材料力学实验指导书

材料力学实验指导书
材料力学实验指导书

材料力学实验指导书

广州大学城建学院

建筑工程系编写

二零零四年六月

内容提要

本书为《材料力学》理论教学的配套教材——材料力学基本实验指导书。书中主要介绍了低碳钢和铸铁材料的拉伸和压缩实验,以及合金钢梁的弯曲正应力电测实验,包括实验目的、实验设备、实验原理,实验方法与步骤以及思考题等内容。书中还介绍了有关仪器和设备的使用。

前言

材料力学实验是材料力学课程的重要组成部分。材料力学中的一些理论和公式是建立在实验、观察、推理、假设的基础上,它们的正确性还必须由实验来验证。学生通过做实验,用理论来解释、分析实验结果,又以实验结果来证明理论,互相印证,以达到巩固理论知识和学会实验方法的双重目的。

本书是根据广州大学城建技术学院开设的材料力学实验内容和实验仪器设备情况而编写的,由低碳钢和铸铁材料的拉伸、压缩实验,合金钢梁的纯弯曲正应力电测实验,以及相关仪器和设备的介绍组成。

编写时主要参考了刘鸿文、吕荣坤的《材料力学实验》、曹以柏、徐温玉的《材料力学测试原理及实验》,王绍铭等的《材料力学实验指导》,以及其他院校的有关实验教学资料。

由于水平和时间有限,本书难免有不足和错误,望广大读者给以批评指正。

学生实验须知

1.实验前必须预习实验指导书中相关的内容,了解本次实验的目的、要求及注意事项。

2.按预约实验时间准时进入实验室,不得无故迟到、早退、缺席。

3.进入实验室后,不得高声喧哗和擅自乱动仪器设备,损坏仪器要赔偿。4.保持实验室整洁,不准在机器、仪器及桌面上涂写,不准乱丢纸屑,不准随地吐痰。

5.实验时应严格遵守操作步骤和注意事项。实验中,若遇仪器设备发生故障,应立即向教师报告,及时检查,排除故障后,方能继续实验。

6.实验过程中,若未按操作规程操作仪器,导致仪器损坏者,将按学校有关规定进行处理。

7.实验过程中,同组同学要相互配合,认真测取和记录实验数据;

8.实验结束后,将仪器、工具清理摆正。不得将实验室的工具、仪器、材料等物品携带出实验室。

9.实验完毕,实验数据经教师认可后方能离开实验室。

10.实验报告要求字迹端正、绘图清晰、表格简明、实验结果正确。

目录

实验一低碳钢和铸铁的拉伸实验

实验二低碳钢和铸铁的压缩实验

实验三纯弯曲梁正应力分布电测

附录A 液压式万能试验机简介

附录B 球铰式引伸仪

附录C 电阻应变测量技术及DH3818静态应变测量仪简介

实验一 低碳钢和铸铁的拉伸实验

一、 实验目的

(1) 测定低碳钢的弹性模量E 、屈服极限σs 、强度极限σb 、延伸率δ和

断面收缩率Ψ。

(2) 测定铸铁的强度极限σb 。

(3) 观察低碳钢拉伸过程中的弹性、屈服、强化、颈缩、断裂等物理现象。 (4)熟悉材料实验机和其它仪器的使用。

二、 实验设备

(1) WE-30型万能材料试验机。 (2) 游标卡尺。 (3) 球铰式引伸仪。

三、 试件介绍

由于试件的形状和尺寸对实验结果有一定的影响,为便于互相比较,应按统一规定加工成标准试件。按国家有关标准的规定,拉伸试件分为比例试件和非比例试件两种。在试件中部,用来测量试件伸长的长度,称为原始标距(简称标距)。比例试件的标距l 0与原始横截面面积A 0的关系规定为

A l

k

= (1.1)

式中系数k 的取值为5.65时为短试件,取11.3时为长试件。对直径为d 0的圆截面试件,短试件和长试件的标距l 0分别为5 d 0和10 d 0。非比例试件的l 0和A 0不受上述关系限制。本实验采用圆截面的长试件,即l 0=5 d 0.

四、实验原理及方法

常温下的拉伸实验可以测定材料的弹性模量E 、屈服极限s σ、强度极限b σ、延伸率δ和断面收缩率ψ等力学性能指标,这些参数都是工程设计的重要依据。 (1)低碳钢弹性模量E 的测定

由材料力学可知,弹性模量是材料在弹性变形范围内应力与应变的比值,即

ε

σ=

E (1.2)

因为A

P =

σ

,0

L L ?=

ε

,所以弹性模量E 又可以表示为

L

A PL

E ?=

(1.3)

式中:

E —材料的弹性模量,-应变

应力,εσ

-,

P —实验时所施加的荷载,A -以试件直径的平均值计算的横截面面积, L 0——引伸仪标距,-?L 试件在载荷P 作用下,标距L 0段的伸长量。

可见,在弹性变形范围内,对试件作用拉力P ,并量出拉力P 引起的标距内伸长L ?,即可求得弹性模量E ,实验时,拉力P 值由试验机读数盘示出,标距L 0=50㎜(不同的引伸仪标距不同),试件横截面面积A 可算出,只要测出标距段的伸长量L ?,就可得到弹性模量E 。

在弹性变形阶段内试件的变形很小,标距段的变形(伸长量L ?)需用放大倍数为200倍的球铰式引伸仪来测量。为检验荷载与变形之间的关系是否符合胡克定律,并减少测量误差,实验时一般用等增量法加载,即把载荷分成若干个等级,每次增加相同的载荷P ?,逐级加载。为保证应力不超过弹性范围,以屈服载荷的70%~80%作为测定弹性模量的最高载荷P n 。此外,为使试验机夹紧试件,消除试验机机构的间隙等因素的影响,对试件应施加一个初始载荷P 0(本实验中P 0=2.0kN )。

实验时,从P 0到P n 逐级加载,载荷的每级增量均为P ?。对应每级载荷P i ,记录相应的伸长i L ?,1+?i L 与i L ?之差即为变形增量()i L ??,它是P ?引起的变形(伸长)增量。在逐级加载中,如果得到的()i L ??基本相等,则表明L ?与P 为线性关系,符合胡克定理。完成一次加载过程,将得到i i L P ?与的一组数据,按平均法计算弹性模量,即

()

L A L P E ??????

