基因,蛋白质组则是在蛋白质水平上分析基因表达的功能基因组研究的派生分枝。生物信息学是在前面三者研究的基础上,获取、整理、综合分析提取大量已有复杂生物数据的新学科,对相关学科的研究有很大的推动作用。 1生物信息学在结构基因组中的应用 随着化学分析方法的改进,DNA测序水平的提高,科 研成本的降低,已开始对多种模式生物进行基因组全序列的测序。如拟南芥和水稻的全基因组测序,将来会有越来越多的重要作物基因组被全测序。因而,今后的工作重点将是基因组中信息的分析与鉴定,对植物抗性基因来说,是分析鉴定其组织结构及其相关调控序列的鉴定。结构基因组的研究对抗性基因的研究有许多指导意义。 在现在已知的许多种已克隆的抗性基因(不含Hm1和 Hm2)中,分析其序列结构,都含有或部分含有核苷酸结合 位点(NBS),富含亮氨酸重复(LRR),跨膜结构域(TM)以及丝氨酸-苏氨酸激酶(STK)保守序列。根据已知抗性基因都含有NBS序列的特征,从测序结果中可预测某一生物中含有与抗性基因有关的基因数目有多少[1]。在拟南芥与水稻测序的过程中,发现许多与抗性有关的NBS序列。在已测序的拟南芥67Mb中(相当于大于50%的拟南芥基因组序列),有120个可预见的基因产物与植物抗性基因的NBS结构相似[2]。假设剩余的另外50%未知基因也按这样的比例分布,那么拟南芥中将有200个左右的基因与抗性有关。在这些与抗性有关的200个基因中,它们要么是编码信号传导的组分,要么是编码抗微生物的蛋白,这些基因序列的总长度大约占拟南芥总基因数的1%。而在水稻中,通过对重叠的BAC克隆末端序列分析(占全部水稻基因的5%)来看,大约有750 ̄1500个基因具有编码NBS的能力[3-5]。 从已知抗性基因的定位结果来看,NBS序列在拟南芥基因组中倾向于成簇排列。测序结果也表明,植物中的抗性基因一般与抗性基因的多种同源共生序列在一起,共同组成 高度重复区域,这种区域统称为基因簇。Rpp5基因簇包含 8 ̄10个同源序列,散布在90kb的区域上,并且被蛋白激酶 的假基因与反向转座子等隔开。Cf!4/9基因簇由5个抗性基因同源序列组成,散布在36kb的区域内,Cf!4/9的同源序列被Lox基因隔开,成为高度重复区域。Pto基因簇包含5个同源序列,分布在60kb的区域内,这其中的Prf基因编码NBS!LRR,对Pto基因的功能是必需的。Dm3基因是目前已知的最大的抗性基因,至少由24个抗性基因同源序列组成,横跨3.5Mb。因而,随着更多模式植物的全基因组测序的完成,人们可以从基因组测序信息中直接读出有用数据,分析寻找抗性基因的组织结构特征与分布规律。 2生物信息学在比较基因组学中的应用 随着多种生物的全基因组测序完成,有越来越多的数 据可以直接利用。首先,通过比较多种属植物抗性基因的定位特点,发现抗性基因大多定位在较不稳定的区域,其区域的结构不很保守,如拟南芥的抗性基因RPM1的同源序列在感病表型的植株上丢失[6]。进一步研究发现,抗性基因的位置要么是端粒区域,要么是接近着丝粒区域。例如,通过原位荧光杂交分析得知:莴苣的两抗性基因分别定位在端粒区域与接近着丝粒区域,高粱Rpg1基因位于端粒区域,番茄的Mi基因位于异染色质的着丝粒边缘[7]。第2,通过测序分析,可以确定基因成簇的模式与范围,通过比较种属间亲缘关系,来预测某一功能相似的基因在其他物种中的位置。进而根据已克隆的抗性基因间的相似性,可以采用适当的引物进行PCR扩增获得抗性基因的候选序列,而且这些候选序列的片段均可定位到已知的抗性基因的位置上[8]。从现在公开的数据中,比较多种NBS基因的相似性,用PCR获得了130个候选抗性基因,此数据将继续增长。第3,比较基因组的另一作用在于可以区分同源区域与同源共生区域。这对本身就位于同源共生区域的抗性基因家族可能困难,但是抗性基因相关序列的种间比较结果显示:同源区域比同源共生区域更加相似。这提示:物种为了赶上病原菌的变化步伐而采取快速进化来抵抗随时间而变化的病原群体。通过分析拟南芥的RPm1基因侧翼序列也得到这样的结论。第4,比较基因组学也可对某特定等位基因的变化的分子基础进行研究[9]。至今,只有极少数通过同源重组,实现蛋白质结构域的域置换试验成功。这些结果显示NBS!LRR编码基因的LRR区域是非常重要的,但它不是专一性的唯一决定簇。随着测序效率的提高,将建立抗性基因相关序列的数据库,这些序列信息可作为基因步行试验的模板,为克隆新的抗性基因提供极大的帮助。第5,比较基因组作图表明,染色体上的DNA标记排列具有共线性[10]。如小麦的基 生物信息学在基因组学中的应用 沈春修 (宜春学院,江西宜春336000) 摘要随着计算机科学、物理学、数学等与生命科学的相互渗透和交叉,生物信息学愈来愈显示出其重要性,尤其是在抗病基因的研究中。笔者从结构基因组、比较基因组、功能基因组与生物信息学等方面论述了生物信息学在基因组学中的应用。关键词抗性基因;结构基因组;比较基因组;功能基因组;生物信息学 中图分类号Q78文献标识码A文章编号0517-6611(2007)20-06054-02 安徽农业科学,JournalofAnhuiAgri.Sci.2007,35(20):6054-6055,6057责任编辑王淼责任校对王淼

