高考数学试题汇编几何证明选讲

第十四章 选修4系列选讲

第一节 几何证明选讲

高考试题

考点一 相似三角形的判定与性质

1. (2013年陕西卷,理15B)(几何证明选做题)如图,弦AB 与CD 相交于☉O 内一点E,过E 作BC 的平行线与AD 的延长线交于点P.已知PD=2DA=2,则PE= .

解析:由PD=2DA=2,得PA=PD+DA=2+1=3, 又PE ∥BC,得∠PED=∠C, 又∠C=∠A,得∠PED=∠A,

在△PED 和△PAE 中,∠EPD=∠APE,∠PED=∠A, 所以△PED ∽△PAE, 得

PE PA =PD

PE

,

因此PE 2

=PA ·PD=3×

答案2.(2011年陕西卷,理15B)如图所示,∠B=∠D,AE ⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE= .

解析:由∠B=∠D,∠AEB=∠ACD=90°, 得△ACD ∽△AEB, 所以

AC AE =AD AB ,即4AE =12

6

,所以AE=2, 所以在直角三角形ABE 中,

答案3.(2011年湖南卷,理11)如图所示,A,E 是半圆周上的两个三等分点,直径BC=4,AD ⊥BC,垂足为D,BE 与AD 相交于点F,则AF 的长为 .

解析:如图所示,设圆心为O,连接OA,OE,AE,因为A,E 是半圆周上的两个三等分点,所以AE ∥BC,AE=1

2

BC=2,所以△AFE ∽△DFB,所以

AF DF =AE

DB

.在△AOD 中,

∠AOD=60°,AO=2,AD ⊥BC,故OD=AOcos ∠AOD=1,AD=AOsin ∠所以BD=1.故

AF=

AE BD ·DF=2(AD-AF).解得

答案考点二 直线和圆的位置关系

1.(2013年重庆卷,理14)如图所示,在△ABC 中,∠ACB=90°,∠A=60°,AB=20,过C 作△ABC 的外接圆的切线CD,BD ⊥CD,BD 与外接圆交于点E,则DE 的长为 .

解析:在△ABC 中,

BC=AB ·sin 60°, 由弦切角定理知∠BCD=∠A=60°,

所以 由切割线定理知,CD 2

=DE ·BD,

解得DE=5. 答案:5

2.(2012年湖北卷,理15)如图所示,点D 在☉O 的弦AB 上移动,AB=4,连接OD,过点D 作OD 的垂线交☉O 于点C,则CD 的最大值为 .

解析:连接OC.因为CD ⊥OD,所以又OC 为☉O 的半径,是定值,所以当OD 取最小值时,CD 取最大值.显然当OD ⊥AB 时,OD 取最小值,此时CD=1

2

AB=2,即CD 的最大值为2. 答案:2

3.(2013年广东卷,理15)(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC=CD,过C 作圆O 的切线交AD 于E.若AB=6, ED=2,则BC= .

解析:连接OC,因CE是☉O的切线,

所以OC⊥CE,即∠OCE=90°,又因AB是直径,所以∠ACB=∠ACD=90°,

即∠OCA+∠ACE=∠ACE+∠ECD=90°,

得∠OCA=∠DCE,

又因OC=OA,所以∠OCA=∠OAC,

则∠BAC=∠DCE,又因AC⊥BD,BC=CD,

易证AB=AD,得∠ABC=∠ADC,

即∠ABC=∠CDE,

所以△ABC∽△CDE,所以AB

CD

=

BC

ED

,

即BC2=AB·ED=12,所以

答案

4. (2013年湖南卷,理11)如图,O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.

解析:过O作CD的垂线OE交CD于点E,

则E为CD的中点,

由相交弦定理得AP·PB=DP·PC,

则PC=AP PB

DP

?

=4,

所以DC=5,

圆心O到弦CD

答案

5.(2013年新课标全国卷Ⅱ,理22)(选修41:几何证明选讲)如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B、E、F、C四点共圆.