=-

0200 (1.4)

其中,()()∑=-

??=??n

i i

L n

L 1

1,为变形增量的平均值;200为测量变形时的放大系

数。

(2)屈服极限s σ、强度极限b σ的测定

测定弹性模量后继续加载使材料达到屈服阶段,进入屈服阶段时,载荷常2有上下波动,其中较大的载荷称上屈服点,较小的称下屈服点。一般用第一个波峰的下屈服点表示材料的屈服载荷s P ,它所对应的应力即为屈服极限s σ。

屈服阶段过后,材料进入强化阶段,试件又恢复了承载能力。载荷达到最大

值b P 时,试件某一局部的截面明显缩小,出现“颈缩”现象。这时示力盘的从动针停留在b P 位置,主动针迅速倒退,表明荷载迅速下降,试件即将被拉断。这时从动针所示的载荷即为破坏载荷b P ,所对应的应力叫强度极限b σ。 (3)延伸率δ和断面收缩率ψ的测定

试件的原始标距为0l (本实验取50㎜),拉断后将两段试件紧密对接在一起,量出拉断后的标距长1l ,延伸率应为

%

1000

1?-=

l l l δ (1.5)

式中

l —试件原始标距,为50㎜,1l —试件拉断后标距长度。

对于塑性材料,断裂前变形集中在紧缩处,该部分变形最大,距离断口位置越远,变形越小,即断裂位置对延伸率是有影响的。为了便于比较,规定断口在标距中央三分之一范围内测出的延伸率为测量标准。如断口不在此范围内,则需进行折算,也称断口移中。具体方法如下:以断口O 为起点,在长度上取基本等于短段格数得到B 点,当长段所剩格数为偶数时(见图1.1a ),则由所剩格数的一半得到C 点,取BC 段长度将其移至短段边,则得断口移中得标距长,其计算式为

-

-

+=BC

AB l 21

如果长段取B 点后所剩格数为奇数(见图1.1b ),则取所剩格数加一格之半得C 1点和减一格之半得C 点,移中后标距长为

-

-

-

++=BC

BC AB l 11

将计算所得的1l 代入式中,可求得折算后的延伸率δ。

为了测定低碳钢的断面收缩率,试件拉断后,在断口处两端沿互相垂直的方向各测一次直径,取平均值1d 计算断口处横截面面积,再按下式计算面积收缩率

%

1000

1

0?-=

A A A ψ (1.6)

式中 A 0—试件原始横截面面积 A 1—试件拉断后断口处最小面积

五、实验步骤

(1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)和相应的摆锤,并按相应的操作规程进行操作。

(2)测量试件的直径。在标距两端及中部三个位置上,沿互相垂直的方向,测量试件直径,以其平均值计算弹性模量,以其最小值计算强度和断面收缩率。 (3)安装试件。

(4)安装引伸仪(只用于低碳钢拉伸试验) (5)进行预拉(只用于低碳钢拉伸试验)。为了检查机器和仪表是否处于正常状态,先把荷载预加到略小于P n (测定弹性模量E 时最大荷载),然后卸载到0~P 0之间。

(6)加载。在测定低碳钢的弹性模量时,先加载至P 0,调整引伸仪读数为零或记录初始读数。加载按等增量法进行,记录每级荷载下的引伸仪读数,载荷最大加至P n ,然后取下引伸仪。加载应保持匀速、缓慢。测出屈服载荷P s 后,可稍加实验速率,最后直到将试件拉断,记录最大载荷P b 。对铸铁试件,应缓慢匀速加载,直至试件被拉断,记录最大载荷P b 。

(7)取下试件,将试验机恢复原状。观察试件并测量有关数据。

六、实验结果的处理

(1)计算屈服极限s σ和强度极限b σ

A P s s

,0

A P b b

=

σ

其中2

4

1d A π=

,0d 为最小直径。

(2)计算低碳钢的弹性模量E 。

()

L A L P E ??????

=-

0200

其中,P ?为载荷增量,

()()∑=-

??=??n

i i

L n

L 1

1,

为变形增量的平均值; 2

4

1d

A π=

d 为平均直径。

(3)计算延伸率δ和断面收缩率ψ

%

1000

1?-=

l l l δ

%

1000

1

0?-=

A A A ψ

七、思考题

(1) 由实验现象和结果比较低碳钢和铸铁的机械性能有何不同?

(2) 试件的形状和尺寸对测定弹性模量有无影响?

(3) 测定E 时为何要加初载荷P 0并限制最高载荷P n ?使用分级加载的目的是

什么?

(4) 实验时如何观察低碳钢的屈服极限?

(5) 材料相同而标距分别为5 d 0和10 d 0的两种试件,其b s σσψδ、、、是否相

同?为什么?

八、实验记录参考表格

实验二低碳钢和铸铁的压缩实验一、实验目的

(1)比较低碳钢和铸铁压缩变形和破坏现象。

(2)测定低碳钢的屈服极限σ

s 和铸铁的强度极限σ

b

(3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。

(4)熟悉压力实验机的使用方法。

二、实验仪器和设备

(1)2000kN液压式压力试验机或WE-30型万能材料试验机。

(2)游标卡尺。

三、试件介绍

根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。

四、实验原理及方法

压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。

压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。

低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增大时,其实际应力不随外载荷增加而增

加,故不可能得到最大载荷P b,因此也得不到强度极限

b

,所以在实验中是以变形来控制加载的。

铸铁试件压缩时,在达到最大载荷P b前出现较明显的变形然后破裂,此时试验机测力指针迅速倒退,从动针读取最大载荷P b值,铸铁试件最后略呈故形,断裂面与试件轴线大约呈450。

五、实验步骤

(1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)和相应的摆锤,并按相应的操作规程进行操作。

(2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。

(3)将试件放在试验机活动台球形支撑板中心处。 (4)安装引伸仪(只用于低碳钢拉伸试验)

(5)开动试验机,使活动台上升,对试件进行缓慢均匀加载。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停止加载。铸铁试件加压至试件破坏为止,记录最大载荷。 (6)取出试件,将试验机恢复原状。观察试件。

六、实验结果的处理

(1)计算低碳钢的屈服极限s σ

A P s s

(2.1)

(2)计算铸铁的强度极限b σ

A P b b

(2.2)

其中2

04

1d A π=

,0d 为试件实验前最小直径。

七、思考题

(1)为何低碳钢压缩测不出破坏载荷,而铸铁压缩测不出屈服载荷? (2)根据铸铁试件的压缩破坏形式分析其破坏原因,并与拉伸作比较?

(3)通过拉伸与压缩实验,比较低碳钢的屈服极限在拉伸和压缩时的差别? (4)通过拉伸与压缩实验,比较铸铁的强度极限在拉伸和压缩时的差别?

八、实验记录参考表格

实验三纯弯曲梁正应力分布电测实验

一、实验目的

(1)学习使用电阻应变仪,初步掌握电测方法。

(2)测量纯弯曲梁上应变随高度的分布规律,验证平面假设的正确性。

二、实验设备

(1)WQ-5纯弯曲梁实验装置。

(2)DH3818静态电阻应变仪。

(3)温度补偿块。

三、实验原理和方法

WQ-5纯弯曲梁实验装置如图3.1所示,试样简支于A、B两点,在对称的C、D两点通过拉杆和横杆螺旋加载使梁产生弯曲变形,CD梁受纯弯曲作用。采用转动手轮使螺旋下移加载,总荷载的大小由压力传感器来测量。试样的受力如图3.2所示。梁的材料为合金钢,弹性模量为E=210Gpa,其它参数列于表3-1。

为了测量应变随试样截面高度的分布规律,应变片的粘贴位置如图3.3所示。这

样可以测量试件上下边缘、中性层及其他中间点的应变,便于了解应变沿截面高度的变化规律。

由材料力学可知,矩形截面梁受纯弯时正应力公式为

z

y I M ?=

σ

式中:M 为弯距;

y 为中性轴至欲求应力点的距离;

3

z bh

12

1=

I 为横截面对z 轴的惯性距。

本实验采用逐级等量加载的方法加载,每次增加等量的载荷P ?,测定各点相应的应变增量一次,即:初载荷为零,最大载荷为5kN ,等量增加的载荷P ?为1

kN 。分别取应变增量的平均值(修正后的值)-

实ε?,求出各点应力增量的平均

值-

σ

?。

实=εσ???E

(3.1) z

y I M ???=

σ

(3.2)