普通遗传学 教学大纲

1、课程概况 课程学时:讲课56 课程学分:3.5 课程分类:必修 适用专业:植物生产类各专业 课程负责人:刘庆昌 2、课程内容与结构 遗传学是研究生物遗传和变异的一门科学,是生物科学中一门体系十分完整、发展十分迅速的理论科学,同时又是一门紧密联系生产实际的基础科学。《普通遗传学》是植物生产类各专业的骨干基础课程,在这些专业的本科生教学计划中占有极为重要的地位。 本课程全面系统地介绍遗传物质的结构与功能、遗传物质的传递、遗传物质的表达与调控、遗传物质的进化等,包括遗传的细胞学基础、遗传物质的分子基础、孟德尔遗传、连锁遗传和性连锁、基因突变、染色体结构变异、染色体数目变异、数量性状的遗传、近亲繁殖和杂种优势、细菌和病毒的遗传、细胞质遗传、基因工程、基因组学、基因表达的调控、遗传与发育、群体遗传与进化等16章。通过本课程学习,使学生全面掌握遗传学的基本概念、基本原理、基本分析方法,了解遗传学的最新发展,学会应用遗传学基本原理分析一般遗传问题,为进一步学习育种学及其他有关课程奠定理论基础。 3、教学大纲 绪言(2学时) 1、遗传学研究的对象,遗传、变异、选择 2、遗传学的发展, 遗传学的发展阶段,主要遗传学家的主要贡献 3、遗传学的重要作用 第一章遗传的细胞学基础(3学时) 1、细胞的结构和功能:原核细胞、真核细胞、染色质、染色体 2、染色体的形态、结构和数目:染色体的形态特征、大小、类别,染色质的基本结构、染色体的结构模型,染色体的数目,核型分析 3、细胞的分裂:细胞周期、有丝分裂过程及遗传学意义、细胞的减数分裂:减数分裂过程及遗传学意义 4、配子的形成和受精:生殖方式、雌雄配子的形成、受精、直感现象、无融合生殖 5、生活周期:生活周期、世代交替、低等植物的生活周期、高等植物的生活周期、高等动物的生活周期 第二章遗传物质的分子基础(4学时)

