积分变换中非常有用的公式

积分变换中非常有用的公式
积分变换中非常有用的公式

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +==+-=+=, , , 

a

x x a

a a ctgx x x tgx x x x ctgx x tgx a x x ln 1

)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='?-='?='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'?

?????????+±+=±+=+=+=+-=?+=?+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222?

????++-=-+-+--=-+++++=+-=

==-C

a

x a x a x dx x a C

a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 22)ln(221

cos sin 22

2222222

2222222

22

2

22

2

π

π

一些初等函数: 两个重要极限:

三角函数公式: ·诱导公式:

·和差角公式: ·和差化积公式:

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβ

αβα-+=--+=+-+=--+=+α

ββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?=

±?±=

±=±±=±1

)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x

x

arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x

x x

x x

x -+=-+±=++=+-=

=+=

-=

----11ln

21)

1ln(1ln(:2

:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)1

1(lim 1

sin lim

0==+=∞→→e x

x

x

x x x

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z = X ? iy , X, y 是实数,x = Rez,y=lmz.r=_i. 中的幅角。 3)arg Z与arctan~y之间的关系如下: X y 当X 0, arg Z= arctan 丄; X y y -0,arg Z= arctan 二 ! X y y :: O,arg Z= arctan -二 J X 4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。 5)指数表示:Z = ZeF,其中V - arg z。 (二)复数的运算 1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2i y1- y2 2.乘除法: 1)若z1 = x1 iy1, Z2 =X2 iy2,贝U 狂h[N×2 一y$2 i x2% x1y2 ; 乙_ X1+ i y_ (x1 十 i 和X—i y_ XX y*y y x;。X Z2 X2+ i% (对讪-X )i2y 2+2X222+ 2X22 2)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则 Z1Z2 = ZIll Z2 e i(t1也; 3.乘幕与方根 1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。 2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小 2.复数的表示

2)若 Z = IZ(COSB+isinT)=∣ze i ^,则 (三)复变函数 1?复变函 数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G 的映射 . 2 ?复初等函数 1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。(注意与实函数不同) 3)对数函数: LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数); 主值:In Z = Inz+iargz 。(单值函数) ?1 LnZ 的每一个主值分支In z 在除去原点及负实轴的 Z 平面内处处解析,且 Inz Z 注:负复数也有对数存在。 (与实函数不同) 3)乘幕与幕函数:a — e bLna (a = 0) ; Z b = e bLnZ (Zn 0) 注:在除去原点及负实轴的 Z 平面内处处解析,且 Z S -bz b j 。 Sin z,cos Z 在 Z 平面内解析,且 Sinz = cosz, CoSZ=-Sinz 注:有界性Sin z 兰1, cosz ≤1不再成立;(与实函数不同) Z ■ Z Z ■ Z ,,,, e -e e +e 4) 双曲函数 ShZ ,chz = 2 2 ShZ 奇函数,ChZ 是偶函数。ShZ I ChZ 在Z 平面内解析,且 ShZ =chz, ChZ i - ShZ O (四)解析函数的概念 1 ?复变函数的导数 1)点可导: f r fZ0;fZ 0 2)区域可导:f Z 在区域内点点可导。 2 ?解析函数的概念 1 f 日 +2kπ ..日 +2kπ ) Z n I cos ----------- 十 ISi n -------- I n n (k =0,12…n -1)(有n 个相异的值) 4)三角函数: iz -iz e -e Sin Z = 2i iz JZ . e +e , sin z , ,cos z ,tgz ,ctgz 2 cos z cosz Sin Z

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i ππ π ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 1+ 解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2221cos sin 2sin 2sin cos 2sin (sin cos )2 2 2 2 22 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin1i i e ee e i +==+ (7) 11i i -+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) 解: 1ar 21ar 21ar 2 b i ctg k a b i ctg a b i ctg a π?? + ??? = =??=??? (2) 解:6 2263634632 22i k i i i i e i e e e i πππππππ?? ??++ ? ??? ????+ ????=+????====-+? ??=-?