把测量得到的应力增量-

σ

?与理论计算出的应力增量-理

σ

?加以比较,从而可以

验证公式的正确性,把上述理论公式中的M ?按下式求出:

a

2

1??=

?P M (3.3)

四、实验步骤

(1) 开电源,使应变仪预热约20分钟。

(2)载荷为零时,调节应变仪初始读数为零或记录初始应变值(重复三次)。 (3)加载。按箭头指示方向旋转加载手轮缓慢加载。本实验中第一级载荷P 0=0.0kN ,最大载荷P max =5.0 kN ,载荷增量P ?=1.0 kN 。记录每级载荷下各测点的应变值(包括正负号,负号表示压应变,正号不显示)。

(4)注意:载荷最大加至5.0 kN ,不能超载;在测量过程中,尽量避免连接导线的晃动。

(5)实验完毕将载荷卸为零,工具复原,经指导老师检查方可关闭应变仪电源。

五、实验结果的整理

(1)求出各测量点在等量载荷作用下,应变增量的平均值-

测ε?。

(2)考虑到应变仪与应变片灵敏系数不同,按下式对应变增量的平均值-

测ε?进

行修正得到实际的应变增量平均值-

实ε?

仪-

实=

εε??K K (3.4)

式中片仪、K K 分别为电阻应变仪和电阻应变片的灵敏系数。

(3)以各测点位置为纵坐标,以修正后的应变增量平均值-

实ε?为横坐标,画出应变随试件高度变化曲线。

(4)根据各测点应变增量平均值-

实ε?,计算测量的应力值-

实=εσ??E

(5)根据实验装置的受力图和截面尺寸,先计算横截面对z 轴的惯性距z I ,再应用弯曲应力的理论公式,计算在等增量荷载作用下,各测点的理论应力增量值

z

y I M ???=

σ

(6)比较各测点应力的理论值和实验值,并按下式计算相对误差

--理

100????=

σ

σ

σe (3.5)

(7)在量的中性层内,因00=,

=-

理理σσ?,故只需计算绝对误差。 (8)比较梁中性层的应力。由于电阻应变片是测量一个区域内的平均应变,粘贴时又不可能正好贴在中性层上,所以只要实测的应变值是一个很小的数值,就可以认为测试是可靠的。

六、思考题

(1)影响实验结果准确性的主要因素是什么? (2)在中性层上理论计算应变值0

0≠实理,而有时实际测量

=εε,这是为什么?

七、实验记录参考表格

附录A 液压式万能试验机

液压式万能试验机广泛应用于材料试验中,其结构原理可分为四大部分。液压万能试验机的外形如图A-1,结构原理如图A-2所示。

一、加力部分

在液压万能试验机的机座上装有两根固定立柱,主要由这两根立柱支承大横梁、小横梁、大活塞和工作台。当开动电动机时,传动皮带就带动油泵工作,高压油液经油管进油阀输送到工作油缸,推动大活塞往上运动。小横梁固定在大活塞顶上,活塞上升时,通过两根活动立柱带动工作台往上运行。做拉伸实验时,将拉伸试件的两端夹于上拉伸夹头和下拉伸夹头(固定不动)之间,当工作台上升时,使试件发生拉伸变形;做压缩实验时,把压缩试件放在下压头中心位置处,当工作台上升时使上压头接触试件后,产生压缩变形;做弯曲实验时,把弯曲试件放在两支座上,当工作台上升时使上压头接触试件后,产生弯曲变形。进油阀用来控制输入工作油缸中的油量,以控制试件的变形速度。实验完毕,关闭进油阀,打开回油阀,把工作油缸里的油液泄回油箱,使工作台回到原始位置。

由于试件长度不相同,装卡拉伸试件时,可开动机座旁的电动机,使下拉伸夹头很快地上升或下降,以便装卡拉伸试件。当试件夹紧后,就不能用该电动机加载,否则会烧毁电动机,或发生其他事故:。

二、测力部分

实验时,试件受力的大小可在测力盘上直接读出指示值。试件受力后,工作油缸的油具有一定的压力,压力的大小与试件受力的大小是成比例的。由于工作油缸和测力油缸是联通的,故工作油缸和测力油缸所受的油压是相等的。此油压推动测力活塞和测力拉杆,使推杆和摆锤绕支点转动,推杆推动螺杆运动,使齿轮和测力指针旋转,测力盘所读得的数值即表示试件受力的大小。随着科学技术的发展,近来液压万能试验机上已设置了荷载显示电压表。

油压万能试验机的荷载范围可由摆锤的重量来确定。一般试验机都备有三种砣重作为选择荷载范围用,测力盘上相应有三种荷载刻度。如300kN万能试验机,有60kN、150kN、300kN三种测量范围。

三、绘图部分

液压试验机绘图装置有两种方式,第一种是通过固定在万能试验机上夹头上的拉绳带动绘图滚筒转动,滚筒转动方向为变形坐标,螺杆运动方向为力坐标。第二种方式采用电子自动绘图仪绘图。

四、操作部分

该部分主要由进油阀、回油阀和电器开关等组成。进油阀的作用是将油箱里的油送至工作油缸。进油阀的阀门开得大,表示油送到工作油缸的速度快,也就说明试件受力大,变形快。实验时要严格控制进油阀门的大小,保证荷载盘指针均匀地转动。回油阀的作用可使试件卸载,实验做完后,须打开回油阀门,使工作油缸的油流回油箱。万能试验机的具体操作方法如下:

1.选择荷载范围

实验前,首先根据试件材料能承受的最大荷载,选择相应的砣重,确定荷载的范围(如300kN万能试验机分为:0~60kN,0~150kN,0~300kN)。若在万能试验机上挂上A砣,表示0~60kN范围,挂上A、B砣表示0~150kN范围,挂上A、B、C砣表示0~300kN范围。如直径为10mm的低碳钢拉伸试件,估计其最大承载力为40kN左右,选用0~60kN范围即可,其目的是提高荷载测试精度。

材料力学实验指导书(拉伸、扭转、冲击、应变)

C 61`材料的拉伸压缩实验 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理 现象;观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(s 、b )和塑性指标(、);测定压 缩时铸铁的强度极限b。 4.学习、掌握电子万能试验机的使用方法及工作原理。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图1所示,压缩实验所用试件(材料:铸铁)如图2所示: d l l 图1 拉伸试件图2 压缩试件 四、实验原理 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图3。 对于低碳钢材料,由图3曲线中发现OA直线,说明F正比于l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B点为上屈服点,它受变形大小和试件等因素影响;

B 点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs 时,必须缓慢而均匀地加载,并应用s =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。 图3 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式b =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端面收缩率 ,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理, 并输入计算机,得到F-l 曲线,即铸铁压缩曲线,见图4。 图4 铸铁压缩曲 线

