哈工大一阶倒立摆

哈工大一阶倒立摆
哈工大一阶倒立摆

哈尔滨工业大学

控制科学与工程系

控制系统设计课程设计报告

姓名:院(系):

专业:自动化班号:

任务起至日期: 2014 年9 月9 日至 2014 年9 月20 日

课程设计题目:直线一级倒立摆控制器设计

已知技术参数和设计要求:

本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。

系统内部各相关参数为:

M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。

设计要求:

1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。

2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为:

(1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。

3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:

(1)摆杆角度错误!未找到引用源。和小车位移x的稳定时间小于3秒

(2)x的上升时间小于1秒

(3)错误!未找到引用源。的超调量小于20度(0.35弧度)

(4)稳态误差小于2%。

工作量:

1.建立直线一级倒立摆的线性化数学模型;

2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试;

3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。

哈尔滨工业大学 (1)

控制系统设计课程设计报告 (1)

一.实验设备简介 (3)

二.直线一阶倒立摆数学模型的推导 (6)

2.1概述 (6)

2.2数学模型的建立 (7)

2.3一阶倒立摆的状态空间模型: (9)

2.4实际参数代入: (10)

三.定量、定性分析系统的性能 (11)

3.1 对系统的稳定性进行分析 (11)

3.2 对系统的稳定性进行分析: (12)

四. 实际系统的传递函数与状态方程 (13)

五. 系统阶跃响应分析 (14)

六.一阶倒立摆PID控制器设计 (15)

6.1 PID控制分析 (15)

6.2 PID控制参数设定及MATLAB仿真 (17)

6.3 PID控制实验 (18)

七.状态空间极点配置控制器设计 (19)

7.1 状态空间分析 (20)

7.2 极点配置及MA TLAB仿真 (21)

7.3 利用爱克曼公式计算 (21)

八.课程设计心得与体会 (22)

一.实验设备简介

倒立摆控制系统:Inverted Pendulum System (IPS)

倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面

的研究。

一阶倒立摆系统的结构示意图如下所示: 摆杆

滑轨 电机

小车

图1-1 一阶倒立摆结构示意图

系统组成框图如下所示:

图1-2 一级倒立摆系统组成框图

系统是由计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分组成的闭环系统。光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,白干的角度、角速度信号由光电码盘2反馈给运动控制卡。计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动吗,保持摆杆平衡。

二.直线一阶倒立摆数学模型的推导

2.1概述

倒立摆系统其本身是自不稳定系统,实验建模存在一些问题和困难,在忽略掉一些次要的因素后,倒立摆系统是一个典型的运动的刚体系统,可以再惯性坐标系中运用经典力学对它进行分析,来建立系统动力学方程。

在忽略掉了空气阻力和各种摩擦力之后,可以讲一阶倒立摆系统抽象成小车和均匀杆组成的系统,一阶倒立摆系统的结构示意图如下:

计算机

运动控制卡 伺服驱动器

伺服电机

倒立摆

光电码盘1

光电码盘2

图2 一阶倒立摆系统的结构示意图

定义的参数为:

M小车质量

m摆杆质量

b小车摩擦系数

I摆杆惯量

F加在小车上的力

x小车位置

φ摆杆与垂直向上方向的夹角

l摆杆转动轴心到杆质心的长度

θ摆杆与垂直向下方向的夹角(摆杆初始位置为竖直向下)

得到小车和摆杆的受力图:

图3 小车和摆杆的受力图

2.2数学模型的建立

运用牛顿定理分析受力得到下列方程:(2-1)

由摆杆水平方向的受力进行分析可以得到下面等式:

(2-2)

求导得到:

(2-3)

代入第一个方程得到:

(2-4)在摆杆垂直方向上的合力进行分析得到方程:

(2-5)即:

(2-6)力矩平衡方程:

(2-7)

又因为θ为摆杆与垂直向下方向的夹角(摆杆初始位置为竖直向下),φ为

摆杆与垂直向上方向的夹角,由θ和φ关系

合并这两个方程,约去P 和N,得到第二个运动方程:

(2-8)微分方程的建立:

因为,假设φ<<1弧度,则可以进行近似处理:错误!未找

到引用源。来实现线性化。

用上述近似进行线性化得直线一阶倒立摆的微分方程为:

一阶倒立摆的传递函数模型:

对上式进行拉普拉斯变换,得:

(2-9)

推导传递函数时假设初始条件为 0。

由于输出为角度φ,求解方程组的第一个方程,可得:

如果令错误!未找到引用源。,则有:

把上式代入方程组(2-1)的第二个方程,得:

()()()222222()()()()I ml I ml g g M m s s b s s ml s s U s ml s ml s ????

++?

???+-Φ+-Φ-Φ=????????

整理后得到传递函数:

()()2

12432()()()

ml s s q G s U s b I ml M m mgl bmgl s s s s

q

q

q

Φ=

=+++

-

-

其中

2.3一阶倒立摆的状态空间模型:

设系统状态空间方程为:

方程组(2-9)对错误!未找到引用源。解代数方程,得到解如下:

(2-10)

(2-14)

(2-11)

(2-12)

(2-13)

(2-15)

(2-16)

整理后得到系统状态空间方程:

2.4实际参数代入:

GIP-100-L型一阶倒立摆系统,系统内部各相关参数为:M小车质量0.5 Kg ;

m摆杆质量0.2 Kg ;

b小车摩擦系数0.1 N/m/sec ;

l摆杆转动轴心到杆质心的长度0.3 m ;

I摆杆惯量0.006 kg*m*m ;

T采样时间0.005秒。

将上述参数代入得实际模型:

摆杆角度和小车位移的传递函数:

摆杆角度和小车所受外界作用力的传递函数:

以外界作用力作为输入的系统状态方程:(2-17)(2-18)

(2-19)

(2-21)

(2-20)

(2-22)三.定量、定性分析系统的性能

3.1 对系统的稳定性进行分析

在MATLAB中运行以下程序:

A=[ 0 1 0 0; 0 -0.181818 2.672727 0; 0 0 0 1; 0 -0.454545 31.181818 0];

B=[ 0 1.818182 0 4.545455]';

C=[ 1 0 0 0; 0 0 1 0];

D=[ 0 0 ]';

[z,p,k]=ss2zp(A,B,C,D)

z =

-4.9497 0.0000 + 0.0000i

4.9497 0.0000 - 0.0000i

p =

-5.6041

-0.1428

5.5651

k =

1.8182

4.5455

>> impulse(A,B,C,D)

1

23

4x 10

27

T o : O u t (1)

024681012

12345

x 1028T o : O u t (2)

Impulse Response

Time (sec)

A m p l i t u d e

图4 系统脉冲响应

由图可得,系统在单位脉冲的输入作用下,小车的位移和摆杆的角度都是发散的,同时,由以上程序的零极点得极点有一个大于零,因此系统不稳定。

3.2 对系统的稳定性进行分析:

A=[ 0 1 0 0; 0 -0.181818 2.672727 0; 0 0 0 1; 0 -0.454545 31.181818 0]; B=[ 0 1.818182 0 4.545455]'; C=[ 1 0 0 0; 0 0 1 0]; D=[ 0 0 ]';

>> Qc=ctrb(A,B); >> Qo=obsv(A,C); >> rank(Qc)

ans =

4

>> rank(Qo)

ans =

4

因此系统为完全能观测和完全能控的。

四. 实际系统的传递函数与状态方程

实际系统的模型参数如下:

M 小车质量 0.5 Kg m 摆杆质量 0.2 Kg

b 小车摩擦系数 0 .1N/m/se

c l 摆杆转动轴心到杆质心的长度 0.3m

I 摆杆惯量 0.006 kg*m*m

代入上述参数可得系统的实际模型。 摆杆角度和小车位移的传递函数:

摆杆角度和小车加速度之间的传递函数为:

摆杆角度和小车所受外界作用力的传递函数:

以外界作用力作为输入的系统状态方程:

以小车加速度为输入的系统状态方程:

(4-2)

(4-3)

(4-4)

(4-1)

(4-5)

五. 系统阶跃响应分析

上面已经提到系统的状态方程,先对其进行阶跃响应分析,在Matlab中键入以下命令:

得到以下计算结果:

直线一级倒立摆单位阶跃响应仿真

可以看出,在单位阶跃响应作用下,小车位置和摆杆角度都是发散的。

六.一阶倒立摆PID控制器设计

设计指标要求:

设计PID控制器,使得当在小车上施加0.1N的阶跃信号时,闭环系统的响应指标为:

(1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。

6.1 PID控制分析

在模拟控制系统中,控制器最常用的控制规律是PID控制。常规PID控制系统原理框图如图3-1所示。系统由模拟PID控制器KD(s)和被控对象G(s)组成。

图1-1 常规PID控制系统图

PID控制器是一种线性控制器,它是根据给定值r(t)与实际输出值y(t)构成控制偏差e(t)

将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对被控对象进行控制,故称PID控制器。其控制规律为

或写成传递函数的形式

式中:——比例系数;——积分时间常数;——微分时间常

数。

在控制系统设计和仿真中,也将传递传递函数写成

式中:——比例系数;——积分系数;——微分系数。

简单说来,PID控制器各校正环节的作用如下:

(1) 比例环节:成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减少偏差。

(2) 积分环节:主要用于消除稳态误差,提高系统的型别。积分作用的强

弱取决于积分时间常数,越大,积分作用越弱,反之则越强。

(3) 微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

这个控制问题和我们之前遇到的标准控制问题有些不同,在这里输出量为摆杆的位置,它的初始位置为垂直向上,我们给系统施加一个扰动,观察摆杆的响应。系统框图如图所示:

直线一级倒立摆闭环系统图

图中KD(s)是控制器传递函数,G(s)是被控对象传递函数。

考虑到输入r(s)=0,结构图可以很容易地变换成

直线一级倒立摆闭环系统简化图

该系统的输出为

其中: num——被控对象传递函数的分子项

den——被控对象传递函数的分母项

numPID——PID控制器传递函数的分子项

denPID——PID控制器传递函数的分母项

通过分析上式就可以得到系统的各项性能。

由(2-13)可以得到摆杆角度和小车加速度的传递函数:

PID控制器的传递函数为:

只需调节PID控制器的参数,就可以得到满意的控制效果。

前面的讨论只考虑了摆杆角度,那么,在控制的过程中,小车位置如何变化呢?

