北京邮电大学版 线性代数 课后题答案

北京邮电大学版 线性代数 课后题答案
北京邮电大学版 线性代数 课后题答案

习题 三 (A 类)

1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)

2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α.

解:由3(α1-α)+2(α2+α)=5(α3+α)

整理得:α=1

6(3α1+2α2-5α3),即α=16 (6,12,18,24)

=(1,2,3,4)

3.(1)× (2)× (3)√ (4)× (5)×

4. 判别下列向量组的线性相关性.

(1)α1=(2,5), α2=(-1,3);

(2) α1=(1,2), α2=(2,3), α3=(4,3);

(3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);

(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关.

5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设 112123123()()0,k k k αααααα+++++=

123123233()()0.k k k k k k ααα+++++= 由123,,ααα线性无关,有

123233

0,0,0.k k k k k k ++=??

+=??=?

所以1230,

k k k ===即

112123,,αααααα+++线性无关.

6.问a 为何值时,向量组

'''123(1,2,3),(3,1,2),(2,3,)a ααα==-=

线性相关,并将3α用12,αα线性表示.

解:

1

3

2

2137(5),32A a a

=-=-当a =5时,

312111.77ααα=

+

7. 作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵. 解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关,

所以(1,0,0,0)可作为方阵的一个行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,0)

线性无关,所以(1,0,0,1)可作为方阵的一个行向量.所以方阵可为10

101100100010

1??

?- ? ?

???.

8. 设

12,,,s ααα的秩为r 且其中每个向量都可经12,,,r ααα线性表出.证明:12,,,r ααα为

12,,,s ααα的一个极大线性无关组.

【证明】若 12,,,r ααα (1)

线性相关,且不妨设

12,,,t ααα (t

是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,s ααα的

秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.

9. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组.

【解】把

123,,ααα按列排成矩阵A ,并对其施行初等变换.

11111111111

1112001001010110100100011

1011001000k k k k k

k k k ????????????????-?

???????=→→→????????--????????---????????A

当k =1时,123,,ααα的秩为

132,,αα为其一极大无关组.

当k ≠1时,

123,,ααα线性无关,秩为3,极大无关组为其本身.

10. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),

2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.

【解】由于

1231230

1112

0(,,);1

2

00111110001

12112(,,),1

1010

1

02a b b a ????

????==→--????

????-????????

????==→????

????-????A B αααβββ

而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又

12330112120

(,,,),12001121110002a a b b a ????????==→????

????--+????c αααβ

要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0).

11. 求下列向量组的秩与一个极大线性无关组. (1) α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);

(2) α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);

(3) α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α5=(2,1,5,6). 解:(1)把向量组作为列向量组成矩阵Α,应用初等行变换将Α化为最简形矩阵B ,则

1114110141141913951115409500000036701810000000A B ?

?-?? ?

???? ? ? ? ? ?---- ? ? ?=→→→= ? ? ? ?---- ? ?

? ? ?----

? ????? ???

?? 52 0 50 0 99

可知:R (Α)=R (B )=2,B 的第1,2列线性无关,由于Α的列向量组与B 的对应的列向量有相同的线性组合关系,故与B 对应的Α的第1,2列线性无关,即α1,α2是该向量组的一个极大无关组.

(2)同理,

61701714010810111201201312438???? ? ?- ? ? ? ?→→ ? ?-- ? ? ? ?--???? 1 -1 55 2 -9 0 4 40 - 55 7 -9 -9 0 -8 40 1 -6 0 5 -15 -10 5 -15 22 0 40 1111010101?? ? ? ?→ ? ? ????? ?

?? ? ? ?

? ? ?→→ ? ?

?

? ? ? ??? ?

???

-10 0 0 0 2 -9 07 2 -9 0 0 0 0 -5 -11 -5 0 0 0450 0 0 -0 0 10 00 0 1 0110 0 0 10 0 0 240 0 10 0 0 0 0110 0 0 0B

??

?

? ?= ? ? ???10 0 0 0

可知R(Α)=R(B)=4,Α的4个列向量线性无关,即α1,α2,α3,α4是该向量组的极大无关组. (3)同理,

A ?????? ? ? ?