材料力学实验指导书

材料力学实验指导书 §5 梁弯曲正应力电测实验指导书 1、概述 梁是工程中常用的受弯构件。梁受弯时,产生弯曲变形,在结构设计和强度计算中经常要涉及到梁的弯曲正应力的计算,在工程检验中,也经常通过测量梁的主应力大小来判断构件是否安全,也可采用通过测量梁截面不同高度的应力来寻找梁的中性层。 2、实验目的 1、用应变电测法测定矩形截面简支梁纯弯曲时,横截面上的应力分布规律。 2、验证纯弯梁的弯曲正应力公式。 3、观察纯弯梁在双向交变加载下的应力变化特点。 3、实验原理 梁纯弯曲时,根据平面假设和纵向纤维之间无挤压的假设,得到纯弯曲正应力计算公式为: Z I My =σ 式中:M —弯矩 Z I —横截面对中性层的惯性矩 y —所求应力点的纵坐标(中性轴为坐标零点)。 由上式可知梁在纯弯曲时,沿横截面高度各点处的正应力按线性规律变化,根据纵向纤维之间无挤压的假设,纯弯梁中的单元体处于单纯受拉或受压状态,由单向应力状态的胡克定律E *εσ=可知,只要测得不同梁高处的ε,就可计算出该点的应力σ,然后与相应点的理论值进行比较,以验证弯曲正应力公式。 4、实验方案 4.1实验设备、测量工具及试件: YDD-1型多功能材料力学试验机(图1.8)、150mm 游标卡尺、四点弯曲梁试件(图5.1)。 YDD-1型多功能材料力学试验机由试验机主机部分和数据采集分析两部分组成,主机部分由加载机构及相应的传感器组成,数据采集部分完成数据的采集、分析等。 图5.1实验中用到的纯弯梁,矩形截面,在梁的两端有支撑圆孔,梁的中间段有四个对称半圆形分配梁加载槽,加载测试时,两半圆型槽中间部分为纯弯段,在纯弯段中间不同梁高部位、在离开纯弯段中间一定距离的梁顶及梁底、在加工有长槽孔部位的梁顶及梁底均粘贴电阻应变片。 4.2 装夹、加载方案 安装好的试件如图5.2所示。试验时,四点弯曲梁通过销轴安装在支座的长槽孔内,形成滚动铰支座。梁向下弯曲时,荷载通过分配梁等量地分配到梁上部两半圆形加载槽,梁向上弯曲时,荷载通 过分配梁等量地分配到梁下部两半圆形加载槽,分配梁的两个加载支滚,一个为滚动铰支座,一个为 图5.1 四点弯曲梁试件

材料力学试验

第五章材料力学实验 5.1 拉伸 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定塑性材料的上下屈服强度R eH 、R eL 、抗拉强度R m 、断后延伸率A和截面收缩率Z;测定脆性材料的抗拉强度R m; 2.掌握用引伸计测定塑性材料的弹性模量的方法; 3.绘制材料的载荷-位移曲线; 4.观察和分析上述两种材料在拉伸过程中的各种现象,并比较它们力学性质的差异; 5.了解电子万能材料试验机的构造和工作原理,掌握其使用方法。 二.仪器、设备及试件 电子万能材料试验机,引伸计,游标卡尺等。 最常见的拉伸试件的截面是圆形和矩形,如图5.1-1(a)、(b)所示。 l)是待测部分的主体,其截面积为S0。按标试件分为夹持部分、过渡段和待测部分。标距( l)与其截面积(S0)之间的关系,拉伸试件可分为比例试件和非比例试件。按国家标准GB228-2002距( 的规定,比例试件的有关尺寸如下表5.1-1。 表5.1-1 三.实验原理

1.塑性材料弹性模量的测试 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 的测定是材料力学最主要最基本的一个实验。 测定材料弹性模量E 一般采用比例极限内的拉伸实验,材料在比例极限内服从虎克定律,其荷载与变形关系为: ES Fl l = ? (5.1-1) 若已知载荷F 及试件尺寸,只要测得试件标距内的伸长量Δl 或纵向应变即可得出弹性模量E 。 000 Fl F E lS S = =? (5.1-2) 本实验采用引伸计在试件预拉后,夹持在试件的标距范围内,并在弹性阶段测试;当进入过弹性阶段或屈服阶段,取下引伸计。其中塑性材料的拉伸实验不间断。 2.塑性材料的拉伸(低碳钢) 实验原理如图5.1-2(a )所示,首先,实验各参数的设置由PC 传送给测控中心后开始实验,拉伸时,力传感器和引伸计分别通过两个通道将式样所受的载荷和变形连接到测控中心,经相关程序计算后,再在PC 机上显示出各相关实验结果。 图5.1-2(b )所示是典型的低碳钢拉伸图。 当试件开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的曲线斜率 低碳钢的屈服阶段通常为较为水平的锯齿状(图中的B ′-C 段),与最高载荷B ′对应的应力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样,屈服后第一次下降的最低点也不作为材料的强度指标。除此之外屈服过程中的最小值(B 点)作为屈服强度R e L : el el F R S = (5.1-3) 当屈服阶段结束后(C 点),继续加载,载荷—变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D 点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D 点,以后的曲线基本与未经卸载的曲线重合。可见

材料力学实验指导书

《材料力学》实验指导书(土木工程) 铜陵学院土木建筑系实验中心 王明芳编 2012-2-22

力学实验规则及要求 一、作好实验前的准备工作 (1)按各次实验的预习要求,认真阅读实验指导复习有关理论知识,明确实验目的,掌握实验原理,了解实验的步骤和方法。 (2)对实验中所使用的仪器、实验装置等应了解其工作原理,以及操作注意事项。 (3)必须清楚地知道本次实验须记录的数据项目及其数据处理的方法。 二、严格遵守实验室的规章制度 (1)课程规定的时间准时进入实验室。保持实验室整洁、安静。 (2)未经许可,不得随意动用实验室内的机器、仪器等一切设备。 (3)作实验时,应严格按操作规程操作机器、仪器,如发生故障,应及时报告,不得擅自处理。 (4)实验结束后,应将所用机器、仪器擦拭干净,并恢复到正常状态。 三、认真做好实验 (1)接受教师对预习情况的抽查、质疑,仔细听教师对实验内容的讲解。 (2)实验时,要严肃认真、相互配合,仔细地按实验步骤、方法逐步进行。 (3)实验过程中,要密切注意观察实验现象,记录好全部所需数据,并交指导老师审阅。 四、实验报告的一般要求 实验报告是对所完成的实验结果整理成书面形式的综合资料。通过实验报告的书写,培养学习者准确有效地用文字来表达实验结果。因此,要求学习者在自己动手完成实验的基础上,用自己的语言扼要地叙述实验目的、原理、步骤和方法,所使用的设备仪器的名称与型号、数据计算、实验结果、问题讨论等内容,独立地写出实验报告,并做到字迹端正、绘图清晰、表格简明。

目录 实验一纯弯曲梁横截面上正应力的分布规律实验 (4) 实验二材料弹性模量E、泊松比μ的测定 (7) 实验三偏心拉伸实验 (12) 实验四等强度梁实验 (16) 实验五悬臂梁实验 (18) 实验六压杆稳定实验 (21) 实验七纯扭转实验 (25) 实验八电阻应变片灵敏系数测定实验实验 (28)

《材料力学实验指导书》解析

课程教案 课程名称: 任课教师: 所属院部:建筑工程与艺术学院 教学班级: 教学时间:2015—2016 学年第 1 学期湖南工学院

1 实验一 拉伸实验 一、本实验主要内容 低碳钢和铸铁的拉伸实验。 二、实验目的与要求 1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。 2.根据碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(F L -?曲线)。 3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。 三、实验重点难点 1、拉伸时难以建立均匀的应力状态。 2、采集数据时,对数据的读取。 四、教学方法和手段 课堂讲授、提问、讨论、启发、演示、辩论等;实验前对学生进行实验的理论指导和提醒学生实验过程的注意事项。 五、作业与习题布置 1、低碳钢拉伸图分为几阶段?每一阶段,力与变形有何关系?有什么现象? 2、低碳钢和铸铁在拉伸时可测得哪些力学性能指标?用什么方法测得?