小车的位置输出为:

通过对控制量v双重积分即可以得到小车位置。

6.2 PID控制参数设定及MATLAB仿真

实际系统的物理模型:

在Simulink中建立如图所示的直线一级倒立摆模型:

直线一阶倒立摆PID 控制MATLAB 仿真模型

6.3 PID 控制实验

1

23

4x 10

27

T o : O u t (1)

024681012

12345

x 1028T o : O u t (2)

Impulse Response

Time (sec)

A m p l i t u d e

系统脉冲响应

由图可得,系统在单位脉冲的输入作用下,小车的位移和摆杆的角度都是发散的,同时,由以上程序的零极点得极点有一个大于零,因此系统不稳定。

当给予一定的干扰时,小车位置和角度的变化曲线如下图所示:

图3-2 施加干扰时的PID实验结果

由上图可以看出,系统可以较好的抵换外界干扰,在干扰停止后,系统能够很快的回到平衡位置。

七.状态空间极点配置控制器设计

经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。

设计目的:

学习状态空间极点配置控制器的设计方法,分析各个极点变化对系统性能的影响,学会根据控制指标要求和实际响应调整极点的位置和控制器的参数。

设计要求:

设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:

(1)摆杆角度θ和小车位移x的稳定时间小于3秒

(2)x的上升时间小于1秒

(3)θ的超调量小于20度(0.35弧度)

(4)稳态误差小于2%。

设计报告要求:

(1)给出系统摆杆角度和小车位置的仿真控制图形及控制器参数,并对极点的位置和各个参数对系统控制效果的影响进行分析;

(2)给出实际控制曲线和控制器参数,并对响应的动态和静态指标进行分析。

7.1 状态空间分析

状态反馈闭环控制系统原理图如图3-1所示。

图3-1 状态反馈闭环控制原理图

状态方程为:

X AX Bu =+

式中:X 为状态向量(n 维),u 为控制向量(纯量),A 为n n ?维常数矩阵,B 为1n ?维常数矩阵。

选择控制信号:

u KX =-

求解上式,得到

()()()x t A BK x t =-

方程解为:

()(

)()0A BK t

x t e x -=

可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当

t 趋于无穷时,都可以使()x t 趋于0。

极点配置的设计步骤:

(1) 检验系统的可控性条件。 (2) 从矩阵A 的特征多项式

111n n n n sI A s a s a s a ---=++

++

来确定12,,n a a a 的值。

(3) 确定使状态方程变为可控标准型的变换矩阵T :

T M W =

其中M 为可控性矩阵,

1n M B AB

A B -??=??

1

2

12

3111

001001

00n n n n a a a a a W a ----??????

?

?=???????

?

(4) 利用所期望的特征值,写出期望的多项式

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

一阶倒立摆系统的双闭环模糊控制方案范文,毕业设计

系统仿真课程设计报告 题目:一阶倒立摆系统的双闭环模糊控制方案专业、班级: 学生姓名: 学号: 指导教师: 分数: 2012 年 6 月9 日

目录 摘要: (2) 一、引言 (2) 二、设计目的 (3) 三、设计要求 (3) 四、设计原理 (3) 五、设计步骤 (3) 1、单级倒立摆系统的构成........................ 错误!未定义书签。 2、单级倒立摆的数学模型 (4) 3、模糊控制器的设计 (6) 3.1单阶倒立摆模糊控制的基本思路 (6) 3.2隶属函数的定义 (6) 3.3模糊控制器规则 (7) 3.4解模糊 (8) 4、仿真实验 (8) 4.1MATLAB模糊逻辑工具箱 (8) 4.2系统数字仿真模型的建立 (11) 5、基于MATLAB的数字仿真结果 (12) 六、结论 (13) 七、感想和建议 (13) 八、致谢 (14) 九、参考文献 (15)

摘要:通过对单阶倒立摆的双闭环的控制数学模型的分析,采用模糊控制理论对倒立摆的控制系统进行计算机仿真。其中,内环控制倒立摆的角度,外环控制倒立摆的位置。在Matlab环境下的仿真步骤包括:定义隶属函数及模糊控制规则集,解模糊。结果表明,摆杆角度和小车位置的控制过程均具有良好的动态性能和稳定性能。 关键词:倒立摆;模糊逻辑控制;计算机仿真;MATLAB Abstract:based on the ChanJie inverted pendulum double closed loop control mathematical model analysis, the fuzzy control theory of the inverted pendulum control system by computer simulation. Among them, the inner loop control the point of view of the inverted pendulum, outside loop control the position of the inverted pendulum. In the Matlab environment simulation steps include: definition membership function and fuzzy control rule sets, solution is fuzzy. The results show that, swinging rod Angle and the car position control process are good dynamic performance and stable performance. Keywords: inverted pendulum; Fuzzy logic control; The computer simulation; Matlab 一、引言 在人类自然科学的发展历史上,人们总是以追求事物的精确描述为目的来进行研究,并取得了大量的成果。随着科学技术的进步,在社会生产和生活中存在的大量的不确定性开始引起人们的注意。有关模糊不确定性的研究直到1965年,美国的L.A.Zadeh教授首次提出模糊集合的概念之后得到广泛开展。 “模糊”是与“精确”相对而言的概念,模糊性普遍存在于人类的思维和语言交流中,是一种不确定性的表现。随机性则是客观存在的另一类不确定性,两者虽然都是不确定性,单存在本质上的区别。模糊性主要是人对概念外延的主观理解上的不确定性,而随机性则主要反映客观上的自然的不确定性,即对事件或行为的发生与否的不确定性。 一阶直线倒立摆系统是一个典型的“快速、多变量、非线性、自不稳定系统”,将模糊控制方法应用于一阶倒立摆系统的控制问题,能够发挥模糊控制在非线性系统控制、复杂对象系统控制方面的优势,简化设计,提高控制系统的鲁棒性。

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析 一、倒立摆系统的模型建立 如图1-1所示为一级倒立摆的物理模型 图1-1 一级倒立摆物理模型 对于上图的物理模型我们做以下假设: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆惯量 F:加在小车上的力 x:小车位置 ?:摆杆与垂直向上方向的夹角 θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。其中,N和P为小车与摆