(3) i i 解:( )2222i i k k i i e e ππππ???? +-+ ? ??? ?? == (4) 解:( ) 1/2222i i k k e e ππππ???? ++ ? ??? ?? == (5) cos5α 解:由于:()()5 5 2cos5i i e e ααα-+=, 而: ()()()() ()()()() 5 5 5 55 5 5 5 55 cos sin cos sin cos sin cos sin n n i n n n n i n n e i C i e i C i αααααααααα-=--==+==-=-∑∑ 所以: ()()()()()()()()()()() 5555055550 4 3 2 5 3 543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n n n n n n n n n C i i C i i C i ααααααααααααααααα --=--=?? =+-????=+-??=++=-+∑∑ (6) sin5α 解:由于:()() 5 5 2sin 5i i e e ααα--=, 所以: ()()()()()()()()()()() () 5555055550 5234 245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n n n n n n n n n C i i i C i i i C i C i i ααααααααααααααααα --=--=?? =--? ??? =--??=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

积分变换主要公式

一、傅里叶变换 1、傅里叶积分存在定理:设()f t 定义在(),-∞+∞内满足条件: 1)()f t 在任一有限区间上满足狄氏条件; 2)()f t 在(),-∞+∞上绝对可积(即()f t dt +∞ -∞?收敛; 则傅氏积分公式存在,且有 ()()()()()(), 1[]11002,2 iw iw t f t t f t f e d e dw f t f t t f t τττπ +∞+∞--∞ -∞ ??=-?++-? ?? ? 是的连续点是的第一类间断点 2、傅里叶变换定义式:()[]()()iwt F f t F w f t e dt +∞ --∞ ==? 1-2 傅里叶逆变换定义式:()1 1[]()()2iw t F F w f t F w e dw π +∞--∞ == ? 1-3 3、常用函数的傅里叶变换公式()1 ()F F f t F ω-??→←?? 矩形脉冲函数 1 ,22()sin 2 0, 2 F F E t E f t t τ τωτω-?≤?? ??→ =? ←???> ?? 1-4 单边指数衰减函数 ()()1 ,01 1 ,0 t F F e t e t F e t iw j t βββω --?≥??→=?= ??? ←????++

积分变换中非常有用的公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

工程数学积分变换答案

工程数学积分变换答案 【篇一:复变函数与积分变换是一门内容丰富】 建立和发展与解决实际问题的需要联系密切,其理论与方法被广泛 应用在自然科学的许多领域,是机械、电子工程、控制工程,理论 物理与流体力学,弹性力学等专业理论研究和实际应用中不可缺少 的数学工具。 课程包含2部分内容:向量分析与场论,复变函数论与积分变换。 本课程的目的,是使学生掌握向量分析与场论,复变函数论,积分 变换的基本理论、基本概念与基本方法,使学生在运用向量分析与 场论,复变函数论,积分变换的思想和方法解决实际问题的能力方 面得到系统的培养和训练,为在后 继专业课程和以后的实际工作打下良好的数学基础 向量分析与场论部分 第一章向量与向量值函数分析学时:4 几何向量,几何向量的加法、数乘、数量积、向量积,向量的混合 积与三重向量积,向量值函数的定义,向量值函数的加法、数乘、 复合、数量积运算,向量值函数的极限、连续,向量值函数的导数,向量值函数的体积分、曲线积分、曲面积分,高斯公式,斯托克斯 公式。 第二章数量场学时:2 数量场的等值面,数量场的方向导数、梯度的概念,哈米尔顿算子 的用法。 第三章数量场学时:6 向量场的向量线,向量场的通量,向量场的散度,向量场的环量, 向量场的环量面密度、向量场的旋度,向量场场函数的导数与向量 场的散度、旋度及数量场的梯度之间的关系。 第四章三种特殊形式的向量场学时:4 保守场,保守场的旋度,保守场的势函数,管形场,管形场的向量势,调和场,调和函数。 复变函数与积分变换部分 第一章:复数与平面点集学时:2 复数的直角坐标表示法,三角表示法,指数表示法。复数的模和辐角,复数的四则运算。平面区域,邻域,聚点,闭集,孤立点,边 界点,边界,连通集,区域,单连通区域,多连通区域。

复变函数与积分变换重要知识点归纳

复变函数与积分变换重 要知识点归纳 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

第三章-行波法与积分变换法Word版

第三章 行波法与积分变换法 分离变量法,它是求解有限区域内定解问题常用的一种方法。 行波法,是一种针对无界域的一维波动方程的求解方法。 积分变换法,一个无界域上不受方程类型限制的方法。 §3.1 一维波动方程的达朗贝尔(D ’alembert )公式 一、达朗贝尔公式 考察如下Cauchy 问题: .- ),(u ),(u 0, ,- ,0t 02 2 222+∞<<∞==>+∞<<∞??=??==x x x t x x u a t u t t ψ? (1) 作如下代换; ? ? ?-=+=at x at x ηξ, (2) 利用复合函数求导法则可得 22 2 2 2 22 2))((,ηηξξηξηξη ξηηξξ??+???+??=??+????+??=????+??=????+????=??u u u u u x u u u x u x u x u 同理可得 ),2(2 2222222ηηξξ ??+???-??=??u u u a t u 代入(1)可得 η ξ???u 2=0。 先对η求积分,再对ξ求积分,可得),(t x u d 的一般形式 )()()()(),(at x G at x F G F t x u -++=+=ηξ 这里G F ,为二阶连续可微的函数。再由初始条件可知