1 实验一 拉伸实验 拉伸实验是测定材料力学性能的最基本最重要的实验之一。由本实验所测得的结果,可以说明材料在静拉伸下的一些性能,诸如材料对载荷的抵抗能力的变化规律、材料的弹性、塑性、强度等重要机械性能,这些性能是工程上合理地选用材料和进行强度计算的重要依据。 一、实验目的要求 1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。 2.根据碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(F L -?曲线)。 3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。 二、实验设备和仪器 万能材料试验机、游标卡尺、分规等。 三、拉伸试件 金属材料拉伸实验常用的试件形状如图所示。图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。 为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即 5l d =或10l d =。 对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。其截面面积 和试件标距关系为l = l =A 为标距段内的截面积。 四、实验方法与步骤

材料力学实验

材料力学实验 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

实验一实验绪论 一、材料力学实验室实验仪器 1、大型仪器: 100kN(10T)微机控制电子万能试验机;200kN(20T)微机控制电子万能试验机;WEW-300C微机屏显式液压万能试验机;WAW-600C微机控制电液伺服万能试验机 2、小型仪器: 弯曲测试系统;静态数字应变仪 二、应变电桥的工作原理 三、材料力学实验与材料力学的关系 四、材料力学实验的要求 1、课前预习 2、独立完成 3、性能实验结果表达执行修约规定 4、曲线图一律用方格纸描述,并用平滑曲线连接 5、应力分析保留小数后一到二位

实验二轴向压缩实验 一、实验预习 1、实验目的 I、测定低碳钢压缩屈服点 II、测定灰铸铁抗压强度 2、实验原理及方法 金属的压缩试样一般制成很短的圆柱,以免被压弯。圆柱高度约为直径的倍~3倍。混凝土、石料等则制成立方形的试块。 低碳钢压缩时的曲线如图所示。实验表明:低碳钢压缩时的弹性模量E和屈服极限σε,都与拉伸时大致相同。进入屈服阶段以后,试样 越压越扁,横截面面积不断增大,试样抗压能力也继续增强,因而得不 到压缩时的强度极限。 3、实验步骤 I、放试样 II、计算机程序清零 III、开始加载 IV、取试样,记录数据 二、轴向压缩实验原始数据 指导老师签名:徐

三、轴向压缩数据处理 测试的压缩力学性能汇总 强度确定的计算过程: 实验三轴向拉伸实验 一、实验预习 1、实验目的 (1)、用引伸计测定低碳钢材料的弹性模量E; (2)、测定低碳钢的屈服强度,抗拉强度。断后伸长率δ和断面收缩率; (3)、测定铸铁的抗拉强度,比较两种材料的拉伸力学性能和断口特征。 2、实验原理及方法 I.弹性模量E及强度指标的测定。(见图) 低碳钢拉伸曲线铸铁拉伸曲线 (1)测弹性模量用等增量加载方法:F o =(10%~20%)F s , F n =(70%~80%)F s 加载方案为:F 0=5,F 1 =8,F 2 =11,F 3 =14,F 4 =17 ,F 5 =20 (单位:kN) 数据处理方法: 平均增量法 ) , ( ) ( 0取三位有效数 GPa l A l F E m om ? ? ? = δ(1) 线性拟合法 () GPa A l l F n l F F n F E om o i i i i i i? ? ∑ - ∑? ∑ ∑ - ∑ = 2 2 ) ( (2)

材料力学实验指导书

试验一岩石单轴抗压试验 一、试验的目的: 测定岩石的单轴抗压强度R c。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、基本原理 岩石的单轴抗压强度是指岩石试样在单向受压至破坏时,单位面积上所承受的最大压应力: (MPa) 一般简称抗压强度。根据岩石的含水状态不同,又有干抗压强度和饱和抗压强度之分。 岩石的单轴抗压强度,常采用在压力机上直接压坏标准试样测得,也可与岩石单轴压缩变形试验同时进行,或用其它方法间接求得。 三、主要仪器设备 1、钻石机、切石机、磨石机或其他制样设备。 2、测量平台、角尺、放大镜、游标卡尺。 3、压力机,应满足下列要求: (1)压力机应能连续加载且没有冲击,并具有足够的吨位,使能在总吨位的10%—90%之间进行试验。 (2)压力机的承压板,必须具有足够的刚度,其中之一须具有球形座,板面须平整光滑。 (3)承压板的直径应不小于试样直径,且也不宜大于试样直径的两倍。如压力机承压板尺寸大于试样尺寸两部以上时,需在试样上下两端加辅助承压板。辅助承压板的

刚度和平整度应满足压力机承压板的要求。 (4)压力机的校正与检验,应符合国家计量标准的规定。 三、操作步骤 1、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取的岩块,在取样和试样制备过程中,不允许发生认为裂隙。 (2)试件规格:采用直径5厘米,高为10厘米的方柱体,各尺寸允许变化范围为:直径及边长为±0.2厘米,高为±0.5厘米。 (3)对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 (4)试样制备的精度应満足如下要求: a沿试样高度,直径的误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0.25°; d 方柱体试样的相邻两面应互相垂直,最大偏差不超过0.25°。 (4)试样含水状态处理 在进行试验前应按要求的含水状;制备试样时采用的冷却液,必须是洁净水,不许使用油液。 (5)对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样 2、试样描述 描述内容包括:岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等;加荷方向与岩石试样内层理、节理、裂隙的关系及试样加工中出现的问题; 3、试样尺寸测量

材料力学实验参考

实验一、测定金属材料拉伸时的力学性能 一、实验目的 1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ?-曲线)。 二、仪器设备 1、液压式万能试验机。 2、游标卡尺。 三、实验原理简要 材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。试件在达到最大载荷前,伸长变形在标距范围内均匀分布。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。 铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。 四、实验过程和步骤 1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。取三处中最小值作为计算试件横截面积的直径。 2、 按要求装夹试样(先选其中一根),并保持上下对中。 3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操 作要求见万能试验机使用说明。 4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ?-曲线显示在微机显示屏 上。从低碳钢的l F ?-曲线上读取s F 、b F 值,从铸铁的l F ?-曲线上读取b F 值。 5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。 6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。 7、 比较低碳钢和铸铁的断口特征。