杆相互作用力的水平和垂直方向的分量。注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图1-2 小车及摆杆受力分析 分析小车水平方向受力,可以得到以下方程: M x?=F-bx?-N (1-1) 由摆杆水平方向的受力进行分析可以得到以下方程: N =m d 2dt (x +l sin θ) (1-2) 即: N =mx?+mlθcos θ?mlθ2sin θ (1-3) 将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )x?+bx?+mlθcos θ?mlθ2sin θ=F (1-4) 为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P ?mg =m d 2dt 2 (l cos θ) (1-5) P ?mg =? mlθsin θ?mlθ2cos θ (1-6) 利用力矩平衡方程可以有:

?Pl sinθ?Nl cosθ=Iθ (1-7) 注意:此方程中的力矩方向,由于θ=π+?,cos?=?cosθ,sin?=?sinθ,所以等式前面含有负号。 合并两个方程,约去P和N可以得到第二个运动方程: (I+ml2)θ+mgl sinθ=?mlx?cosθ (1-8) 设θ=π+?,假设?与1(单位是弧度)相比很小,即?<<1,则 可以进行近似处理:cosθ=?1,sinθ=??,(dθ dt ) 2 =0。用u来 代表被控对象的输入力F,线性化后的两个运动方程如下: {(I+ml2)??mgl?=mlx? (M+m)x?+bx??ml?=u (1-9) 假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到: {(I+ml2)Φ(s)s2?mglΦ(s)=mlX(s)s2 (M+m)X(s)s2+bX(s)s?mlΦ(s)s2=U(s) (1-10) 由于输出为角度?,求解方程组的第一个方程,可以得到: X(s)=[(I+ml2) ml ?g s ]Φ(s) (1-11) 或改写为:Φ(s) X(s)=mls2 (I+ml2)s2?mgl (1-12) 如果令v=x?,则有:Φ(s) V(s)=ml (I+ml2)s2?mgl (1-13) 如果将上式代入方程组的第二个方程,可以得到: (M+m)[(I+ml2) ml ?g s ]Φ(s)s2+b[(I+ml2) ml +g s ]Φ(s)s?mlΦ(s)s2= U(s) (1-14) 整理后可得传递函数: Φ(s) U(s)= ml q s2 s4+b(I+ml 2) q s3?(M+m)mgl q s2?bmgl q s (1-15)

一级倒立摆的建模与控制分析

控制工程与仿真课程设计报告 报告题目直线一级倒立摆建模、分析及控制器的设计 组员1专业、班级14自动化1 班姓名朱永远学号1405031009 组员1专业、班级14自动化1 班姓名王宪孺学号1405031011组员1专业、班级14自动化1 班姓名孙金红学号1405031013 报告评分标准 评分项目权重评价内容评价结果项目得分 内容70设计方案较合 理、正确,内容 较完整 70-50分 设计方案基本合 理、正确,内容 基本完整 50-30分 设计方案基本不 合理、正确,内 容不完整 0-30分 语言组织15语言较流顺,标 点符号较正确 10-15分语言基本通顺, 标点符号基本正 确 5-10分 语言不通顺,有 错别字,标点符 号混乱 5分以下 格式15 报告格式较正 确,排版较规范 美观 10-15分 报告格式基本正 确,排版不规范 5-10分 报告格式不正 确,排版混乱 5分以下总分

直线一级倒立摆建模、分析及控制器的设计 一状态空间模型的建立 1.1直线一级倒立摆的数学模型 图1.1 直线一级倒立摆系统 本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 图1.2 系统中小车的受力分析图 图1.3是系统中摆杆的受力分析图。F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。

图1.3 摆杆受力分析图 分析小车水平方向所受的合力,可以得到以下方程: ()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。 ()21- 对摆杆水平方向的受力进行分析可以得到下面等式: ()θsin 22 l x dt d m F N S +=- ()31- 即: αθθθθsin sin cos 2f F ml ml x m N +-+= ()41- 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程: ()θcos 22 l l dt d m F mg P h -=++- ()51- 即 θθθθ αcos sin cos 2 ml ml F mg P g +=++- ()61- 力矩平衡方程如下: 0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71- 代入P 和N ,得到方程: () 0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαx ml ml mgl ml I l F l F g g ()81- 设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。假设φ<<1,则可进行近似处理: φφφφφφφ===?? ? ??==2sin ,12cos ,0,sin ,1cos 2 dt d N x f F x M --= α sin g S F F =α cos g h F F =

一级倒立摆控制方法比较

一级倒立摆控制方法比较 摘要:倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。针对一级倒立摆系统,首先利用牛顿力学的知识建立了数学模型,然后利用Simulink 及其封装功能建立倒立摆的仿真模型,使模型更具灵活性,给仿真带来很大方便。根据状态方程判断系统的能控、能观性。通过LQR控制算法和极点配置设计控制器使系统达到稳定状态,分析两种方法的优缺点,并利用Matlab仿真加以证实。 关键词:倒立摆; LQR ;极点配置 ;Matlab DISCUSSION ON CONTROLOF INVERTED PENDULUM Abstract:the inverted pendulum system is a typical multi-variable, nonlinear, strong coupling and rapid movement of the natural unstable system. According to the level of inverted pendulum system, firstI make use of Newtonian mechanics knowledge to establishthe mathematical model, and use the Simulink and packaging function to establish inverted pendulum simulation model.The model is more flexibility, bringing a lot of convenience for simulation. By the equation of state, controllability and observablityof system can be sure. Designing the LQR control algorithm and pole-place makes the system stable state, analyzes the advantages and disadvantages of two methods confirmed through the simulation of MATLAB. Key words:Inverted pendulum ;LQR ;pole-place ;Matlab 0引言 倒立摆系统作为研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点。研究倒立摆系统具有很强的理论意义,同时也具有深远的实践意义。许多抽象的控制概念如稳定性、能控性和能观性,都可以通过倒立摆系统直观地表现出来。希望对倒立摆的研究能够加深对控制理论的了解,为后面学习奠定坚实的基础。 倒立摆[1]的稳定控制主要可分为线性控制和智能控制两大类,下面分别对其归纳介绍。 1)线性理论控制方法 应用线性控制方法的基本前提是倒立摆处在平衡点附近,偏移很小时,系统可以用