? ? ?=→→→ ? ? ? ? ? ???????1 0 3 1 2 1 0 3 1 2 1 0 3 1 2 1 0 3 1 2-1 3 0 -1 10 3 3 0 30 1 1 0 10 1 1 0 12 1 7 2 50 1 1 0 10 0 0 -4 -40 0 0 1 14 2 14 0 60 2 2 -4 -20 0 0 0 00 ?? ? ? ? ???0 0 0,

可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组的一个极大无关组.

12.求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示. (1) α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);

(2) α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7). 解:(1)以向量组为列向量组成Α,应用初等行变换化为最简形式.

11111100101A ?????? ? ? ? ? ? ?=→→→ ? ? ? ? ? ? ? ???????3 -1 5 -1 0 11 - 5 -1 -1 5 -127 -2 3 2 -7 47 - 2 - 2223 -1 8 10 2 -7 40 0 0 00 0 0 01 3 -9 70 4 -14 8 0 0 0 00 0 0 0B ?

? ?

? ?= ? ?

? ?

??,

可知,α1,α2为向量组的一个极大无关组.

设α3=x 1α1+x 2α2,即121212125

23839x x x x x x x x -=??+=-??

-=??+=-?解得,

12

37

,22x x ==- 设α4=x 3α1+x 4α2,即12121212133137x x x x x x x x -=-??+=??

-=??+=?解得,1

21,2x x ==

所以31241237

,2.

22a a a a a a =-=+

(2)同理, 1111111A B ?????? ? ? ?

? ? ?=→→= ? ? ? ? ? ???????1 1 4 -3 1 1 4 -3 1 0 2 1 -21 - 3 -2 -10 -2 2 -6 20 -1 3 -12 3 5 -50 - 1 -3 10 0 0 0 03 5 6 -70 -2 2 -6 20 0 0 0 0

可知, α1、α2可作为Α的一个极大线性无关组,令α3=x 1α1+x 2α

2

可得:121213

x x x x +=??

-=?即x 1=2,x 2=-1,令α4=x 3α1+x 4α2,

可得:121242

x x x x +=??

-=-?即x 1=1,x 2=3,令α5=x 5α1+x 6α2,

可得:121231

x x x x +=-??

-=-?即x 1=-2,x 2=-1,所以α3=2α1-α

2

α4=α1+3α2,α5=-2α1-α 2

13. 设向量组

12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.

证明12

,,,m ααα

与12,,,s βββ等价.

【解】设向量组

12,,,m ααα (1)

与向量组

12,,,s βββ (2)

的极大线性无关组分别为

12,,,r ααα (3)

12,,,r βββ (4)

由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即

1

(1,2,,).

r

i ij j

j a i r ===∑ αβ

因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)

j j r = β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.

14. 设向量组α1,α2,…,αs 的秩为r 1,向量组β1,β2,…,βt 的秩为r 2,向量组α1,α2,…,αs ,β1,β2,…,βt 的秩为r 3,试证:

max{r 1,r 2}≤r 3≤r 1+r 2. 证明:设α

s1,…,

1

r S

α为α1,α2,…,αs 的一个极大线性无关组, βt1,βt2,…,

2

r t

β为β1,

β2,…,βt 的一个极大线性无关组. μ1,…,3

r

μ为α1, α2,…,αs ,β1,β2,…,βt 的一个

极大线性无关组,则α

s1,

…,

1

r S

α和βt1,…,β

tr2可分别由μ1,…,

3

r

μ线性表示,所以,r 1

≤r 3,r 2≤r 3即max{r 1,r 2}≤r 3,又μ1,…,3r μ

可由αs1, …,αsr1,βt1,…,βtr2线性表示及线性无关性可知:r 3≤r 1+r 2.

15. 已知向量组α1=(1,a ,a ,a )′,α2=(a ,1,a ,a )′,α3=(a ,a ,1,a )′,α4=(a ,a ,a ,1)′的秩为3,试确定a 的值.