材料力学实验

1,为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2, 分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状, 且有450的剪切唇,断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织。. 3,分析铸铁试件压缩破坏的原因. 答:铸铁试件压缩破坏,其断口与轴线成45°~50°夹角,在断口位置剪应力已达到其抵抗的最大极限值,抗剪先于抗压达到极限,因而发生斜面剪切破坏. 4,低碳钢与铸铁在压缩时力学性质有何不同? 结构工程中怎样合理使用这两类不同性质的材料? 答:低碳钢为塑性材料,抗压屈服极限与抗拉屈服极限相近,此时试件不会发生断裂,随荷载增加发生塑性形变;铸铁为脆性材料,抗压强度远大于抗拉强度,无屈服现象。压缩试验时,铸铁因达到剪切极限而被剪切破坏。 通过试验可以发现低碳钢材料塑性好,其抗剪能力弱于抗拉;抗拉与抗压相近。铸铁材料塑性差,其抗拉远小于抗压强度,抗剪优于抗拉低于抗压。故在工程结构中塑性材料应用范围广,脆性材料最好处于受压状态,比如车床机座。 5,试件的尺寸和形状对测定弹性模量有无影响?为什么? 答: 弹性模量是材料的固有性质,与试件的尺寸和形状无关。 6, 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同?为什么必须用逐级加载的方法测弹性模量? 答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。 7, 试验过程中,有时候在加砝码时,百分表指针不动,这是为什么?应采取什么措施? 答:检查百分表是否接触测臂或超出百分表测量上限,应调整百分表位置。 8,测G时为什么必须要限定外加扭矩大小? 答:所测材料的G必须是材料处于弹性状态下所测取得,故必须控制外加扭矩大小。 9, 碳钢与铸铁试件扭转破坏情况有什么不同?分析其原因.

材料力学实验指导书

工程力学实验指导书 主讲:林植慧 机械与汽车工程学院 SCHOOL OF MECHANICAL AND AUTOMOTIVE ENGINEERING

实验一, 二 低碳钢(Q235钢)、铸铁的轴向拉伸试验 一、实验目的与要求 1.观察低碳钢(Q235钢)和铸铁在拉伸试验中的各种现象。 2.测绘低碳钢和铸铁试件的载荷―变形曲线(F ―Δl 曲线)及应力―应变曲线(σ―ε曲线)。 3.测定低碳钢拉伸时的比例极限P σ,屈服极限s σ、强度极限b σ、伸长率δ、断面收缩率ψ和铸铁拉伸时的强度极限b σ。 4.测定低碳钢的弹性模量E 。 5.观察低碳钢在拉伸强化阶段的卸载规律及冷作硬化现象。 6.比较低碳钢(塑性材料)和铸铁(脆性材料)的拉伸力学性能。 二、实验设备、仪器和试件 1.微机控制电子万能试验机。 2.电子式引伸计。 3.游标卡尺。 4.低碳钢、铸铁拉伸试件。 三、实验原理与方法 材料的力学性能主要是指材料在外力作用下,在强度和变形方面表现出来的性质,它是通过实验进行研究的。低碳钢和铸铁是工程中广泛使用的两种材料,而且它们的力学性质也较典型。 试验采用的圆截面短比例试样按国家标准(GB/T 228-2002《金属材料 室温拉伸试验方法》) 制成,标距0l 与直径0d 之比为5100 0或=d l ,如图1-1所示。这样可以避免因试样尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。图中:0d 为试样直径,0l 为试样的标距。国家标准中还规定了其他形状截面的试样。 图 1-1 金属拉伸试验在微机控制电子万能试验机上进行,在实验过程中,与电子万能试验机联机的计算机显示屏上实时绘出试样的拉伸曲线(也称为F ―l ?曲线),如图1-2所示。低碳钢试样的拉伸曲线(图1-2a)分为弹性阶段,屈服阶段,强化阶段及局部变形阶段。如果在强化阶段

材料力学实验指导书(测量材料弹性模量E)

测量材料弹性模量E实验 一、实验名称 测定材料的弹性模量。 二、实验目的 1.掌握测定Q235钢弹性模量E的实验方法; 2.熟悉CEG-4K型测E试验台及其配套设备的使用方法。 三、实验设备及仪器 1.CEG-4K型测E试验台 2.球铰式引伸仪 四、试样制备 1. 试样:Q235钢,如图所示,直径d=10mm,标距L=100mm。 2、载荷增重ΔF=1000N(砝码四级加载,每个砝码重25N,初载砝码一个,重16N,采用1:40杠杆比放大) 五、实验原理 实验时,从F0到F4逐级加载,载荷的每级增量为1000N。每次加载时,记录相应的长度变化量,即为ΔF引起的变形量。在逐级加载中,如果变形量ΔL 基本相等,则表明ΔF与ΔL为线性关系,符合胡克定律。完成一次加载过程,将得到ΔL的一组数据,实验结束后,求ΔL1到ΔL4的平均值ΔL平,代入胡克定律计算弹性模量。即

EA l F l ? ? = ? ?001 .0 备注:引伸仪每格代表0.001mm。 六、实验步骤及注意事项 1.调节吊杆螺母,使杠杆尾部上翘一些,使之与满载时关于水平位置大致对称。 2.把引伸仪装夹到试样上,必须使引伸仪不打滑。 注意:对于容易打滑的引伸仪,要在试样被夹处用粗纱布沿圆周方向打磨一下。引伸仪为精密仪器,装夹时要特别小心,以免使其受损。采用球铰式引伸仪时,引伸仪的架体平面与试验台的架体平面需成45°左右的角度。 3.挂上砝码托。 4.加上初载砝码,记下引伸仪的初读数。 5.分四次加等重砝码,每加一次记录一次引伸仪的读数。注意:加砝码时要缓慢放手,以使之为静载,防止砝码失落而砸伤人、物。 6.实验完毕,先卸下砝码,再卸下引伸仪。 七、数据处理 1. 记录相关数据 分级加载初载一次加载二次加载三次加载四次加载引伸仪读数L0= L1= L2= L3= L4= 2.计算 (1)各级形变量的计算 分级加载一次加载二次加载三次加载四次加载平均值形变量ΔL1= ΔL2= ΔL3= ΔL4= ΔL平=

材料力学实验指导书0908资料

材料力学实验指导书 (2007版) 中国海洋大学工程学院土木工程实验中心 编者:郭卫国

学生实验守则 一、实验前要认真预习,明确实验内容、原理、目的、步骤和注意事项;课外 实验研究项目,实验前应拟定实验方案,并经实验室管理人员审查同意方 可实施; 二、学生在教师的指导下自主进行实验,要严格遵守仪器设备操作规程,节约 使用实验材料和水、电、气,如实记录实验现象、数据和结果,认真分析,独立完成实验报告; 三、爱护仪器设备及其他设施、物品,不得擅自动用与实验无关的仪器设备和 物品;不准擅自将实验室的物品带出室外;损坏或遗失仪器设备及其他设施、物品,应按学校有关规定进行赔偿; 四、实验完毕后,要及时关闭电源、水源、气源,清理卫生,将仪器设备和实 验物品复位,经指导老师检查合格后方可离开; 五、注意安全,熟悉安全设施和事故处理措施,实验过程中发现异常情况要及 时报告;发生危险时,应立即关闭电源、水源、气源,并迅速撤离;规范处理实验废液、废气和固体废弃物; 六、遵守纪律,必须按规定或预约时间参加实验,不得迟到、早退、旷课;保 持实验室安静,不准大声喧哗、嬉闹,不准从事与实验无关的活动;保持 实验室清洁,不准吸烟,不准随地吐痰、乱扔杂物。 前言 实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。例如材料力学中应力-应变的线性关系就是胡克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。不仅如此,实验对材料力学有着更重要的一面,因为材料力学的理论是建立在将真实材料理想化、实际构件典型化、公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。在解决工程设计中的强度、刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数,