哈工大一阶倒立摆

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系): 专业:自动化班号: 任务起至日期: 2014 年9 月9 日至 2014 年9 月20 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度错误!未找到引用源。和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)错误!未找到引用源。的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。

哈尔滨工业大学 (1) 控制系统设计课程设计报告 (1) 一.实验设备简介 (3) 二.直线一阶倒立摆数学模型的推导 (6) 2.1概述 (6) 2.2数学模型的建立 (7) 2.3一阶倒立摆的状态空间模型: (9) 2.4实际参数代入: (10) 三.定量、定性分析系统的性能 (11) 3.1 对系统的稳定性进行分析 (11) 3.2 对系统的稳定性进行分析: (12) 四. 实际系统的传递函数与状态方程 (13) 五. 系统阶跃响应分析 (14) 六.一阶倒立摆PID控制器设计 (15) 6.1 PID控制分析 (15) 6.2 PID控制参数设定及MATLAB仿真 (17) 6.3 PID控制实验 (18) 七.状态空间极点配置控制器设计 (19) 7.1 状态空间分析 (20) 7.2 极点配置及MA TLAB仿真 (21) 7.3 利用爱克曼公式计算 (21) 八.课程设计心得与体会 (22) 一.实验设备简介 倒立摆控制系统:Inverted Pendulum System (IPS) 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

互换性试卷A

哈工大威海分校 2006/2007 学年秋季学期 互换性与测量技术基础 试题 (A) 一、 判断题(正确打“√”,错误打“×”,每题2分计30 1. 10.6 13.2 17 21.2 26.5 33.5 4 2.5 53 67 85 106是变形系列中的移位系列( ) 2. 机器产品的结构中,有关零件之间的配合,不是基孔制就是基轴制( ) 3. 在基轴制中,国家标准规定的所有28种孔的基本偏差,其数值大小只有JS 、J 、K 、M 、N 与公差等级无关( ) 4. 零件上的一个尺寸,若给出其数值和公差等级,就可以确定该尺寸的极限偏差 ( ) 5. 孔和轴配合的最大间隙为+20m μ,配合公差为25m μ,则可判断该孔和轴的配合属于间隙配合( ) 6. 箱体零件上的一个内孔中心线对其端面的垂直度公差为05.0Φ,则该内孔中心线的直线度公差一定要小于05.0Φ( ) 7. 在形位公差中,平面度,面对面的平行度,面对线的垂直度,端面全跳动的公差带都是两个平行平面之间的区域( ) 8. 在小箱体的位置误差检测中,其两侧面对底面的垂直度误差的测量是采用间接测量法( ) 9. 滚动轴承外圈旋转,内圈固定,且径向负荷与外圈同步旋转,此时内圈与轴径配合应紧些,外圈与壳体孔配合应松些( ) 10. 键与轴槽配合采用基轴制,与毂槽的配合采用基孔制( ) 11. 在评定齿轮精度的偏差项目,为降低成本检验方便,常采用r F ?和w F ?代替p F ?或" i F ?( ) 12. 在尺寸链计算中,封闭环公差是所有组成环增环公差和与所有组成环减环公差和之差( ) 姓名 班级:

二、填空题(每空1分计24分) 1. R40/3系列中,从10到100优先数是 。 2. 公差原则是处理 之间关系的原则,又可分为 两个方面。 3. 图样上标注孔的尺寸为507N Φ,现已知IT7=25m μ,则该孔的最大尺寸为 。 4. 图样上标注孔的尺寸为.04 .001 .080++Φ,加工后的实际尺寸为03.80φ=a D ,其轴线直线度误差为02.0φ=形f ,经计算知该孔的最小实体尺寸为 体内体外作用尺寸为 。 5. 已知0.030.085 0.066607/660/60H t +++Φ=ΦΦ,按配合性质不变改为基轴制配合,则660h φ= ,607T Φ 。 6. 在5 680 h K φ的配合中,已知m X μ17max +=,m Y μ15max -=,轴的下偏差为 m μ13-,则孔的上偏差为 ,下偏差为 。 7. 测量误差可分为 、 和 三类。 8. 矩形花键可选用的定心表面是 。 9. 单个圆锥配合种类有 。 10. 用内径百分表测量内孔尺寸时应使用 和 调整表针的零位。 11. 为便于互换,轴承内圈与轴颈的配合采用 制,而轴承外圈与外壳孔的配合采用 制。 12. 圆柱齿轮主要用于传递 。 13. 圆柱齿轮的齿坯精度包括 和 。 14. 尺寸链的两个基本特征是 和 。

一级倒立摆的建模与控制分析

研究生《现代控制理论及其应用》课程小论文 一级倒立摆的建模与控制分析 学院:机械工程学院 班级:机研131 姓名:尹润丰 学号: 201321202016 2014年6月2日

目录 1. 问题描述及状态空间表达式建立..............................................................- 1 - 1.1问题描述.......................................................................................................................................- 1 - 1.2状态空间表达式的建立...............................................................................................................- 1 - 1.2.1直线一级倒立摆的数学模型 ..........................................................................................- 1 - 1.2.2 直线一级倒立摆系统的状态方程 .................................................................................- 5 - 2.应用MATLAB分析系统性能 .....................................................................- 6 - 2.1直线一级倒立摆闭环系统稳定性分析 ......................................................................................- 6 - 2.2 系统可控性分析.........................................................................................................................- 7 - 2.3 系统可观测性分析.....................................................................................................................- 8 - 3. 应用matlab进行综合设计.........................................................................- 8 - 3.1状态反馈原理...............................................................................................................................- 8 - 3.2全维状态反馈观测器和simulink仿真 .......................................................................................- 9 - 4.应用Matlab进行系统最优控制设计 ........................................................ - 11 - 5.总结 ............................................................................................................. - 13 -