解:以向量组为列向量,组成矩阵A ,用行初等变换化为最简形式:

1113110a a a a a a a a a a a a a a a a a a a a a a a a a a a a +?????? ? ? ?- ? ? ?→→ ? ? ? ? ? ??????? -1 0 0 1- 0 0 1 -1 0 1- 00 0 1- 0 1-1 0 0 1-0 0 0 1-

由秩A=3.可知a ≠1,从而1+3a =0,即a =-1

3.

16. 求下列矩阵的行向量组的一个极大线性无关组.

(1)2531174375945313275945413425

32

2048????????

????; (2)1122

102151203131104

1????-?

???-?

?-??.

【解】(1) 矩阵的行向量组1234????????????αααα的一个极大无关组为123,,ααα;

(2) 矩阵的行向量组1234????????????αααα的一个极大无关组为124,,ααα.

17. 集合V 1={(

12,,,n x x x )|12,,,n x x x ∈R 且12n +++ x x x =0}是否构成向量空间?

为什么?

【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )

112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++= αβα

因为

112212121212()()()()()0,

()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=

所以

11,V k V +∈∈αβα,故1V 是向量空间. 18. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.

【证明】把

123,,ααα排成矩阵A =(123,,ααα),则

110

20

101011==-≠A ,

所以

123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.

19. 求由向量1

2345(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1),(4,5,6,4)=====ααααα所生

的向量空间的一组基及其维数.

【解】因为矩阵

12345(,,,,)

113141131411314214150121301213,113260001200012024140241400000=????????????

--------?

?????=→→??????????????????A ααααα ∴124,,ααα是一组基,其维数是3维的.

20. 设

1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:

1212(,)(,)L L =ααββ.

【解】因为矩阵

1212(,,,)

1

12

0112010110131,

013100000

1310000=????

????---????=→????

-????

-????

A ααββ

由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.

由习题15知这两向量组等价,从而

12,αα也可由12,ββ线性表出.所以

1212(,)(,)L L =ααββ.

21. 在R 3中求一个向量γ,使它在下面两个基

123123(1)(1,0,1),(1,0,0)(0,1,1)

(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ

下有相同的坐标.

【解】设γ

在两组基下的坐标均为(

123,,x x x ),即

111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ????????==????????????

-????????????????=--????????????????????????

γαααβββ

1231210,111000x x x --????????=????????????

求该齐次线性方程组得通解

123,2,3x k x k x k ===- (k 为任意实数)

112233(,2,3).x x x k k k =++=-γεεε

22. 验证1

23(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β

2(9,8,13)=---β用这个基线性表示.

【解】设 12312(,,),(,),==A B αααββ

又设 11112123132121222323,x x x x x x =++=++βαααβααα,

11

121212321

2231

32(,)(,,),x x x x x x ??

??=??????ββααα

记作 B =AX .

2321

23

1235912

359()1110803

45

17032713032713123591

00230327130

1033002240

01

12r r r r r r -+?--????

????=???→???→---????????--????-?????????????→--????????----????

A B 作初等行变换

因有?A E ,故123,,ααα为R 3的一个基,且

1212323(,)(,,),

3312??

??=-????--??ββααα

1123212323,332=+-=--βαααβααα.

(B 类)

1.A

2.B

3.C

4.D

5.a=2,b=4

6.a bc ≠0

7.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问: (1) α1能否由α2,α3线性表示?证明你的结论. (2) α4能否由α1,α2,α3线性表示?证明你的结论.

解:(1)由向量组α1,α2,α3线性相关,知向量组α1, α2, α3的秩小于等于2,而α2, α3, α4线性无关,所以α2, α3线性无关,故α2, α3是α1, α2, α3的极大线性无关组,所以α1能由α2, α3线性表示.

(2)不能.若α4可由α1,α2,α3线性表示,而α2,α3是α1,α2,α3的极大线性无关组,所以α4可由α2,α3线性表示.与α2,α3,α4线性无关矛盾.

8.若α1,α2,…,αn,αn+1线性相关,但其中任意n个向量都线性无关,证明:必存在n+1个全不为零的数k1,k2,…,k n,k n+1,使

k1α1+k2α2+…+k n+1αn+1=0.