(1)证明:CA 是△ABC 外接圆的直径;

(2)若DB=BE=EA,求过B 、E 、F 、C 四点的圆的面积与△ABC 外接圆面积的比值. (1)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB=∠A,

由题设知

BC FA =DC

EA

,故△CDB ∽△AEF,所以∠DBC=∠EFA. 因为B,E,F,C 四点共圆,

所以∠CFE=∠DBC,故∠EFA=∠CFE=90°. 所以∠CBA=90°,因此CA 是△ABC 外接圆的直径. (2)解:连接CE,因为∠CBE=90°, 所以过B,E,F,C 四点的圆的直径为CE. 由DB=BE,有CE=DC. 又BC 2

=DB ·BA=2DB 2

,

所以CA 2

=4DB 2

+BC 2

=6DB 2

.

而CE 2

=DC 2

=DB ·DA=3DB 2

,

故过B,E,F,C 四点的圆的面积与△ABC 外接圆面积的比值为

12

. 6.(2013年新课标全国卷Ⅰ,理22)如图,直线AB 为圆的切线,切点为B,点C 在圆上,∠ABC 的角平分线BE 交圆于点E,DB 垂直BE 交圆于点D.

(1)证明:DB=DC;

(2)设圆的半径为延长CE 交AB 于点F,求△BCF 外接圆的半径. (1)证明:连接DE,交BC 于点G. 由弦切角定理得, ∠ABE=∠BCE. 而∠ABE=∠CBE,

故∠CBE=∠BCE,BE=CE.

又DB⊥BE,

所以DE为直径,

则∠DCE=90°,

由勾股定理可得DB=DC.

(2)解:由(1)知,∠CDE=∠BDE,DB=DC,

故DG是BC的中垂线,

所以.

设DE的中点为O,连接BO,

则∠BOG=60°.

从而∠ABE=∠BCE=∠CBE=30°,

所以CF⊥BF,

故Rt△BCF.

7.(2012年江苏卷,21A)如图所示,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.

证明:连接OD,如图所示.

因为BD=DC,O为AB的中点,

所以OD∥AC,

于是∠ODB=∠C.

因为OB=OD,

所以∠ODB=∠B.

于是∠B=∠C.

因为点A,E,B,D都在圆O上,

且D,E为圆O上位于AB异侧的两点,

所以∠E和∠B为同弧所对的圆周角,

故∠E=∠B,所以∠E=∠C.

模拟试题

考点一相似三角形的判定与性质

1.(2012广东东莞高级中学二模)如图所示,AB是半径等于3的☉O的直径,CD是☉O的弦,BA,DC的延长线交于点P,若PA=4,PC=5,则∠CBD= .

解析:连接AC,DO,OC,可得△PAC ∽△PDB, ∴

PA PD =PC

PB

.

∴PD=8,CD=3.

又OC=OD=3,∴△OCD 为等边三角形. ∴∠COD=60°,∴∠CBD=1

2

∠COD=30°. 答案:30°

2.(2012衡水中学期末)如图所示,已知C 点在圆O 直径BE 的延长线上,CA 切圆O 于A 点,∠ACB 的平分线CD 交AE 于点F,交AB 于点D.

(1)求∠ADF 的度数; (2)若AB=AC,求AC ∶BC. 解:(1)∵AC 为圆O 的切线, ∴∠B=∠EAC,

又∵CD 是∠ACB 的平分线, ∴∠ACD=∠DCB,

∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD. 又∵BE 为圆O 的直径,∴∠DAE=90°, ∴∠ADF=

1

2

(180°-∠DAE)=45°. (2)∵∠B=∠EAC,∠ACB=∠ACB, ∴△ACE ∽△BCA, ∴

AC BC =AE

BA

.又∵AB=AC,∴∠B=∠ACB=30°,

∴在Rt △ABE 中, AE AB =tan B=tan 30°,

AC BC =AE AB 考点二 直线和圆的位置关系

1.(2013北京市海淀区斯末)如图所示,PC 与圆O 相切于点C,直线PO 交圆O 于A,B 两点,弦CD 垂直AB 于E,则下面结论中,错误的结论是( )

(A)△BEC∽△DEA

(B)∠ACE=∠ACP

(C)DE2=OE·EP

(D)PC2=PA·AB

解析:由切割线定理可知PC2=PA·PB,所以选项D错误,故选D.

答案:D

2.(2013东阿一中调研)如图所示,AB是☉O的直径,P是AB延长线上的一点,过P作☉O的切线,切点为

,若∠CAP=30°,则PB= .

解析:连接OC,因为,∠CAP=30°,

所以°=2,则AB=2OC=4,

由切割线定理得PC2=PB·PA=PB·(PB+BA),

解得PB=2.