). ()()(),()()(' ' x x aG x aF x x G x F ψ?=-=+ (3) 由(3)第二式积分可得 C dt t a x G x F x += -?0)(1)()(ψ, 利用(3)第一式可得 .2 )(21)(21)(,2 )(21)(21)(00C dt t a x x G C dt t a x x F x x --=++=??ψ?ψ? 所以,我们有 ?+-+-++=at x at x dt t a at x at x t x u )(21)]()([21),(ψ?? (4) 此式称为无限弦长自由振动的达朗贝尔公式。 二、特征方程、特征线及其应用 考虑一般的二阶偏微分方程 02=+++++Fu Eu Du Cu Bu Au y x yy xy xx 称下常微分方程为其特征方程 0)(2)(22=+-dx C Bdxdy dy A 。 由前面讨论知道,直线常数=±at x 为波动方程对应特征方程的积分曲线,称为特征线。已知,左行波)(at x F +在特征线1C at x =+上取值为常数值)(1C F ,右行波)(at x G -在特征线2C at x =-上取值为常数值)(2C G ,且这两个值随着特征线的移动而变化,实际上,波是沿着特征线方向传播的。称变换(2)为特征变换,因此行波法又称特征线法。 注:此方法可以推广的其他类型的问题。 三、公式的物理意义 由 )()(),(at x G at x F t x u -++= 其中)(at x F +表示一个沿x 轴负方向传播的行波, )(at x G -表示一个沿x 轴正方向传播的行波。达朗贝尔公式表明:弦上的任意扰动总是以行波形式分别向两个 方向传播出去,其传播速度为a 。因此此法称为行波法。

复变函数与积分变换试题及答案

复变函数与积分变换试题(一) 一、填空(3分×10) 1.)31ln(i --的模 ?? ,幅角 ?? 。 2.-8i的三个单根分别为: , , 。 3.Ln z在 的区域内连续。 4.z z f =)(的解极域为:? ?? ? 。 5.xyi y x z f 2)(22+-=的导数=')(z f ? ??。 6.=?? ? ???0,sin Re 3z z s ?? ?。 7.指数函数的映照特点是:??? ? ?? ??。 8.幂函数的映照特点是: ? ?? ? ?。 9.若)(ωF =F [f (t)],则)(t f = F )][(1ω-f ?? ??。 10.若f (t )满足拉氏积分存在条件,则L [f (t )]= ? ? 。 二、(10分) 已知222 1 21),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解 析函数,且f(0)=0。 三、(10分)应用留数的相关定理计算 ?=--2||6)3)(1(z z z z dz 四、计算积分(5分×2) 1.?=-2 ||) 1(z z z dz

2.? -c i z z 3 )(cos C :绕点i 一周正向任意简单闭曲线。 五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

复变函数与积分变换答案马柏林、李丹横、晏华辉修订版,习题2

习题二 1. 求映射1w z z =+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222221i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++=++=++-++++ 因为224x y +=,所以53i 44 u iv x y +=+ 所以 54u x = ,34 v y =+ 5344 ,u v x y == 所以()()2 253442u v +=即()()222253221u v +=,表示椭圆. 2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ?ρ=或i w u v =+. (1)π02,4r θ<<= ; (2)π02,04 r θ<<<<; (3) x=a, y=b .(a, b 为实数) 解:设222i ()2i w u v x iy x y xy =+=+=-+ 所以22,2.u x y v xy =-= (1) 记e i w ?ρ=,则π02,4 r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即 π04,.2 ρ?<<= (2) 记e i w ?ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2 ρ?<<<<

(3) 记w u iv =+,则将直线x =a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y =b 映成了22,2.u x b v xb =-= 即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示 . 3. 求下列极限. (1) 2 1lim 1z z →∞+; 解:令1z t =,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z =x +y i ,则Re()i z x z x y =+有 000 Re()1lim lim i 1i z x y kx z x z x kx k →→=→==++ 显然当取不同的值时f (z )的极限不同 所以极限不存在. (3) 2lim (1) z i z i z z →-+; 解:2lim (1)z i z i z z →-+=11lim lim ()()() 2z i z i z i z i z z i z i z →→-==-+-+.