证明:因为α1,α2,…,αn,αn+1线性相关,所以存在不全为零的k1,k2,…,k n,k n+1使k1α+k2α2+…+k n+1αn+1=0

1

若k1=0,则k2α2+…+k n+1αn+1=0,由任意n个向量都性线无关,则k2=…=k n+1=0,矛盾.从k1≠0,同理可知k i≠0,i=2, …,n+1,所以存在n+1个全不为零的数k1,k2,…,k n,k n+1,使k1a1+k2a2+…+k n+1a n+1=0.

9. 设A是n×m矩阵,B是m×n矩阵,其中n<m,E为n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.

证明:由第2章知识知,秩A≤n,秩B≤n,可由第2章小结所给矩阵秩的性质,n=秩E≤min{秩A,秩B}≤n,所以秩B=n,所以B的列向量的秩为n,即线性无关.

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

线性习题答案(1)线性代数答案 北京邮电大学出版社 戴斌祥主编

线性代数习题及答案 习题一 (A 类) 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3〃2〃1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1). 2. 求出j ,k 使9级排列24j157k98为偶排列。 解:由排列为9级排列,所以j,k 只能为3、6.由2排首位,逆序为0,4的逆序数为0,1的逆序数为3,7的逆序数为0,9的为0,8的为1.由0+0+3+0+1=4,为偶数.若j=3,k=6,则j 的逆序为1,5的逆序数为0,k 的为1,符合题意;若j=6,k=3,则j 的逆序为0,5的逆序数为1,k 的为4,不符合题意. 所以j=3、k=6. 3. 写出4阶行列式中含有因子2234a a 的项。 解:D 4=1234() 11223344(1) j j j j j j j j a a a a τ- 由题意有:232, 4.j j == 故1234141243 243241j j j j j j ?==? ? D 4中含的2234a a 项为:(1243)(3241)1122344313223441(1)(1)a a a a a a a a ττ-+- 即为:1122344313223441a a a a a a a a -+ 4. 在6阶行列式中,下列各项应带什么符号? (1)233142561465a a a a a a ; 解:233142561465142331425665a a a a a a a a a a a a =

北大版 线性代数第一章部分课后答案详解

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲

第一章 3.如果排列n x x x 2 1是奇排列,则排列1 1 x x x n n 的奇偶 性如何? 解:排列 1 1x x x n n 可以通过对排列 n x x x 21经过 (1)(1)(2)212 n n n n L 次邻换得到,每一次邻换都 改变排列的奇偶性,故当2)1( n n 为偶数时,排列 1 1x x x n n 为奇排列,当2)1( n n 为奇数时,排列1 1 x x x n n 为 偶排列。 4. 写出4阶行列式的展开式中含元素13 a 且带负 号的项. 解:含元素13a 的乘积项共有13223144 (1)t a a a a ,13223441 (1)t a a a a , 13213244 (1)t a a a a ,13213442 (1)t a a a a ,13243241 (1)t a a a a ,13243142 (1)t a a a a 六项, 各项列标排列的逆序数分别为(3214)3t , (3241)4t , (3124)2 t , (3142)3 t , (3421)5t ,(3412)4 t , 故所求为13223144 1a a a a , 132134421a a a a , 13243241 1a a a a 。 5.按照行列式的定义,求行列式 n n 0 000100200100 的

值. 解:根据行列式的定义,非零的乘积项只有 1,12,21,1(1)t n n n nn a a a a L , 其中(1)(2) [(1)(2)21]2 n n t n n n L ,故行列式的值等于: (1)(2) 2 (1) ! n n n 6. 根据行列式定义,分别写出行列式x x x x x 1 11 1231112 1 2 的 展开式中含4 x 的项和含3 x 的项. 解:展开式含4 x 的乘积项为 4 11223344 (1)(1)22t a a a a x x x x x 含3 x 的乘积项为13 12213344 (1)(1)1t a a a a x x x x 8. 利用行列式的性质计算下列行列式: 解 : (1) 41 131123421 1234 1111 1 1 1 1 410234123410121 10310 ()341234120121 2412341230321 r r r r r r r r r r r