答案:2

综合检测

1.(2013北京市通州区期末)如图所示,已知则圆O的半径OC的长为.

解析:取BD的中点M,连接结OM,OB,则OM⊥BD,因为BD=8,所以DM=MB=4,AM=5+4=9,

所以OM2=AO2-AM2=90-81=9,所以半径即OC=5.

答案:5

2.(2012天津质检)如图所示,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆O的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为.

解析:如图所示,连接OE,OC.

∵直线l与圆O相切于点C,

∴OC⊥l.

又∵AD⊥l,

∴OC∥AD,

∴∠DAB=∠COB.

又圆O的直径AB=8,BC=4,

∴△COB为等边三角形,

∴∠COB=60°,∴∠DAB=60°,

∴△AEO也为等边三角形,

∴AE=OA=4.

答案:4

3.(2013云南师大附中检测)如图所示,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连接PB交圆O于点D,若MC=BC.

(1)求证:△APM∽△ABP;

(2)求证:四边形PMCD是平行四边形.

证明:(1)∵PM是圆O的切线,NAB是圆O的割线,N是PM的中点,

∴MN2=PN2=NA·NB,

∴PN

NB

=

NA

PN

,

又∵∠PNA=∠BNP, ∴△PNA∽△BNP,∴∠APN=∠PBN, 即∠APM=∠PBA.

∵MC=BC, ∴∠MAC=∠BAC,

∴∠MAP=∠PAB,

∴△APM∽△ABP.

(2)∵∠ACD=∠PBN,

∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,∴PM∥CD,

∵△APM∽△ABP,∴∠PMA=∠BPA,

∵PM是圆O的切线,∴∠PMA=∠MCP,

∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,∴MC∥PD,

∴四边形PMCD是平行四边形.

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

高中数学选修 几何证明选讲相关知识点

高中数学选修4-4,几何证明选讲相关 知识点 相似三角形的判定及有关性质 知识点1:比例线段的有关定理 平行线等分线段定理: 推论1: 推论2: 平行线等分线段成比例定理: 推论:(1) (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点2:相似图形 1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形. 叫做相似比(或相似系数) 2、相似三角形的判定方法 预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理的基本图形语言:

数学符号语言表述是:BC DE // ∴ADE ∽ABC . 判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似. 判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 三角形相似的判定方法与全等的判定方法的联系列表如下: 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法. 3、相似三角形的性质定理: (1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于 ; (2)相似三角形的周长比等于 ; (3)相似三角形的面积比等于 ; (4)相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方. 4、直角三角形的射影定理 从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段. 点和线段的正射影简称为射影 直角三角形的射影定理:

高考数学专题几何证明选讲

编写说明:考虑到复习实际,本书将选修4-5不等式选讲与前面第六章不等式、推理与证明整合编写。 选修4-1几何证明选讲 第一节相似三角形的判定及有关性质 1.平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例. 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质 (1)判定定理: (2)

1.在使用平行线截割定理时易出现对应线段、对应边对应顺序混乱,导致错误. 2.在解决相似三角形的判定或应用时易出现对应边和对应角对应失误. [试一试] 1.如图,F 为?ABCD 的边AD 延长线上的一点,DF =AD ,BF 分别交DC ,AC 于G ,E 两点,EF =16,GF =12,则BE 的长为________. 解析:由DF =AD ,AB ∥CD 知BG =GF =12,又EF =16知EG =4,故BE =8. 答案:8 2.在△ABC 中,点D 在线段BC 上,∠BAC =∠ADC ,AC =8,BC =16,则CD =________. 解析:∵∠BAC =∠ADC ,∠C =∠C ,∴△ABC ∽△DAC ,∴BC AC =AC CD ,∴CD =AC 2BC = 8216=4. 答案:4 1.判定两个三角形相似的常规思路 (1)先找两对对应角相等; (2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例; (3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”. 2.借助图形判断三角形相似的方法 (1)有平行线的可围绕平行线找相似; (2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例; (3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边. [练一练] 1.如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且AD DB =2, 那么△ADE 与四边形DBCE 的面积比是________. 解析:∵DE ∥BC ,∴△ADE ∽△ABC ,

高中数学-几何证明选讲知识点汇总与练习(内含答案)