哈工大试题库及答案---典型件结合和传动的精度设计习题

第三章典型件结合和传动的精度设计 目的: 1、了解圆柱结合的公差与配合及其配合精度的选用。 2、了解滚动轴承公差与配合的特点,为选用滚动轴承精度等级,轴承与轴及轴承与外壳孔的配合打下基础; 3、了解单键和花键的公差与配合标准及其应用; 4、了解圆锥结合公差与配合特点,为选择、计算其公差打下基础; 5、了解螺纹互换性的特点及公差标准的应用。 6、了解圆柱齿轮公差标准及其应用。 重点: 圆柱结合的公差与配合及其配合的选用;滚动轴承公差与配合特点;单键的公差带图;花键的公差与配合;直径、锥角公差对基面距的影响;螺纹公差与配合的特点;齿轮传动精度的各项评定指标的目的与作用;齿轮传动的精度设计。 难点: 圆柱结合的公差与配合的特点及其配合的选用;滚动轴承的负荷分析及其与配合选择的关系;圆锥各几何参数公差带;螺纹作用中径的概念;齿轮精度等级及公差项目的选用。 习题 一.判断题(正确的打√,错误的打×) l.单件小批生产的配合零件,可以实行”配作”,虽没有互换性,但仍是允许的。() mm的孔,可以判断该孔为基孔制的基准孔。()2.图样标注φ30 +0.033 3.过渡配合可能具有间隙,也可能具有过盈,因此,过渡配合可能是间隙配合,也可能是过盈配合。() 4.配合公差的数值愈小,则相互配合的孔、轴的公差等级愈高。() 5.孔、轴配合为φ40H9/n9,可以判断是过渡配合。() 6.配合H7/g6比H7/s6要紧。() 7.孔、轴公差带的相对位置反映加工的难易程度。() 8.最小间隙为零的配合与最小过盈等于零的配合,二者实质相同。() 9.基轴制过渡配合的孔,其下偏差必小于零。() 10.从制造角度讲,基孔制的特点就是先加工孔,基轴制的特点就是先加工轴。()11.工作时孔温高于轴温,设计时配合的过盈量应加大。() 12.基本偏差a~h与基准孔构成间隙配合,其中h配合最松。()

一级倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 二、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 三、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图 一阶倒立摆控制系统示意图如图所示: 分析工作原理,可以得出一阶倒立摆系统原理方框图:

一阶倒立摆控制系统动态结构图 下面的工作是根据结构框图,分析和解决各个环节的传递函数! 1.一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置 θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为 得 sin cos ..........(1)y x J F l F l θθθ=- 2 22 2(sin ) (2) (cos ) (3) x y d F m x l d t d F mg m l d t θθ=+=-

哈工大互换性试卷及答案

2005~2006学年第一学期期末《互换性与测量技术》试题 一、填空(20分) 1、国标规定矩形花键配合的定心方式为——————,配合尺寸有————、————、————。 2、现代工业对齿轮传动的使用要求归纳起来有四项,分别为 ——————、——————、——————、——————。 3、基准制分为 ——————和——————。 4、一零件表面切削加工要求轮廓的算术平均偏差Ra 为μm ,在零件图上标注为——————。 5、滚动轴承内圈与轴颈的配合采用基————制,外圈与外壳孔的配合采用基————制。 6、孔在图样上的标注为φ80Js8,已知IT8=45μm ,其基本偏差为————,该孔的最大实体尺寸为————mm ,最小实体尺寸为————mm 。 7、在选择孔、轴配合的基准制时,一般情况下,应优先选用————。 8、齿轮传动准确性的评定指标规有——————、——————、—————。 二、已知下列配合,画出其公差带图,指出其基准制,配合种类,并求出其配合的极限盈、隙。(20分) 1、φ20H8(033.00+)/f7(020.0041.0--) 2、φ40H6(016.00+)/m5(020.0009.0++) 三、判断题(对打“∨”错打“╳”填入括号内)(10分) ( )1、最大极限尺寸一定大于基本尺寸,最小极限尺寸一定小于基本尺寸。 ( )2、公差是指允许尺寸的变动量。 ( )3、一般以靠近零线的那个偏差作为基本偏差。 ( ) 4、在间隙配合中,孔的公差带都处于轴的公差带的下方。 ( )5、位置公差就是位置度公差的简称,故位置度公差可以控制所有的位置误差。 ( )6、表面粗糙度符号的尖端可以从材料的外面或里面指向被注表面。 ( )7、测表面粗糙度时,取样长度过短不能反映表面粗糙度的真实情况,因此越长越好。 ( )8、螺纹的精度分为精密、中等、粗糙三个级别。 ( )9、螺纹的公称直径是指螺纹的大径。 ( )10、切向综合误差ΔFi ′是评定齿轮传动平稳性的误差指标。 四、下列各组配合,已知表中的数值,解算空格中的数值,并填入表中。(10分)

一阶倒立摆控制系统设计

课程设计说明书 课程名称:控制系统课程设计设计题目:一阶倒立摆控制器设计院系:信息与电气工程学院班级: 设计者: 学号: 指导教师: 设计时间:2013年2月25日到2013年3月8号