人类基因组计划和生物信息学

人类基因组计划和生物信息学 徐新来 安道昌 王 芷3 李 青 付红波 (中国生物工程中心 北京100081)(3中国科技信息研究所 北京100038) 提要:介绍人类基因组计划和生物信息学,阐述了两者的关系,提出了在人类基因组计划中发展生物信息学的策略。 一、引 言 人类基因组计划(H um an Genom e P ro 2ject ,H GP )是美国在1990年提出实施的一项大科学计划,在世界各国引起了很大反响。计划的提出旨在对人类基因组3×109 个脱氧核苷酸对进行作图和测序,进而解读和破译生老病死以及语言、记忆和疾病发生的遗传信息。而生物信息学是集生物学、数学、信息学、计算机科学一体化的一门新的学科。早在H GP 提出时就预示到生物信息学的重要性,当时就成立了有42位著名专家组成的生物信息学任务组。随着人类基因组计划的进展,基因组的数据和信息大量,迅速地增加,信息的收集、储存、分发、分析的管理越来越显得紧迫和重要。利用数学模式和计算机处理数据的功能来处理和分析大量增加的人类基因组信息的结果,使人类基因组计划和生物信息学紧紧地结合起来了,而且随着两者的紧密结合和互相渗透,人类基因组计划的前进步伐会大大加快,从而提前完成计划,为人类造福。 二、从人类基因组计划看 生物信息学 美国在1990年率先提出H GP ,计划用15年时间,投入30亿美元,完成人类全部24条染色体的3×109脱氧核苷酸对(bp )的序列测定,主要任务包括作图(遗传图谱、物理图谱的建立)、测序和基因识别。其中还包括模式生物(如大肠杆菌、酵母、线虫、小鼠等)基因组的作图和测序,以及信息系统的建立。 遗传图谱、物理图谱的建立是测序的必要条件;遗传图谱是根据遗传连锁标志之间的重组频率来确定它们的距离,遗传图谱的建立为基因识别和完成基因定位创造了条件。物理图谱是以核苷酸的长度为单位绘制而成,详细描述染色体上界标间的距离,主要是编码蛋白质的外显子和排序DNA 克隆库组成,这些DNA 分子克隆库相互交错、重叠。人类基因组全部DNA 序列的测定是H GP 的核心部分;随着遗 传和物理图谱的完成和即将完成,测序就成为今后重中之重的工作。而大规模测序技术的改进及分析大片段DNA 序列的生物信息技术的进步,对完成人类基因组全部核苷酸顺序测定起着决定性作用。测序的完成依赖物理图谱上的排序的DNA 片段分子克隆,这些分子图谱通常是在较短的时间由一个研究组从单一分离群体中获得的,为了充分利用所有资料信息,要对其全部标记的同时进行分析,这种分析涉及十分庞杂和巨大的计算,手工无法完成。基因识别是H GP 的重要内容之一;目的是要识别全部人类的基因,即基因组在生命活动中发生转录表达的DNA 片段,并对其结构进行研究。目前常采用的有二种方法:一是从基因组顺序中识别那些转录表达的DNA 片段;二是从c D 2 NA 文库中挑取并克隆。两种方法都必须依靠生物信息学的帮助即信息系统的建立;前者需要对基因组进行分析,后者要对基因文库进行分析,甚至还要进行分类分型,建立二级库,才能有效地挑取到所需要的DNA 分子克隆。模式生物基因组在H GP 中占有重要的位置;模 — 06—高技术通讯 1998181

生物信息学课程教学大纲

《生物信息学》课程教学大纲 适用对象:生物工程、生物技术等专业学生 (学分:2学分学时:36) 一、课程的性质和任务 生物学与信息科学是当今世界上发展最迅速、影响最大的两门科学。而这两门科学的交叉融合形成了广义的生物信息学,正以崭新的理念吸引着科学家的注意。生物信息学(Bioinformatics)是生命科学领域中的新兴学科,面对人类基因组计划所产生的庞大的分子生物学信息,生物信息学的重要性将越来越突出,它无疑将会为生命科学的研究带来革命性的变革。它是综合利用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法的崭新交叉学科。 本课程主要讲授生物信息学的基本概念和研究内容、方法及其应用等的基本知识,学习从Internet如何获取、处理、存储、分配和解释基因组信息,并应用计算机软件进行蛋白空间结构模拟和预测,以便发掘和造就学生跨学科学习的本领。生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。 生物信息学是生物工程和生物技术专业的选修课程,适宜于已有生物化学和分子生物学基础的学生。本课程以多媒体教学为主,课堂辅助答疑为辅;结合网上资源和课程软件,基本上实现学生不限时段的网上学习、在线交流等功能。 二、教学内容和要求 绪论 目的:了解本课程的研究对象、内容和方法以及国内研究的领军人物。 内容:本课程的研究对象和内容;学科发展史;主要研究方法;国内研究的领军人物。要求:1 了解本课程研究对象、内容和学科发展史;2 理解本课程的主要研究方法; 3 对国内的一些研究团体和领军任务有所了解。 第一章生物信息学的基础知识 目的:掌握生物信息学所需的生物学、计算机科学和网络知识。 内容:生物学知识包括:细胞的分类和亚结构、中心法则、基因和基因组、蛋白质的结构层次(从一级结构到无级结构)、蛋白质组学、核酸的结构和功能、密码子的特征;计算机知识主要包括数据库的基本知识、网络的域名、Ftp服务以及生物信息学常见的一些ftp服务。 要求:1 了解细胞的分类和亚结构、中心法则、基因和基因组、蛋白质的结构层次(从一级结构到五级结构)、蛋白质组学、核酸的结构和功能、密码子的特征等生物学基础知识;2 理解这些生物学知识在生物信息学中的重要性;3 理解数据库的基本知识、网络的域名、Ftp服务以及生物信息学常见的一些ftp服务;4 熟练掌握利用数据库资源进行数据检索和查询。