高中数学-《几何证明选讲》知识点归纳与练习(含答案) 一、相似三角形的判定及有关性质 平行线等分线段定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。 推理2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰。 平分线分线段成比例定理 平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 相似三角形的判定及性质 相似三角形的判定: 定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似 系数)。 由于从定义岀发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给岀过如下几个判定两个三角形相似的简单方法: (1 )两角对应相等,两三角形相似; (2 )两边对应成比例且夹角相等,两三角形相似; (3 )三边对应成比例,两三角形相似。 预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。 判定定理1 :对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三 角形相似。简述为:两角对应相等,两三角形相似。 判定定理2 :对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等, 那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 判定定理3 :对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个 三角形相似。简述为:三边对应成比例,两三角形相似。 引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O 以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; 相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; =========

(2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~

北京市各区2012年高考数学一模试题分类解析(17) 几何证明选讲 理

十七、几何证明选讲 13.(2012年海淀一模理13)如图,以ABC ?的边AB 为直径的半圆交AC 于点D ,交BC 于点E ,EF AB ^于点F ,3AF BF =,22BE EC ==,那么CDE D= , CD = . 答案:60° 11.(2012年西城一模理11) 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若OC =,1OM =,则MN =_____. 答案:1。 12.(2012年东城一模理12)如图,AB 是⊙O 的直径,直线DE 切⊙O 于点D , 且与AB 延长线交于点C ,若CD =1CB =,则ADE ∠= . 答案:60 。 F E D C B A A B C O M N

12.(2012年丰台一模理12)如图所示,Rt △ABC 内接于圆,60ABC ∠= ,PA 是圆的切线,A 为切点, PB 交AC 于E ,交圆于D .若PA=AE , BD=AP= ,AC= . 答案: 10.(2012年东城11校联考理10)如图,已知PA 是⊙O 的切线,A 是切点,直线PO 交⊙O 于,B C 两点,D 是OC 的中点,连结AD 并延长交⊙O 于点E , 若 ,30P A A P B =∠=? ,则AE = . 答案:7710。 11.(2012年石景山一模理11)如图,已知圆中两条弦AB 与CD 相交于点F ,CE 与圆相切交AB 延长线上于点E , 若DF CF ==,::4:2:1AF FB BE =,则线段CE 的长为 . 答案:7。 E D P C B A

3.(2012年房山一模理3)如图,PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点, 1PA PB ==,则ABC ∠=( B ) A.70? B.60? C.45? D.30? 12.(2012年密云一模理12)如图3所示,AB 与CD 是O 的直径,AB ⊥CD ,P 是AB 延长线上一点,连PC 交O 于点E ,连DE 交AB 于点F ,若42==BP AB ,则 =PF . 答案:3。 12.(2012年门头沟一模理12)如右图:点P 是O 直径AB 延长线上一点, PC 是O 的切线,C 是切点,4AC =,3BC =,则PC = . 答案:60 7 。 C

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

高考数学几何证明选讲

几何证明选讲 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.如图所示,l1∥l2∥l3,下列比例式正确的有________(填序号). (1)AD DF = CE BC ;(2) AD BE = BC AF ;(3) CE DF = AD BC ;(4) AF DF = BE CE . 2.如图所示,D是△ABC的边AB上的一点,过D点作DE∥BC交AC于E.已 知AD DB = 2 3 ,则 S △ADE S 四边形BCED = __________________________________________________________________. 3.如图,在四边形ABCD中,EF∥BC,FG∥AD,则EF BC + FG AD =________.

4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________. 5.(2010·苏州模拟)如图,在梯形ABCD中,AD∥BC,BD与AC相交于点O,过点O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________. 6.如图所示,在△ABC中,AD⊥BC,CE是中线,DC=BE,DG⊥CE于G,EC 的长为4,则EG=________. 7.(2010·天津武清一模)如图,在△ABC中,AD平分∠BAC,DE∥AC,EF ∥BC,AB=15,AF=4,则DE=________. 8.如图所示,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ BC = ________. 二、解答题(共42分) 9.(14分)如图所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC 的平分线,交AD于F,求证:DF AF = AE EC .