材料力学实验指导要点

专业: 学号: 姓名: 西南交通大学峨眉校区力学实验中心 一、学生实验须知 1.学生进入实验室,要严格遵守实验室的各项规章制度,服从指导教师的安排; 2.严禁在实验室大声喧哗和嬉戏; 3.保持实验室周围的整洁,不乱扔纸屑、果皮,不随地吐痰,严禁吸烟;4.实验前应预习实验内容,弄清实验目的、原理和方法; 5.实验过程中应严肃认真,严格按照规定步骤操作,自己动手完成,及时记录和整理实验数据,不得转抄他人数据,要培养自己严谨的科学态度和分析问题、解决问题的能力; 6.使用仪器设备时,应严格遵守操作规程,若发现异常现象应立即停止使用,并及时向指导教师报告。如果因违反操作规程(或未经许可使用)而造成设备损坏,应按学校有关规定赔偿损失。 7.实验结束后,应将仪器设备和桌凳整理好并归还原位,协助打扫实验室卫生,经指导老师检查合格后方能离开实验室; 8.学生应按时(最迟不超过一周时间)上交实验报告,以供老师批改统计成绩。 - 1 - 二、实验仪器设备介绍

(一)材料力学多功能组合实验台 材料力学多功能组合实验台(以下简称实验台)是方便学生自己动手做材料力学电测实验的设备,配套使用的仪器设备还有:拉压型力传感器、力&应变综合参数测试仪、电阻应变片、连接导线与梅花改刀等,并配有计算机接口,可实现数据的计算机自动采集与计算。一个实验台可做多个电测实验,功能全面,操作简单,实验台结构如图2-1所示。 图2-1 材料力学多功能组合实验台 实验台为框架式整体结构,配置有拉压型力传感器及标准测点应变计(在试件待测点表面粘贴的电阻应变片),通过力&应变综合参数测试仪(以下简称测试仪)实现力与应变的实时测量。实验台分前后两半部分,前半部分可做弯扭组合变形实验、材料弹性模量与泊松比测定实验、偏心拉伸实验、压杆稳定实验、悬臂梁实验、等强度梁实验;后半部分可做纯弯曲梁正应力测试实验、电阻应变片灵敏系数标定实验、组合叠梁实验等。 操作规程如下: (1) 将所作实验的试件通过有关附件连接到架体相应位置,连接拉压型力传感器和加载件到加载机构上。 (2) 连接拉压型力传感器电缆线到测试仪后面传感器输入插座,连接电阻应变片导线到测试仪的各个测量通道接线柱上。 (3) 打开测试仪电源,预热约20分钟左右,输入力传感器量程及灵敏度和应变片灵敏系数(一般首次使用时已调好,如实验项目及力传感器没有改变,可不必重新设置),在不加载(加力点上下未接触)的情况下将测力初值和应变初值调至零。 (4) 在初始值以上对各试件进行分级加载,转动手轮速度要均匀,记下各级力值和待测点各通道的应变值,若已与微机连接,则全部数据可由计算机进行分析处理。

材料力学实验指导书 (1)..

材料力学实验指导书 河北科技大学建筑工程学院 2005年2月

目录 实验一拉伸实验 (2) 实验二压缩实验 (7) 实验三纯弯曲梁的正应力实验 (10) 实验四材料弹性模量E和泊松比μ的测定 (14) 附录1 微控万能材料实验机 (19) 附录2 组合式材料力学多功能实验台 (20) 附录3 电测法的基本原理 (22)

实验一 拉伸试验 一、实验目的和实验要求 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的应力应变图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 5.学习和掌握材料的力学性能测试的基本实验方法。 二、实验原理 1.为了检验低碳钢拉伸时的机械性质,应使试样轴向受拉直到断裂,在拉伸过程中以及试样断裂后,测读出必要的特征数据(如;P S 、P b 、l 1、d l )经过计算,便可得到表示材料力学性能的四大指标:σs 、σb 、δ、ψ。 2.铸铁属脆性材料,轴向拉伸时,在变形很小的情况下就断裂,故一般测定其抗拉强度极限 σb 。 三、实验方法 按照国家标准《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 1.测定低碳钢拉伸时的强度和塑性性能指标 实验开始后,观察实验软件绘出的拉伸过程中的σ-ε曲线,直至试件拉断,以测出低碳钢在拉伸时的力学性质。

材料力学实验报告答案

材料力学实验报告答案 Prepared on 22 November 2020

材料力学实验报告 评分标准 拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(P-ΔL曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度0.02 mm 三、实验数据(2分)

四、实验结果处理 (4分) 0A P s s = σ =300MPa 左右 0 A P b b = σ =420MPa 左右 %10000 1?-= L L L δ =20~30%左右 %= 1000 1 0?-A A A ψ =60~75%左右 五、回答下列问题(2分,每题分) 1、画出(两种材料)试件破坏后的简图。 略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同为什么 相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。 压缩实验报告 一、实验目的(1分)

1. 测定压缩时铸铁的强度极限σb 。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备 (1分) 机器型号名称电子万能试验机 (分) 测量尺寸的量具名称 游标卡尺 精度 0.02 mm (分) 三、实验数据(1分) 四、实验结果处理 (2分) A P b b = σ =740MPa 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。 略 2. 绘出两种材料的压缩曲线。 略 3. 为什么在压缩实验时要加球形承垫

材料力学拉伸试验

§1-1 轴向拉伸实验 一、实验目的 1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。 2、 测定铸铁的抗拉强度m R (b σ)。 3、 比较低碳钢?5(塑性材料)和铸铁?5(脆性材料)在拉伸时的力学性能和断口特征。 注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。 二、设备及试样 1、 电液伺服万能试验机(自行改造)。 2、 0.02mm 游标卡尺。 3、 低碳钢圆形横截面比例长试样一根。把原始标距段L 0十等分,并刻画出圆周等分线。 4、 铸铁圆形横截面非比例试样一根。 注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。非比例试样0L 与0S 无关。 三、实验原理及方法 低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。 ΔL (标距段伸长量) 低碳钢拉伸图(F —ΔL 曲线) 以轴向力F 为纵坐标,标距段伸长量ΔL 为横坐标,所绘出的试验曲线图称为拉伸图,即F —ΔL 曲线。低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应的轴向力,F m 为最大轴向力。 F —ΔL 曲线与试样的尺寸有关。为了消除试样尺寸的影响,把轴向力F 除以试样横截面的原始面积S 0就得到了名义应力,也叫工程应力,用σ表示。同样,试样在标距段的伸长ΔL 除以试样的原始标距LO 得到名义应变,也叫工程应变,用ε表示。σ—ε曲线与F —ΔL 曲线形状相似,但消除了儿何尺寸的影响,因此代表了材料本质属性,即材料的本构关系。