积分变换课后答案

1-1 1. 试证:若 ()f t 满足Fourier 积分定理中的条件,则有 ()()()d d 0 cos sin f t a t b t ωωωωωω+∞+∞ =+? ? 其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞ -∞-∞ ==?? 分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试 用三角形式证明. 证明:利用Fourier 积分的复数形式,有 ()()j j e e d π12t t f t f ωωτω+∞+∞--∞-∞??= ? ????? ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞??=-???? ?? ()()()j j d 1cos sin 2 a b t t ωωωωω+∞ -∞??= -+??? 由于()()()(),,a a b b ωωωω=-=--所以 ()()()d d 11cos sin 22 f t a t b t ωωωωωω+∞+∞-∞-∞= +?? ()()d d 0 cos sin a t b t ωωωωωω+∞+∞ =+? ? 2.求下列函数的Fourier 积分: 1)()22 21,10,1t t f t t ?-≤?=?>??; 2) ()0, 0;e sin 2,0 t t f t t t -???为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞ +∞?====-?-∞ ???F

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题7

习题 七 1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有 ?+∞ ?=0d sin )()(ωωωt b t f 其中()?+∞ ?=0 tdt sin π2)(ωωt f b 当f (t )为偶函数时,则有?+∞ ?=0 cos )()(ωωtd w a t f 其中?+∞ ?=02 tdt c f(t))(ωωπ os a 证明: 因为ωωωd G t f t i ?+∞ ∞ -=e )(π21)(其中)(ωG 为f (t )的傅里叶变换 ()()()(cos sin )i t G f t e dt f t t i t dt ωωωω+∞+∞ --∞ -∞ ==?-?? ()cos ()sin f t tdt i f t tdt ωω+∞+∞-∞ -∞ =?-?? ? 当f (t )为奇函数时,t cos f(t)ω?为奇函数,从而 ? +∞ ∞-=?0tdt cos f(t)ω t sin f(t)ω?为偶函数,从而??+∞ ∞ -+∞ ?=?0 .sin f(t)2tdt sin f(t)tdt ωω 故.sin f(t)2)(0 tdt i G ωω?-=? +∞ 有)()(ωωG G -=-为奇数。 ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+?=?=??+∞∞ -+∞∞- =01()sin d ()sin d 2ππ i G i t G t ωωωωωω+∞+∞-∞?=??? 所以,当f(t)为奇函数时,有 2()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞ +∞ =??? ?其中 同理,当f(t)为偶函数时,有 ()()cos d f t a t ωωω+∞ =??.其中 02()()cos π a f t tdt ωω+∞ = ??

积分变换的应用

浅谈积分变换的应用 学院:机械与汽车工程学院 专业:机械工程及自动化 年级:12级 姓名:郑伟锋 学号:201230110266 成绩: 2014年1月

目录 1.积分变换的简介 (3) 1.1积分变换的分类 (3) 1.2傅立叶变换 (3) 1.2拉普拉斯变换 (4) 1.3梅林变换和哈尔克变换 (5) 1.3.1梅林变换 (5) 1.3.2汉克尔变换 (6) 2.各类积分变换的应用 (6) 2.1总述 (6) 2.2傅立叶变换的应用 (6) 2.2.1傅立叶变换在图像处理中的应用 (6) 2.2.2傅立叶变换在信号处理中的应用 (7) 2.3拉普拉斯变换的应用 (8) 2.3.1总述 (8) 2.3.2 运用拉普拉斯变换分析高阶动态电路 (8) 参考文献 (9)

1.积分变换的简介 1.1积分变换的分类 通过参变量积分将一个已知函数变为另一个函数。已知?(x),如果 存在(α、b可为无穷),则称F(s)为?(x)以K(s,x)为核的积分变换。 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。 1.2傅立叶变换 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。其定义如下 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换