高中数学高考总复习几何证明选讲习题及详解

高中数学高考总复习几何证明选讲习题 (附参考答案) 一、选择题 1.已知矩形ABCD ,R 、P 分别在边CD 、BC 上,E 、F 分别为AP 、PR 的中点,当P 在BC 上由B 向C 运动时,点R 在CD 上固定不变,设BP =x ,EF =y ,那么下列结论中正确的是( ) A .y 是x 的增函数 B .y 是x 的减函数 C .y 随x 的增大先增大再减小 D .无论x 怎样变化,y 为常数 [答案] D [解析] ∵E 、F 分别为AP 、PR 中点,∴EF 是△P AR 的中位线,∴EF =12 AR ,∵R 固定,∴AR 是常数,即y 为常数. 2.(2010·湖南考试院)如图,四边形ABCD 中,DF ⊥AB ,垂足为F ,DF =3,AF =2FB =2,延长FB 到E ,使BE =FB ,连结BD ,EC .若BD ∥EC ,则四边形ABCD 的面积为( ) A .4 B .5 C .6 D .7 [答案] C [解析] 由条件知AF =2,BF =BE =1, ∴S △ADE =12AE ×DF =12 ×4×3=6, ∵CE ∥DB ,∴S △DBC =S △DBE ,∴S 四边形ABCD =S △ADE =6. 3.(2010·广东中山)如图,⊙O 与⊙O ′相交于A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q

和M ,交AB 的延长线于N ,MN =3,NQ =15,则PN =( ) A .3 B.15 C .3 2 D .3 5 [答案] D [解析] 由切割线定理知: PN 2=NB ·NA =MN ·NQ =3×15=45, ∴PN =3 5. 4.如图,Rt △ABC 中,CD 为斜边AB 上的高,CD =6,且AD BD =32,则斜边AB 上的中线CE 的长为( ) A .5 6 B.56 C.15 D.3102 [答案] B [解析] 设AD =3x ,则DB =2x ,由射影定理得CD 2=AD ·BD ,∴36=6x 2,∴x =6,∴AB =56, ∴CE =12AB =562 . 5.已知f (x )=(x -2010)(x +2009)的图象与x 轴、y 轴有三个不同的交点,有一个圆恰好经过这三个点,则此圆与坐标轴的另一个交点的坐标是( ) A .(0,1) B .(0,2)

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

初三经典几何证明练习题(含答案)

初三几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 2、已知:如图,P是正方形ABCD内部的一点,∠PAD=∠PDA= 15°。 求证:△PBC是正三角形.(初二)

3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F. 求证:∠DEN=∠F. 经典题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.

2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P. 求证:AP=AQ. 3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF 的中点,OP⊥BC 求证:BC=2OP 证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N ∵OF=OD,DN∥OP∥FL ∴PN=PL ∴OP是梯形DFLN的中位线 ∴DN+FL=2OP ∵ABFG是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL 又∠FLB=∠BMA=90°,BF=AB ∴△BFL≌△ABM ∴FL=BM 同理△AMC≌△CND ∴CM=DN ∴BM+CN=FL+DN ∴BC=FL+DN=2OP 经典题(三) 1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

高考数学试题汇编几何证明选讲

第十四章 选修4系列选讲 第一节 几何证明选讲 高考试题 考点一 相似三角形的判定与性质 1. (2013年陕西卷,理15B)(几何证明选做题)如图,弦AB 与CD 相交于☉O 内一点E,过E 作BC 的平行线与AD 的延长线交于点P.已知PD=2DA=2,则PE= . 解析:由PD=2DA=2,得PA=PD+DA=2+1=3, 又PE ∥BC,得∠PED=∠C, 又∠C=∠A,得∠PED=∠A, 在△PED 和△PAE 中,∠EPD=∠APE,∠PED=∠A, 所以△PED ∽△PAE, 得 PE PA =PD PE , 因此PE 2 =PA ·PD=3× 答案2.(2011年陕西卷,理15B)如图所示,∠B=∠D,AE ⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE= . 解析:由∠B=∠D,∠AEB=∠ACD=90°, 得△ACD ∽△AEB, 所以 AC AE =AD AB ,即4AE =12 6 ,所以AE=2, 所以在直角三角形ABE 中, 答案3.(2011年湖南卷,理11)如图所示,A,E 是半圆周上的两个三等分点,直径BC=4,AD ⊥BC,垂足为D,BE 与AD 相交于点F,则AF 的长为 .