生物信息学主要内容和发展前景

生物信息学主要内容和发展前景 学生:xxx (x学院xxxx班,学号xxxxxxxxxxx) 摘要:21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 关键字:生物信息学;产生;研究内容;展现状;前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展,被誉为“解读生命天书的慧眼”。 一、生物信息学的产生 21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,与此同时,诸如大肠杆菌、结核杆菌、啤酒酵母、线虫、果蝇、小鼠、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。在计算机科学领域,按照摩尔定律飞速前进的计算机硬件,以及逐步受到各国政府重视的信息高速公路计划的实施,为生物信息资源的研究和应用带来了福音。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 二、生物信息学研究内容 (一)序列比对 比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BALST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。有时两个序列总体并不很相似,但某些局部片断相似性很高。Smith-Waterman算法是解决局部比对的好算法,缺点是速度较慢。两个以上序

生物信息学常用工具

常用DNA和蛋白质序列数据分析工具: ●序列比对工具: a)BLAST: ●网络比对,包括基础的Blast比对、参数、特殊Blast如PSI-Blast、Blast2 等; ●本地比对,包括程序下载、安装、数据库的下载及格式化、Blast程序的 运行等。 b)多序列比对ClustalX(Windows系统) 包括程序下载、安装、及程序的运行、结果的输入输出等。 ●真核生物基因结构的预测: a)基因可读框的识别: Genescan; CpG岛、转录终止信号和启动子区域预测; CpGPlot; POLYAH; PromoterScan; b)基因密码子偏好性: CodonW; c)采用mRNA序列预测基因: Spidey; d)ASTD数据库 ●分子进化遗传分析工具 ●MEGA;

●Phylip; ●蛋白质结构和功能预测 a)一级结构 ProtParam蛋白质序列理化参数检索; ProtScale蛋白质疏水性分析; COILS卷曲螺旋预测; b)二级结构 PredictProtein蛋白质结构预测; PSIPRED不同蛋白质结构预测方法; c)InterProScan: 模式和序列谱研究 Prosite:蛋白质结构域、家族和功能为点数据库; Pfam:蛋白质家族比对和HMM数据库; BLOCK:模块搜索数据库; SMART:简单模块架构搜索工具; TMHMM:跨膜结构预测工具; d)三级结构 Swiss-Model Workspace: 同源建模的网络综合服务器; Phyre:线串法预测蛋白质折叠; HMMSTR/Rosetta:从头预测蛋白质结构; Swiss-PdbViewer:分子建模和可视化工具; 序列模体的识别和解析; MEME程序包; ●蛋白质谱数据分析

分子生物学教学大纲(八年制)

分子生物学教学大纲(八年制)

医学分子生物学》教学大纲(临床医学八年制) 课程编号:38030011 课程名称:医学分子生物学 学分:3 总学时:56学时 理论学时:40 实验学时:16 先修课程要求:细胞生物学和生物化学 适应专业:临床医学八年制 参考教材: 1. 胡维新主编《医学分子生物学》.北京:科学出版社. 2007 2.冯作化主编.《医学分子生物学》.北京: 人民卫生出版社. 2005 3.(美)本杰明·卢因编著.《基因VIII》. 北京:科学出版社. 2004 4. Robert F. Weaver编著. 《Molecular Biology》(第二版). 北京:科学出版社. 2002 5. Sambrook and Ruussell编著. 《Molecular Cloning》(第三版). 西安:世界图书出版公 司. 2002 6. 胡维新主编.《医学分子生物学》长沙:中南 大学出版社. 2001 7.Timothy M. Cox & John Sinclair编著.