线性代数北京邮电大学出版社戴斌祥主编习题答案、

线性代数习题及答案 (北京邮电大学出版社?戴斌祥主)编 习题一 (A 类) 1. 求下列各排列的逆序数. (3) n (n ?1)…321; (4) 13…(2n ?1)(2n )(2n ?2)…2. 【解】 (1) τ (2) τ (3) τ(n (n ?1)…3·2·1)= 0+1+2 +…+(n ?1)= (1) 2 n n -; (4) τ(13…(2n ?1)(2n )(2n ?2)…2)=0+1+…+(n ?1)+(n ?1)+(n ?2)+…+1+0=n (n ?1). 2. 求出j ,k 使9级排列24j157k98为偶排列。 解:由排列为9级排列,所以j,k 只能为3、6.由2排首位,逆序为0,4的逆序数为0,1的逆序数为3,7的逆序数为0,9的为0,8的为1.由0+0+3+0+1=4,为偶数.若j=3,k=6,则j 的逆序为1,5的逆序数为0,k 的为1,符合题意;若j=6,k=3,则j 的逆序为0,5的逆序数为1,k 的为4,不符合题意. 所以j=3、k=6. 3. 写出4阶行列式中含有因子2234a a 的项。 解:D 4=1234() 11223344(1) j j j j j j j j a a a a τ- 由题意有:232, 4.j j ==

故 1234141243 243241 j j j j j j ?==?? D 4中含的2234a a 项为:(1243) (3241)1122344313223441(1)(1)a a a a a a a a ττ-+- 即为:1122344313223441a a a a a a a a -+ 4. 在6阶行列式中,下列各项应带什么符号? (1)233142561465a a a a a a ; 解:233142561465142331425665a a a a a a a a a a a a = 因为(431265)6τ=,(431265) 6(1)(1)1τ-=-= 所以该项带正号。 (2)324314516625a a a a a a 解:324314516625142532435166a a a a a a a a a a a a = 因为(452316)8τ=,(452316)8(1)(1)1τ-=-= 所以该项带正号。 5. 用定义计算下列各行列式. (1)0200001030000004; (2)1230 00203045 0001 . (3)010000200001000 n n -L L M M M M L L 【解】(1) D =(?1)τ(2314)4!=24; (2) D =12. (3)由题意知:12231,,112 10 n n n ij a a a n a n a -=??=??? ?=-??=?=??M 其余

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子 2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定, 4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: 多练习方能成大财 (1)?? ??????? ???711 00251020214214; (2)????? ? ??? ???-26 0523******** 12; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)?? ??? ???????---d c b a 100 110011001 解 (1) 7110025102021421434327c c c c --0 1001423102 02110214--- =34)1(14 3102211014+-?---

线性代数大纲(54学时)

税收学、财务管理专业《线性代数》课程教学大纲 课程编号:1203009课程名称:线性代数课程类型:专业必修课 总学时:54学时讲授学时:54学时实验学时:0学时 学分:3学分先修课程:初等数学适用对象:税收学、财务管理专业 执笔人:吴芙蓉审核人:额尔敦其其格 一、课程的性质和任务 《线性代数》是一门专业基础课,它内容较丰富,学时较多。其任务是既要为各专业后续课程提供基本的数学工具,又要培养学生应用数学知识解决本专业实际问题的意识与能力。 二、教学目的与要求 线性代数是讨论有限维空间线性理论的一门学科,它的理论和问题的处理方法是许多非线性问题处理方法的基础,且广泛地应用于各学科的领域中。本课程以线性方程组解的讨论为核心内容介绍行列式、矩阵理论、向量的线性相关性、线性方程组、二次型的理论及其有关知识。通过本课程的教学,使学生掌握线性代数的基本概念,了解其基本理论和方法从而使学生初步掌握线性代数的基本思想和方法,培养学生运用线性代数的方法分析和解决实际问题的能力。 三、学时分配 章节课程内容学时 1 行列式14 2 矩阵16 3 线性方程组16 4 相似矩阵与二次型8 四、教学中应注意的问题 《线性代数》是一门高度抽象数学课程,在教学过程中应以启发式讲授为主,要着力培养学生抽象思维能力,要使学生丢弃三维直观空间的习惯束缚,逐步建立n维空间的概念;还要着力培养学生的科学计算能力,使学生熟练掌握教材中所给出的各种解题的一般方法。在教学中,应注意我校学生的实际,不过分追求学科的数学性、完整性,比如可适当弱化定理性质的抽象证明、弱化各种解题技巧、适当删减实用性较差的内容。 五、使用教材及主要参考书 教材: 王海清主编,《线性代数》,内蒙古大学出版社,2012年