解析:如图所示,设圆心为O,连接OA,OE,AE,因为A,E 是半圆周上的两个三等分点,所以AE ∥BC,AE=1 2 BC=2,所以△AFE ∽△DFB,所以 AF DF =AE DB .在△AOD 中, ∠AOD=60°,AO=2,AD ⊥BC,故OD=AOcos ∠AOD=1,AD=AOsin ∠所以BD=1.故 AF= AE BD ·DF=2(AD-AF).解得 答案考点二 直线和圆的位置关系 1.(2013年重庆卷,理14)如图所示,在△ABC 中,∠ACB=90°,∠A=60°,AB=20,过C 作△ABC 的外接圆的切线CD,BD ⊥CD,BD 与外接圆交于点E,则DE 的长为 . 解析:在△ABC 中, BC=AB ·sin 60°, 由弦切角定理知∠BCD=∠A=60°, 所以 由切割线定理知,CD 2 =DE ·BD, 解得DE=5. 答案:5 2.(2012年湖北卷,理15)如图所示,点D 在☉O 的弦AB 上移动,AB=4,连接OD,过点D 作OD 的垂线交☉O 于点C,则CD 的最大值为 . 解析:连接OC.因为CD ⊥OD,所以又OC 为☉O 的半径,是定值,所以当OD 取最小值时,CD 取最大值.显然当OD ⊥AB 时,OD 取最小值,此时CD=1 2 AB=2,即CD 的最大值为2. 答案:2 3.(2013年广东卷,理15)(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC=CD,过C 作圆O 的切线交AD 于E.若AB=6, ED=2,则BC= .

初一几何证明典型例题

初一几何证明典型例题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

戴氏教育达州西外校区名校冲刺 戴氏教育温馨提醒: 暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。在这个炎热的假期,祝你学习轻松愉快。 初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3、 4、证明:连接BF 和EF A B C D E F 2 1 A D B C

∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF≌△

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 已知:∠1=∠2,CD=DE , EF P 是∠BAC 平 分线AD 上一点,AC>AB ,求证:PC-PB

高二数学选修4-1《几何证明选讲》综合复习题

第1题图 第6题图 高二数学选修4-1《几何证明选讲》综合复习题 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如图4所示,圆O 的直径AB =6,C 为圆周上一点,BC =3过C 作 圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则∠DAC =( ) A .15? B .30? C .45? D .60? 【解析】由弦切角定理得60DCA B ∠=∠=?,又AD l ⊥,故30DAC ∠=?, 故选B . 2.在Rt ABC ?中,CD 、CE 分别是斜边AB 上的高和中线,是该图中共有x 个三角形与ABC ?相似,则x =( ) A .0 B .1 C .2 D .3 【解析】2个:ACD ?和CBD ?,故选C . 3.一个圆的两弦相交,一条弦被分为12cm 和18cm 两段,另一弦被分为3:8,则另一弦的长为( ) D .99cm 【(0)k k >,由相交弦定理得 33k =cm .故选B . 4.ABC ?与 cm D . 5.P C D 经过圆心,已知 C .6 )(12)r r -+,解得8r =.故选6.如图,AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥于点D , 且DB AD 3=,设COD θ∠=,则2 tan 2θ=( ) A .13 B .14 C .4- D .3 A B C D E 第4题图

第11题图 第10题图 第9题图 【解析】设半径为r ,则31,22AD r BD r ==,由2CD AD BD =?得2 CD r =,从而3π θ=, 故21tan 23 θ=,选A . 7.在ABC ?中,,D E 分别为,AB AC 上的点,且//DE BC ,ADE ?的面积是22cm ,梯形DBCE 的面积为26cm ,则:DE BC 的值为( ) A . B .1:2 C .1:3 D .1:4 【解析】ADE ABC ?? ,利用面积比等于相似比的平方可得答案B . 8.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作( )个. A .2 B .3 C .4 D .5 1个,一外切一内切的2个,9..由4个这样的 , ( ) D .4 mm , AC ,AQ =23AB +14AC , A . 15 B . 45 C . 14 D . 13 【解析】如图,设25AM AB = ,15AN AC = ,则AP AM AN =+ .