积分变换课后答案.docx

1-1 1.试证:若 f t 满足Fourier积分定理中的条件,则有 f t a cos td b sin td 00 1 f cos d , b 1 sin d . 其中 a f ππ 分析:由 Fourier 积分的复数形式和三角形式都可以证明此题,请读者试用三角形式证明 . 证明:利用 Fourier积分的复数形式,有 f t1f e j t e j t d 2π 11f cos j sin d e j t d 2π 1 j b cos t j sin t d a 2 由于 aa, b b, 所以 f 1 a cos td 1 b sin td t 2 2 a cos td b sin t d 00 2.求下列函数的 Fourier积分: 1)f 1t 2 ,t 21 2)f 0,t0 t t 2 ;t; 0,1 e t sin 2t, t0 0,t1 3)f 1,1t0 t 0t1 1, 0,1t 分析:由 Fourier积分的复数形式和三角形式都可以解此题,请读者试用三角形式解 . 解: 1)函数f 1t 2 , t 21 t t 2 为连续的偶函数,其 Fourier 变换为0,1 F () F [ f (t )] f (t)e j t d t2 f (t )cos tdt 21 t 2 )cos tdt (1

— sin t2t cos t2sin t t 2 sin t 1 cos ) 4(sin (偶函 2233 数) f(t)的 Fourier积分为 f (t )1 F ()e j t d1 F ()cos td 2ππ 0 4(sin cos) td π 03cos 2) 所给函数为连续函数,其Fourier变换为 F ω F f (t ) f (t )e j t dt e t sin 2te j t dt 0e t e2tj e 2tj e j t dt1 [e( 1 2j j ) t e (1 2j j )t ]d t 2j2j 1e( 1 2j j )t e (1 2j j )t 2j 1 2j j 1 2j j0 j11 2 5 2 1 (2)j 1 (2)j25 62 2 j 24(实部为偶函数,虚 数为奇函数) f (t)的 Fourier变换为 f t1 F ()e j t d 2π 1252 2j cos t jsin t d 2π25624 152 cos t2sin t152 sin t 2 cos t π25624d π25 624 d 252 cos t2sin t π 025624d 这里用到奇偶函数的积分性质 . 3)所给函数有间断点 -1 ,0,1且 f(- t)= - f(t)是奇函数,其 Fourier变换为 F F f ( t ) f ( t)e j t dt2j f (t )sin tdt

数学物理方程第三章行波法与积分变换法

第三章 行波法与积分变换法 (第十三讲 ) 分离变量法,它是求解有限区域内定解问题常用的一种方法。 行波法,是一种针对无界域的一维波动方程的求解方法。 积分变换法,一个无界域上不受方程类型限制的方法。 §3.1 一维波动方程的达朗贝尔(D ’alembert )公式 一、达朗贝尔公式 考察如下Cauchy 问题: .- ),(u ),(u 0, ,- ,0t 02 2 222+∞<<∞==>+∞<<∞??=??==x x x t x x u a t u t t ψ? (1) 作如下代换; ?? ?-=+=at x at x ηξ, (2) 利用复合函数求导法则可得 222222 22))((,ηηξξ ηξηξη ξηηξξ??+???+??=??+????+??=????+??=????+????=??u u u u u x u u u x u x u x u 同理可得 ),2(2222222 2ηηξξ ??+???-??=??u u u a t u 代入(1)可得 η ξ???u 2=0。 先对求积分,再对求积分,可得),(t x u d 的一般形式 )()()()(),(at x G at x F G F t x u -++=+=ηξ 这里G F ,为二阶连续可微的函数。再由初始条件可知 ). ()()(),()()(' ' x x aG x aF x x G x F ψ?=-=+ (3) 由(3)第二式积分可得 C dt t a x G x F x +=-?0 )(1)()(ψ, 利用(3)第一式可得

.2 )(21)(21)(,2 )(21)(21)(00C dt t a x x G C dt t a x x F x x --=++=??ψ?ψ? 所以,我们有 ?+-+-++=at x at x dt t a at x at x t x u )(21)]()([21),(ψ?? (4) 此式称为无限弦长自由振动的达朗贝尔公式。 例 求解柯西问题: ?????+∞≤≤-∞==+∞≤≤-∞>=-+==.,0,3,,0,03202 x u x u x y u u u y y y yy xy xx 解:其特征方程为 0)(32)(22=--dx dxdy dy 由此可得特征线方程为 d y x c y x =+=-3 因此作变换 ?? ?+=-=y x y x μξ, 3 从而可得 η ξ???u 2=0 从而有 )()3(),(y x G y x F y x u ++-= 由初始条件可得 )()3(3)()3(' ' 2=+-=+x G x F x x G x F 所以有 C x G x F =-)(3)3(, 从而可得 C x x G C x x F +=-=4 3)(4 9)3(2 2

相关文档
最新文档