《Medicine Molecular Biology》. 北京:科学出版社. 2000 8.冯作化主编.《医学分子生物学》.北京: 人民卫生出版社. 2001 9.陈丙莺,陈子兴,主编. 《分子生物学基础与临床》. 南京:东南大学出版社. 2000 10. 张迺蘅主编. 《医学分子生物学》. 北京:北京医科大学出版社,1999 一、课程在培养方案中的地位、目的和任务 本课程是口腔医学七年制、临床医学八年制必修基础课,分子生物学是一门从分子水平研究生命现象、生命本质及其规律的科学,近年来已在医药卫生及其它领域有着突飞猛进的发展,已成为医学生教学不可缺少的一部分。本课程的教学目的和任务,是使学生掌握分子生物学的基本理论、基本知识与基本技能,同时熟悉分子生物学在医学领域的应用。了解分子生物学的主要新进展和新技术。 二、课程的基本要求

生物信息学名词解释

一、名词解释: 1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。 2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。 序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。 序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。P98 8.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。P29 10.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。P37值:衡量序列之间相似性是否显着的期望值。E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义。P95 12.低复杂度区域:BLAST搜索的过滤选项。指序列中包含的重复度高的区域,如poly(A)。 13.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。 14.多序列比对:通过序列的相似性检索得到许多相似性序列,将这些序列做一个总体的比对,以观察它们在结构上的异同,来回答大量的生物学问题。 15.分子钟:认为分子进化速率是恒定的或者几乎恒定的假说,从而可以通过分子进化推断出物种起源的时间。 16.系统发育分析:通过一组相关的基因或者蛋白质的多序列比对或其他性状,可以研究推断不同物种或基因之间的进化关系。 17.进化树的二歧分叉结构:指在进化树上任何一个分支节点,一个父分支都只能被分成两个子分支。 系统发育图:用枝长表示进化时间的系统树称为系统发育图,是引入时间概念的支序图。 18.直系同源:指由于物种形成事件来自一个共同祖先的不同物种中的同源序列,具有相似或不同的功能。(书:在缺乏任何基因复制证据的情况下,具有共同祖先和相同功能的同源基因。) 19.旁系(并系)同源:指同一个物种中具有共同祖先,通过基因重复产生的一组基因,这些基因在功能上可能发生了改变。(书:由于基因重复事件产生的相似序列。) 20.外类群:是进化树中处于一组被分析物种之外的,具有相近亲缘关系的物种。 21.有根树:能够确定所有分析物种的共同祖先的进化树。 22.除权配对算法(UPGMA):最初,每个序列归为一类,然后找到距离最近的两类将其归为一类,定义为一个节点,重复这个过程,直到所有的聚类被加入,最终产生树根。

常用生物信息学软件

常用生物信息学软件 一、基因芯片 1、基因芯片综合分析软件。 ArrayVision 7.0 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。 Arraypro 4.0 Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。 phoretix? Array Nonlinear Dynamics公司的基因片综合分析软件。 J-express 挪威Bergen大学编写,是一个用JA V A语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JA V A运行环境JRE1.2后(5.1M)后,才能运行。 2、基因芯片阅读图像分析软件 ScanAlyze 2.44 ,斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。 3、基因芯片数据分析软件 Cluster 斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显著性分析软件,EXCEL软件的插件,由Stanford大学编制。 4.基因芯片聚类图形显示 TreeView 1.5 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。 FreeView 是基于JA V A语言的系统树生成软件,接收Cluster生成的数据,比Treeview 增强了某些功能。 5.基因芯片引物设计 Array Designer 2.00 DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具 三、序列综合分析 V ector NTI Suite 8.0 不喜欢装备各种专业性强的软件,而希望用一个综合性的软件代替的同志可以选择本软件。本阶段的大部分功能它都有。该软件具体特有良好的数据库管理(增加、修改、查找),对要操作的数据放在一个界面相同的数据库中统一管理。软件中的大部分分析可以通过在数据库中进行选定(数据)->分析->结果(显示、保存和入库)三步完成。在分析主界面,软件可以对核酸蛋白分子进行限制酶分析、结构域查找等多种分析和操作,生成重组分子策略和实验方法,进行限制酶片段的虚拟电泳,新建输入各种格式的分子数据、

相关文档
最新文档