高考理科数学考点解析 几何证明选讲

几何证明选讲 一、填空题 1.(2016·天津高考文科·T13)同(2016·天津高考理科·T12)如图,AB 是圆的直径,弦CD 与AB 相交于点E ,BE=2AE=2,BD=ED ,则线段CE 的长为 . 【解题指南】设圆心为O ,连接OD ,构造三角形,利用相似三角形对应边成比例求解. 【解析】设圆心为O ,连接OD ,AC ,可得△BOD ∽△BDE ,所以BD 2=BO ·BE=3,所以BD=DE= 因为△AEC ∽△DEB , AE CE DE BE = ,即EC 2=,所以 答案二、解答题 2.(2016·全国卷Ⅰ高考文科·T22)同(2016·全国卷Ⅰ高考理科·T22)选修4-1:几何证明选讲 如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心, 1 2 OA 为半径作圆. (1)证明:直线AB 与☉O 相切. (2)点C ,D 在☉O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD. 【解析】(1)设圆的半径为r ,作OK ⊥AB 于K , 因为OA=OB ,∠AOB=120°,

所以OK⊥AB,∠A=30°,OK=OA·sin 30°=OA =r, 2 所以AB与☉O相切. (2)方法一:假设CD与AB不平行, CD与AB交于F,FK2=FC·FD.① 因为A,B,C,D四点共圆, 所以FC·FD=FA·FB=(FK-AK)(FK+BK). 因为AK=BK, 所以FC·FD=(FK-AK)(FK+AK)=FK2-AK2.② 由①②可知矛盾, 所以AB∥CD. 方法二: 因为A,B,C,D四点共圆,不妨设圆心为T, 因为OA=OB,TA=TB,所以OT为AB的中垂线, 又OC=OD,TC=TD, 所以OT为CD的中垂线, 所以AB∥CD. 3.(2016·全国卷Ⅱ文科·T22)同(2016·全国卷Ⅱ理科·T22)选修4-1:几何证明选讲 如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.

初中一年级数学几何证明题答案

初一典型几何证明题 1、已知: AB=4,AC=2,D是BC中点, AD是整数,求AD 解:延长 A D到 E,使AD=DE ∵D是 BC中点 A ∴BD=DC 在△ ACD和△ BDE中 AD=DE ∠BDE=∠ADC B C D BD=DC ∴△ ACD≌△ BDE ∴AC=BE=2 ∵在△ ABE中 AB-BE<AE<AB+BE ∵AB=4 即 4-2<2AD<4+2 1<AD<3 ∴AD=2 2、已知: BC=DE,∠B=∠E,∠ C=∠D,F 是 CD中点,求证:∠1=∠2 A 2 1 B E C F D 证明:连 接BF和 EF ∵BC=ED,CF=DF∠, BCF=∠EDF ∴△ BCF≌△ EDF (S.A.S) 第1页 共22 页

∴BF=EF,∠CBF=∠DEF B E 连接 在△ BEF中,BF=EF ∴∠EBF=∠BEF。 ∵∠ABC=∠AED。 ∴∠ABE=∠AEB。 ∴AB=AE。 在△ ABF和△ AEF中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ ABF≌△ AEF。 ∴∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=D,E EF//AB,求证: EF=AC A 2 1 F C D E B 点G C作 CG∥EF交 AD的延长线于 过 CG∥EF,可得,∠ EFD= CGD DE=DC ∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又,EF∥AB ∴,∠ EFD=∠1 ∠1=∠2 ∴∠CGD=∠2 ∴△AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC 4、已知: AD平分∠ BAC,AC=AB+B,D求证:∠B=2∠C A 共22 页 第2页

2017-2018学年高中数学 考点52 几何证明选讲(含2013年高考试题)新人教A版

考点52 几何证明选讲 一、填空题 1.(2013·天津高考理科·T13)如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E,AD 与BC 交于点F.若AB=AC,AE=6,BD=5,则线段CF 的长为 . 【解题指南】利用圆以及平行线的性质计算. 【解析】因为AE 与圆相切于点A,所以AE 2=EB ·(EB+BD),即62 =EB ·(EB+5),所以BE=4,根据切线的性质有∠BAE=∠ACB,又因为AB=AC,所以∠ABC=∠ACB,所以∠ABC=∠BAE,所以AE ∥BC,因为BD ∥AC,所以四边形ACBE 为平行四边形,所以AC=BE=4,BC=AE=6.设CF=x,由BD ∥AC 得 = AC CF BD BF ,即456=-x x ,解得x=83,即CF=83 . 【答案】 8 3 . 2. (2013·湖南高考理科·T11)的⊙0中,弦 ,,2,AB CD P PA PB ==相交于点1PD O =,则圆心到弦CD 的距离为 . 【解题指南】本题要利用相交弦定理:PA ·PB=PD ·PC 和解弦心三角形22)2 1 (CD r d -= 【解析】由相交弦定理PC PD PB PA ?=?得4=PC ,所以弦长5=CD ,故圆心O 到弦CD 的距离为234257)21(22=-=-CD OC . 【答案】 2 3. 3. (2013·陕西高考文科·T15)如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = .

初中经典几何证明练习题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB,E F⊥AB ,E G⊥C O. 求证:CD =G F. 证明:过点G 作GH ⊥AB 于H,连接OE ∵E G⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO +∠EFO=180° ∴E 、G、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠E GO =∠FHG =90° ∴△EGO ∽△F HG ∴ FG EO =HG GO ∵GH ⊥A B,CD ⊥AB ∴GH∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵E O=C O ∴CD =GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD=∠PDA=15°。 求证:△PB C是正三角形.(初二) 证明:作正三角形ADM,连接MP ∵∠MA D=60°,∠PAD =15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PA D=15° ∴∠BAP=∠BAD -∠PAD=90°-15°=75° ∴∠B AP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=B P 同理∠CPD=∠MP D,MP =C P ∵∠PAD=∠PDA =15° ∴PA=P D,∠BA P=∠CDP=75° ∵BA=CD ∴△BAP ≌∠C DP ∴∠BP A=∠CPD ∵∠B PA =∠MPA ,∠CPD=∠MPD ∴∠MP A=∠M PD=75° ∴∠BPC=360°-75°×4=60° ∵M P=BP,MP=CP ∴BP=CP ∴△BPC 是正三角形

高中数学高考总复习几何证明选讲习题及详解

高中数学高考总复习几何证明选讲习题及详解 一、选择题 1.已知矩形ABCD ,R 、P 分别在边CD 、BC 上,E 、F 分别为AP 、PR 的中点,当P 在BC 上由B 向C 运动时,点R 在CD 上固定不变,设BP =x ,EF =y ,那么下列结论中正确的是( ) A .y 是x 的增函数 B .y 是x 的减函数 C .y 随x 的增大先增大再减小 D .无论x 怎样变化,y 为常数 [答案] D [解析] ∵E 、F 分别为AP 、PR 中点,∴EF 是△P AR 的中位线,∴EF =1 2AR ,∵R 固 定,∴AR 是常数,即y 为常数. 2.(2010·湖南考试院)如图,四边形ABCD 中,DF ⊥AB ,垂足为F ,DF =3,AF =2FB =2,延长FB 到E ,使BE =FB ,连结BD ,EC .若BD ∥EC ,则四边形ABCD 的面积为( ) A .4 B .5 C .6 D .7 [答案] C [解析] 由条件知AF =2,BF =BE =1, ∴S △ADE =12AE ×DF =1 2 ×4×3=6, ∵CE ∥DB ,∴S △DBC =S △DBE ,∴S 四边形ABCD =S △ADE =6. 3.(2010·广东中山)如图,⊙O 与⊙O ′相交于A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q 和M ,交AB 的延长线于N ,MN =3,NQ =15,则PN =( )

A .3 B.15 C .3 2 D .3 5 [答案] D [解析] 由切割线定理知: PN 2=NB ·NA =MN ·NQ =3×15=45, ∴PN =3 5. 4.如图,Rt △ABC 中,CD 为斜边AB 上的高,CD =6,且AD BD =3 2,则斜边AB 上的中线CE 的长为( ) A .5 6 B.562 C.15 D.3102 [答案] B [解析] 设AD =3x ,则DB =2x ,由射影定理得CD 2=AD ·BD ,∴36=6x 2,∴x =6,∴AB =56, ∴CE =12AB =562 . 5.已知f (x )=(x -2010)(x +2009)的图象与x 轴、y 轴有三个不同的交点,有一个圆恰好经过这三个点,则此圆与坐标轴的另一个交点的坐标是( ) A .(0,1) B .(0,2) C .(0, 2010 2009 )

初中经典几何证明练习题(含标准答案)

初中几何证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形 3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN

相关文档
最新文档