材料力学实验指导书分析

第一章绪论 §1.1 材料力学实验的内容 实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。例如材料力学中应力应变的线性关系就是虎克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。不仅如此,实验对材料力学有着更重要的一面。因为材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。在解决工程设计的强度,刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数。这些常数只有靠材料试验测试才能得到。有时实际工程中构件的几何形状和载荷都十分复杂,构件中的应力单纯靠计算难以得到正确的数据,这种情况下必须借助于实验应力分析的手段才能解决。因此,材料力学实验是学习材料力学课程不可缺少的重要环节。材料力学实验包括以下三个方面的内容: 1.测定材料的力学性能材料的力学性能是指在力或能的作用下,材料在变形、强 度等方面表现出的一些特性,如弹性极限、屈服极限(屈服强度)、强度极限、弹性模量、疲劳极限、冲击韧性等。这些强度指标或参数都是构件强度、刚度和稳定性计算的依据,而它们一般要通过实验来测定。此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。随着材料科学的发展,各种新型合金材料、合成材料不断涌现,力学性能的测定,是研究每一中新型材料的重要任务。 2.验证理论公式的正确性材料力学的一些理论是以某些假设为基础的,例如杆件 的弯曲理论就以平面假设为基础。用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。至于新建立的理论和公式,用实验来验证更是必不可少的。实验是验证、修正和发展理论的必要手段。 3.实验应力分析某些情况下,例如因构件几何形状不规则,受力复杂或精确的边 界条件难以确定等,应力分析计算难于获得准确结果。这时,用诸如电测、光弹性等实验应力分析方法直接测定构件的应力,便成为有效的方法。对经过较大简化后得出的理论计算或数值计算,其结果的可靠性更有赖于实验应力分析的验证。§1.2 材料力学试验的标准、方法和要求 材料的强度指标如屈服极限、强度极限、持久极限等,虽是材料的固有属性,但往往与试样的形状、尺寸、表面加工精度、加载速度、周围环境(温度、介质)等有关。为使实验结果能相互比较,国家标准对试样的取材、形状、尺寸、加工精度、试验手段和方法以及数据处理都作了统一规定。

材料力学实验指导书(工科类专业)

材料力学实验指导书(工科类专业)

材料力学实验指导书(工科类专业)

实验一 拉伸实验 一、 实验目的 1.测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。 2.测定铸铁的抗拉强度m R (b σ)。 3.比较低碳钢(塑性材料)和铸铁(脆性材料)在拉伸时的力学性能和断口特征。 注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。 二、 设备及试样 1.电液伺服万能试验机。 2.0.02mm 游标卡尺。 3.低碳钢圆形横截面比例长试样一根。把原始标距段L 0十等分,并刻画出圆周等分线。 4.铸铁圆形横截面非比例试样一根。 注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。非比例试样0L 与0 S 无关。

三、实验原理及方法 低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。 ΔL (标距段伸长量) 低碳钢拉伸图(F —ΔL 曲线) 以轴向力F 为纵坐标,标距段伸长量ΔL 为 横坐标,所绘出的试验曲线图称为拉伸图,即F —ΔL 曲线。低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应 的轴向力,F m 为最大轴向力。 F —ΔL 曲线与试样的尺寸有关。为了消除 试样尺寸的影响,把轴向力F 除以试样横截面的原始面积S 0就得到了名义应力,也叫工程应力, 用σ表示。同样,试样在标距段的伸长ΔL 除以试样的原始标距LO 得到名义应变,也叫工程应

材料力学实验报告1

材料力学实验报告 院系 班级 学号 姓名

实验一金属材料拉伸实验 实验日期: 同组成员: 一.实验目的 1.测定低碳钢的屈服极限,强度极限,延伸率和断面收缩率。 2.测定铸铁的强度极限。 二.实验设备 1.万能材料试验机 2.游标卡尺 三.实验步骤 1.用游标卡尺在试件标距长度内取三处,测每一处截面两个相互垂直方向的直径,取其平均值。最后以三处平均值中最小值作为试件的直径。 2.选择试验机的量程 根据试件的强度极限和截面积,估算试件的最大载荷,选择合适的量程。 3.打开电源开关,打开油泵开关,关上回油阀,打开送油阀,将工作台抬高1-2厘米,消除自重,关上送油阀。 4.装夹试件,调读盘零点。 5.打开送油阀,缓慢加载,测试并观察,记录相关数据。 6.试件拉断后,关上送油阀,将试件取出,记录相关数据,测试件断后标距及断后直径。 7.实验整理 四、实验记录及实验结果: 1、试件尺寸记录 - 1 -

2、载荷及计算结果 3、绘出低碳钢和铸铁的P-ΔL图 五、实验结论与分析: 1、分析比较两种典型金属材料的抗拉机械性能。 2、国家标准《金属拉伸实验方法》(GB228-87)中规定拉伸试样分为短试样和长试样,对同一材质、 同一直径的圆形试样,短试样和长试样的断后延伸率是否相同?若不一样哪个大? - 2 -

实验二铸铁材料压缩实验 实验日期: 同组成员: 一.实验目的 1.测定铸铁抗压强度极限σb。 2.观察铸铁在压缩时的变形和破坏现象。 二.实验设备 1.万能材料试验机 2.游标卡尺 三.实验步骤 1.测量试件直径 用游标卡尺在试件相互垂直方向的直径各测一次,取其平均值。 2.选择试验机的量程 根据试件的强度极限和截面积,估算试件的最大载荷,选择合适的量程。 3.打开电源开关,打开油泵开关,关上回油阀,打开送油阀,将工作台抬高1-2厘米,消除自重,关上送油阀。 4.安装试件,注意载荷对中。调读盘零点。 5.打开送油阀,缓慢加载,测试并观察,试件压断后,关上送油阀,将试件取出,记录相关数据。 四、实验记录及实验结果: 1、试件几何尺寸记录 2、实验数据记录及处理 五. 实验结论与分析: 1、铸铁的破坏形式说明什么问题? 2、铸铁压缩与拉伸破坏端面形状有什么不同? - 3 -

材料力学实验报告答案

材料力学实验报告答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

材料力学实验报告 评分标准 拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、 ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(P- ΔL曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度0.02 mm 三、实验数据(2分)

四、实验结果处理 (4分) 0A P s s = σ =300MPa 左右 0 A P b b = σ =420MPa 左右 %10000 1?-= L L L δ =20~30%左右 %= 1000 1 0?-A A A ψ =60~75%左右 五、回答下列问题(2分,每题分) 1、画出(两种材料)试件破坏后的简图。 略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同为什么 相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。 压缩实验报告 一、实验目的(1分) 1. 测定压缩时铸铁的强度极限σb 。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。

机器型号名称电子万能试验机 (分) 测量尺寸的量具名称 游标卡尺 精度 0.02 mm (分) 三、实验数据(1分) 四、实验结果处理 (2分) A P b b = σ =740MPa 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。 略 2. 绘出两种材料的压缩曲线。 略 3. 为什么在压缩实验时要加球形承垫 当试件的两端稍有不平行时,利用试验机上的球形承垫自动调节,可保证压力通过试件的轴线。 4. 对压缩试件的尺寸有何要求为什么 试件承受压缩时,上下两端与试验机承垫之间产生很大的摩擦力,使试件两端的横向变形受阻,导致测得的抗压强度比实际偏高。试件越短,影响越明显。 若试件过长,容易产生失稳现象。 5. 铸铁的压缩破坏形式说明了什么 铸铁的抗剪能力低于抗压能力。 测定弹性模量E 实验报告 一、实验目的 (1分) 1. 测定常用金属材料的弹性模量E 二、实验设备 (1分) 机器型号名称 电子万能试验机 测量尺寸的量具名称 游标卡尺 精度 0.02 mm 引伸计标距 50 mm

相关文档
最新文档