线性代数课后习题1答案(谭琼华版)

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1) ; 21-1 2 解:;5)1(1222 1-12=-?-?= (2) ;1 1 12 2 ++-x x x x 解: ; 1)1)(1(11 1232222--=-++-=++-x x x x x x x x x x (3) ;22b a b a 解: ;222 2ba ab b a b a -= (4) ;5 984131 11 解: ;59415318119318415115 984131 11=??-??-??-??+??+??= (5) ;0 00 00d c b a 解: ;00000000000000 00=??-??-??-??+??+??=d c b a d b c a d c b a (6) .132213321 解: .183211322133332221111 322133 21=??-??-??-??+??+??=

2.求下列排列的逆序数: (1)34215; 解:3在首位,前面没有比它大的数,逆序数为0;4的前面没有比它大的数,逆序数为0;2的前面有2个比它大的数,逆序数为2;1的前面有3个比它大的数,逆序数为3;5的前面没有比它大的数,逆序数为0.因此排列的逆序数为5. (2)4312; 解:4在首位,前面没有比它大的数,逆序数为0;3的前面有1个比它大的数,逆序数为1;1的前面有2个比它大的数,逆序数为2;2的前面有2个比它大的数,逆序数为2.因此排列的逆序数为5. (3)n(n-1)…21; 解:1的前面有n-1个比它大的数,逆序数为n-1;2的前面有n-2个比它大的数,逆序数为n-2;…;n-1的前面有1个比它大的数,逆序数为1;n 的前面没有比它大的数,逆序数为0.因此排列的逆序数为n(n-1)/2. (4)13…(2n-1)(2n) …42. 解:1的前面没有比它大的数,逆序数为0;3的前面没有比它大的数,逆序数为0;…;2n-1的前面没有比它大的数,逆序数为0;2的前面有2n-2个比它大的数,逆序数为2n-2;4的前面有2n-4个比它大的数,逆序数为2n-4;…;2n 的前面有2n-2n 个比它大的数,逆序数为2n-2n.因此排列的逆序数为n(n-1). 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□, 即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: (1) 71100 251020214214 ; 解: 7110025102 021 4214343 27c c c c --0 1 14 23102021 10214 ---= 34)1(14 3 10 2211014 +-?--- =- 14 3 10 2211014 --3 2 1 132c c c c ++- 14 17172 1099 -= 0. (2) ;0111101111011 110 解: 0111101111011 1104342c c c c --0 1 1 1 1 10110111000--=14)1(1 11 101 1 1+-?-- =-1 1 1 101 01 1-- 12c c +-1 2 1111 001-=- 1 2 11-=-3.

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

线性代数_北京邮电大学出版社(戴斌祥_主编)习题答案(、2、3、4、5)

线性代数习题及答案(北京邮电大学出版社戴斌祥主)编 习题一 (A类) 1. 求下列各排列的逆序数. (1) 341782659;(2) 987654321; (3) n(n1)…321;(4) 13…(2n1)(2n)(2n2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n(n1)…3·2·1)= 0+1+2 +…+(n1)= (1) 2 n n ; (4) τ(13…(2n1)(2n)(2n2)…2)=0+1+…+(n1)+(n1)+(n2)+…+1+0=n(n 1). 2. 求出j,k使9级排列24j157k98为偶排列。 解:由排列为9级排列,所以j,k只能为3、6.由2排首位,逆序为0,4的逆序数为0,1的逆序数为3,7的逆序数为0,9的为0,8的为1.由0+0+3+0+1=4,为偶数.若j=3,k=6,则j的逆序为1,5的逆序数为0,k的为1,符合题意;若j=6,k=3,则j的逆序为0,5的逆序数为1,k的为4,不符合题意.