课程设计(论文)任务书 指导教师签字:系(教研室)主任签字: 2013年3月5日

目录 一、建立一阶倒立摆数学模型 (4) 1. 一阶倒立摆的微分方程模型 (4) 2. 一阶倒立摆的传递函数模型 (6) 3. 一阶倒立摆的状态空间模型 (7) 二、一阶倒立摆matlab仿真 (9) 三、倒立摆系统的PID控制算法设计 (13) 四、倒立摆系统的最优控制算法设计 (23) 五、总结............................................................................................... 错误!未定义书签。 六、参考文献 (29)

一、建立一阶倒立摆数学模型 首先建立一阶倒立摆的物理模型。在忽略空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。 系统内部各相关参数定义如下: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ摆杆与垂直向上方向的夹角 θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)1.一阶倒立摆的微分方程模型 对一阶倒立摆系统中的小车和摆杆进行受力分析,其中,N和 P为小车与摆杆相互作用力的水平和垂直方向的分量。

图1-2 小车及摆杆受力图 分析小车水平方向所受的合力,可以得到以下方程: (1-1)由摆杆水平方向的受力进行分析可以得到下面等式: (1-2)即: (1-3) 把这个等式代入式(1-1)中,就得到系统的第一个运动方程: (1-4) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程: (1-5) 即: (1-6)力矩平衡方程如下: (1-7) 由于所以等式前面有负号。

哈工大2005-2006互换性与测量技术基础试卷及答案

哈工大2005~2006学年期末《互换性与测量技术》试题 一、填空(20分) 1、国标规定矩形花键配合的定心方式为——————,配合尺寸有————、————、————。 2、现代工业对齿轮传动的使用要求归纳起来有四项,分别为 ——————、——————、——————、——————。 3、基准制分为 ——————和——————。 4、一零件表面切削加工要求轮廓的算术平均偏差Ra 为6.3μm ,在零件图上标注为——————。 5、滚动轴承内圈与轴颈的配合采用基————制,外圈与外壳孔的配合采用基————制。 6、孔在图样上的标注为φ80Js8,已知IT8=45μm ,其基本偏差为————,该孔的最大实体尺寸为————mm ,最小实体尺寸为————mm 。 7、在选择孔、轴配合的基准制时,一般情况下,应优先选用————。 8、齿轮传动准确性的评定指标规有——————、——————、—————。 二、已知下列配合,画出其公差带图,指出其基准制,配合种类,并求出其配合的极限盈、隙。(20分) 1、φ20H8(033.00+)/f7(020.0041.0--) 2、φ40H6(016.00+)/m5(020 .0009.0++) 三、判断题(对打“∨”错打“╳”填入括号内)(10分)

()1、最大极限尺寸一定大于基本尺寸,最小极限尺寸一定小于基本尺寸。()2、公差是指允许尺寸的变动量。 ()3、一般以靠近零线的那个偏差作为基本偏差。 ()4、在间隙配合中,孔的公差带都处于轴的公差带的下方。 ()5、位置公差就是位置度公差的简称,故位置度公差可以控制所有的位置误差。 ()6、表面粗糙度符号的尖端可以从材料的外面或里面指向被注表面。()7、测表面粗糙度时,取样长度过短不能反映表面粗糙度的真实情况,因此越长越好。 ()8、螺纹的精度分为精密、中等、粗糙三个级别。 ()9、螺纹的公称直径是指螺纹的大径。 ()10、切向综合误差ΔFi′是评定齿轮传动平稳性的误差指标。 四、下列各组配合,已知表中的数值,解算空格中的数值,并填入表中。(10分) 五、说出下列图中所标注的形位公差代号的含义。(20分)

直线一级倒立摆控制详细报告

直线一级倒立摆控制 一、课程设计目的 学习直线一级倒立摆的数学建模方法,运用所学知识设计PID控制器,并应用MATLAB进行仿真。通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。 二、课程设计要求 1. 应用动力学知识建立直线一级倒立摆的数学模型(微分方程形式),并建立系统的开环传递函数模型。 2. 运用经典控制理论知识,按设计要求设计控制器。 3. 应用MATLAB的Simulink建立控制系统的仿真模型,得出仿真结果。 4. 控制要求: ※小车的位置x和摆杆角度的稳定时间小于10秒; ※阶跃响应摆杆角度的摆幅小于2°; ※θ有≤8°扰动时,摆杆的稳定时间小于三秒。 对比仿真结果与控制要求,修正设计值,使之满足设计要求。 三、控制系统建模过程 1、控制对象示意图

/ 10 1 图1.控制对象示意图 图中对象参数: M 小车质量 1.32kg l 摆杆转动中心到杆质心的距离 0.27m m 摆杆质量 0.132kg F 作用在系统上的外力

/ 10 2 X 小车位移 θ 摆杆与竖直方向的夹角,以垂直向上为起始位置,取逆时针方向为正方向。 b 小车摩擦阻尼系数 0.1N/m/sec 2. 控制系统模拟结构图: 图2.系统的模拟结构图 其中G1(s )表示关于摆角θ的开环传递函数,D(S) 表示PID 控制器的传递函数,G2(s )表示小车位移x 的传递函数。由于摆角与垂直向上方向夹角为0时为平衡状态,故摆角的理想输出值应为R (S )=0。 3. 建模过程: T 图3.小车及摆杆的受力分析图 如图3所示,对小车及摆杆进行受力分析,得到以下平衡方程: 对小车有: 22..................................(1)dx d x F F b N M dt dt =--=∑小车 对摆杆有:

哈工大互换性mooc习题doc资料

哈工大互换性m o o c 习题

第1周单元测验 1.下列论述中正确的有( )。 A.具有互换性的零件,其几何参数应是绝对准确的。 B.在装配时,只要不需经过挑选就能装配,就称为有互换性。 C.因为有了大批量生产,所以才有零件互换性,因为有互换性生产才制定公差制. D.不完全互换不会降低使用性能,且经济效益较好。 2.决定配合公差带大小和位置的有()。 A.标准公差和基本偏差 B.配合公差 C.孔和轴公差之和 D.极限偏差 3.()公差可以说是允许零件尺寸的最大偏差。 4.()国家标准规定,孔只是指圆柱形的内表面。 5.()配合公差总是大于孔或轴的尺寸公差。 6.()过渡配合可能有间隙,也可能有过盈。因此,过渡配合可以是间隙配合,也可以是过盈配合。 7.()因配合的孔和轴公称尺寸相等,故其实际尺寸也相等。 8.()基本偏差决定公差带的位置。 1.下列配合中,配合公差最小的是()。 A.φ30H7/g6 B.φ60H7/u6 C.φ100H7/g6 D.φ30H8/g7 2.组成配合的孔、轴的公称尺寸是()。 A.相同的 B.不相同的 C.实际计算值 D.测量值 3.()不经挑选,调整和修配就能相互替换,装配的零件,装配后能满足使用性能要求,就是具有互换性的零件。 4. ()国家标准中,强制性标准是一定要执行的,而推荐性标准执行与否无所谓。 5. ()间隙配合中,孔的公差带一定在零线以上,轴的公差带一定在零线以下。 6. ()因配合的孔和轴公称尺寸相等,故其实际尺寸也相等。 DA××√××√ AA√×××

第2周单元测验 1.以下各组配合中,配合性质相同的有()。 A.φ30P8/h7和φ30H8/p8 B.φ30H7/f6和φ30H8/p7 C.φ30M8/h7和φ30H8/m7 D.φ30H8/m7和φ30H7/f6 2.下列配合代号标注不正确的是() A.φ60H8/k7 B.φ60H7/r6 C.φ60H9/f8 D.φ60h7/D8 3.下列孔轴配合中选用恰当的有()。 A.H6/g5 B.H5/a5 C.G6/h7 D.H8/u9 4.下列配合零件应选用基孔制的有()。 A.滚动轴承外圈与外壳孔。 B.滚动轴承内圈与轴。 C.轴为冷拉圆钢,不需再加工。 D.同一轴与多孔相配,且有不同的配合性质。 5. (多选)下述论述中不正确的有()。 A.一批零件的实际尺寸最大为20.01mm,最小为19.98mm,则可知该零件的上偏差是+0.01mm,下偏差是-0.02mm。 B.j~f的基本偏差为上偏差。 C.无论气温高低,只要零件的实际尺寸都介于上、下极限尺寸之间,就能判断其为合格。 D.对零部件规定的公差值越小,则其配合公差也必定越小。 6.(多选)下列有关公差等级的论述中,正确的有()。 A.孔、轴相配合,均为同级配合。 B.在满足使用要求的前提下,应尽量选用精度低的公差等级。 C.在满足使用要求的前提下,应尽量选用精度高的公差等级。 D.公差等级的高低,影响公差带的大小,决定配合的精度。 7.()未注公差尺寸即对该尺寸无公差要求。 8.()选择公差等级的原则是,在满足使用要求的前提下,尽可能选择精度高的公差等级。 9.不同工作条件下,配合间隙应考虑增加的有()。 A.有轴向运动。 B.旋转速度增高。 C.配合长度增大 D.有冲击负荷。 10.()有相对运动的配合应选用间隙配合,无相对运动的配合均选用过盈配合。

直线一级倒立摆的自动起摆与稳摆控制

直线一级倒立摆的自动起摆与稳摆控制(Simulink仿真)通过对倒立摆系统的力学及运动学分析,建立系统的非线性数学模型为 可见,直线一级倒立摆为单输入双输出系统,利用Simulink可建立上式的框图模型,如图1所示。 图1 直线一级倒立摆系统的非线性Simulink模型 倒立摆的起摆问题,是控制理论中的一个经典实验,其实质是倒立摆系统从一个稳定的平衡状态(垂直向下)在外力的作用下自动转移到另一个平衡状态(垂直向上)。在这个过程中,要求起摆快速,但又不能过于超调。由于输入、输出之间的非线性,许多常用的线性控制理论都不适用。基于非线性理论,目前常用的几种起摆方法为:Bang-Bang控制、能量控制、仿人智能控制等。这里采用Bang-Bang控制作为起摆方法,LQR控制作为稳摆方法,Simulink框图如图2所示。 图2 倒立摆自动起摆控制Simulink框图(Bang-Bang + LQR)

图2中,子系统“Inverted Pendulum”是直线一级倒立摆的非线性模型,如图1所示;S函数“ang_proc”模块用于摆杆角度的处理,即将任意角度信号转换为“ -π ~ π”之间的对应值;子系统“Bang-Bang Controller”为Bang-Bang控制器;子系统“LQR Controller”为LQR 控制器。 双击“Bang-Bang Controller”模块可打开Bang-Bang控制器框图如下: 图3 Bang-Bang控制器框图 图3中,bang_controller是为实现Bang-Bang控制算法而编写的S函数,信号Ang_s是Bang-Bang控制切换角,F_bang是Bang-Bang控制作用力。 双击“LQR Controller”子系统,打开LQR控制器框图如下: 图4 LQR控制器框图 运行图2中的仿真框图,则基于Bang-Bang控制和LQR控制算法的直线一级倒立摆自动起摆控制效果如图5所示。 (a)小车位置设定值x=0 (b)小车位置设定值x=1 图5 倒立摆自动起摆控制效果(Bang-Bang + LQR)

相关文档
最新文档