所以j=3、k=6. 3. 写出4阶行列式中含有因子2234a a 的项。 解:D 4=1234() 11223344(1) j j j j j j j j a a a a τ- 由题意有:232, 4.j j == 故1234141243 243241j j j j j j ?==? ? D 4中含的2234a a 项为:(1243)(3241)1122344313223441(1)(1)a a a a a a a a ττ-+- 即为:1122344313223441a a a a a a a a -+ 4. 在6阶行列式中,下列各项应带什么符号? (1)233142561465a a a a a a ; 解:233142561465142331425665a a a a a a a a a a a a = 因为(431265)6τ=,(431265) 6(1)(1)1τ-=-= 所以该项带正号。 (2)324314516625a a a a a a 解:324314516625142532435166a a a a a a a a a a a a = 因为(452316)8τ=,(452316)8(1)(1)1τ-=-= 所以该项带正号。 5. 用定义计算下列各行列式.

线性代数课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 )3(33) (3)3() 3)(3()3)(3(3 32 2 22212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)(p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=? ∈?,,从而有 q ab qb a p p 2)()(222++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。 如果0=b ,则有 a p =,从而有“有理数=无理数”成立,此为矛盾。 所以假设不成立,从而有)()(q Q p Q ?。

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

工程数学线性代数同济大学第六版课后习题答案

第一章 行列式 1、 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4、

(2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3、 (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a )、 (4)y x y x x y x y y x y x +++、 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3)、 2、 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4;

解逆序数为0 (2)4 1 3 2; 解逆序数为4:41, 43, 42, 32、(3)3 4 2 1; 解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1、(4)2 4 1 3; 解逆序数为3: 2 1, 4 1, 4 3、 (5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2、 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个)

北京邮电大学版线性代数课后题答案

习题 三 (A 类) 1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2) 2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α. 解:由3(α1-α)+2(α2+α)=5(α3+α) 整理得:α=1 6(3α1+2α2-5α3),即α=16 (6,12,18,24) =(1,2,3,4) 3.(1)× (2)× (3)√ (4)× (5)× 4. 判别下列向量组的线性相关性. (1)α1=(2,5), α2=(-1,3); (2) α1=(1,2), α2=(2,3), α3=(4,3); (3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2); (4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关. 5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设 112123123()()0, k k k αααααα+++++= 即 123123233()()0. k k k k k k ααα+++++= 由 123,,ααα线性无关,有 123233 0,0,0.k k k k k k ++=?? +=??=? 所以1230, k k k ===即1 12123,,αααααα+++线性无关. 6.问a 为何值时,向量组 ''' 123(1,2,3),(3,1,2),(2,3,)a ααα==-= 线性相关,并将3α用12,αα线性表示. 解: 1322137(5), 3 2 A a a =-=-当a =5时, 312111 .77ααα= +

线性代数教学大纲(本科)

“线性代数”课程教学大纲 课程编号: 学时:72学时(含课外学时)学分:4 分 适用对象:经济、计算机、环境、蒙文信息处理等专业 先修课程:初等数学 考核要求:闭卷 使用教材及主要参考书: 戴斌祥主编,《线性代数》,北京邮电大学出版社,2009年 同济大学数学系主编,《线性代数》,高等教育出版社,2007年一、课程的性质和任务 《线性代数》是我校本科各专业一门必修专业基础科,它内容较丰富,学时较多。其任务是既要为各专业后续课程提供基本的数学工具,又要培养学生应用数学知识解决本专业实际问题的意识与能力。 二、教学目的与要求 线性代数是讨论有限维空间线性理论的一门学科,它的理论和问题的处理方法是许多非线性问题处理方法的基础,且广泛地应用于各学科的领域中。本课程以线性方程组解的讨论为核心内容介绍行列式、矩阵理论、向量的线性相关性、线性方程组、二次型的理论及其有关知识。通过本课程的教学,使学生掌握线性代数的基本概念,了解其基本理论和方法从而使学生初步掌握线性代数的基本思想和方法,培养学生运用线性代数的方法分析和解决实际问题的能力。三、学时分配 章节课程内容学时 1 n阶行列式14 2 矩阵16 3 n维向量与向量空间18 4 线性方程组12 5 矩阵的特征值与二次型12 四、教学中应注意的问题 《线性代数》是一门高度抽象数学课程,在教学过程中应以启发式讲授为主,要着力培养学生抽象思维能力,要使学生丢弃三维直观空间的习惯束缚,逐步建立n维空间的概念;还要着力培养学生的科学计算能力,使学生熟练掌握教材中所给出的各种解题的一般方法。在教学中,应注意我校学生的实际,不过分追求学科的数学性、完整

线性代数习题与答案(复旦版)1

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+… +1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512 3 12123 122x x x D x x x = 的展开式中包含3x 和4 x 的项. 解: 设 123412341234 () 41234(1)i i i i i i i i i i i i D a a a a τ = -∑ ,其中1234,,,i i i i 分别为不同列中对应元素 的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 001030000004 ; (2)1230 0020 30450001 . 【解】(1) D =(1)τ(2314) 4!=24; (2) D =12. 6. 计算下列各行列式.

北京邮电大学版 线性代数 课后题答案

习题 六 (A 类) 1. 检验以下集合对于所指的线性运算是否构成实数域上的线性空间. (1) 2阶反对称(上三角)矩阵,对于矩阵的加法和数量乘法; (2) 平面上全体向量,对于通常的加法和如下定义的数量乘法: k ·αα=; (3) 2阶可逆矩阵的全体,对于通常矩阵的加法与数量乘法; (4) 与向量(1,1,0)不平行的全体3维数组向量,对于数组向量的加法与数量乘法. 【解】(1)是.由于矩阵加法和数量乘法满足线性空间定义中的1-8条性质,因此只需考虑反对称(上三角)矩阵对于加法和数量乘法是否封闭即可.下面仅对反对称矩阵验证:设A ,B 均为2阶反对称矩阵,k 为任一实数,则 (A +B )′=A ′+B ′=-A -B =-(A +B ), (k A )′=k A ′=k (-A )=-(k A ), 所以2阶反对称矩阵的全体对于矩阵加法和数量乘法构成一个线性空间. (2) 否.因为(k +l )·αα=,而2k l ?+?=+=ααααα,所以这种数量乘法不满足线性空间定义中的第7条性质. (3) 否.因为零矩阵不可逆(又因为加法和数量乘法都不封闭). (4) 否.因为加法不封闭.例如,向量(1,0,0),(0,1,0)都不平行于(1,1,0),但是它们之和(1,0,0)+(0,1,0)=(1,1,0)不属于这个集合. 2. 设U 是线性空间V 的一个子空间,试证:若U 与V 的维数相等,则U =V. 【证明】设U 的维数为m ,且 m ,,,ααα 21是U 的一个基,因U ?V ,且V 的维数也是m ,自然 m ,,,ααα 21也是V 的一个基,故U =V . 3. 在R 4 中求向量α=(0,0,0,1)在基1ε=(1,1,0,1),2ε=(2,1,3,1), 3ε=(1,1,0,0), 4ε=(0,1,-1,-1) 下的坐标. 【解】设向量α在基1234,,,εεεε下的坐标为(1234,,,x x x x ),则 11223344x x x x +++=εεεεα 即为 1234121 0011110030101 1011x x x x ?????????????????? =?????? -?????? -???? ?? 解之得(1234,,,x x x x )=(1,0,-1,0). 4. 在R 3 中,取两个基 1α=(1,2,1),2α=(2,3,3),3α=(3,7,1); 1β=(3,1,4),2β=(5,2,1),3β=(1,1,-6), 试求123,,ααα到123,,βββ 的过渡矩阵与坐标变换公式. 【解】取R 3 中一个基(通常称之为标准基)

相关文档
最新文档